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Abstract 

 This paper presents a model-based control design for trajectory tracking of two-wheeled mobile robots based on 

Linear Quadratic Regulator (LQR) optimal control. The model proposed in this article has been implemented on a 

computational model which is obtained from kinematic and dynamic relations of KHEPERA IV. Along the correct 

dynamic model for KHEPERA IV plat form which is not elaborated properly in pervious researcher work the 

purpose of control is to track a predefined reference trajectory with the best possible precision considering the 

dynamic limits of the robot. Applying several challenging paths to the system showed that the control design is able 

to track applied reference paths with an acceptable tracking error. 

Keywords: KHEPERA IV, Computational Model, LQR Optimal Control, Dynamic model. 

 - Introduction 

Mobile robots are suitable for many applications. 

One of the most challenging research problems in 

robotic systems is to control the motion of a 

mobile robot in order to track a predefined 

trajectory with the best possible precision having a 

structured platform to examine the designed 

control models is a major task in scientific 

research studies. KHEPERA IV is one of the most 

popular mobile robots which is designed and 

manufactured by K-Team Corporation and it’s 

mostly used for experimental studies in robotics. 

This robot is applied as benchmark robotic system 

which can be used for in almost any applications 

such as navigation, swarm, artificial intelligence, 

computation, demonstration, etc. [1]. This research 

paper presents an efficient control method based 

on Linear Quadratic Regulator (LQR) optimal 

control for trajectory tracking of a two-wheeled 

mobile robot. LQR is an optimal control method 

which provides a systematic way for computing 

the state feedback control gain matrix. To 

determine the feedback gain optimally, matrices   

and   are available. where   is a positive-definite 

or positive-semidefinite diagonal matrix which is 

related to state variables, and   is a positive-

definite diagonal matrix which is related to input 

variables [2]. By tuning the elements of   and   , 

the optimum performance of the system can be 

reached.  
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The presented control method is implemented on 

computational model of KHEPERA IV and 

tracking of the applied trajectory is provided by 

controlling the angular velocity of the wheels[3]. 

The performance of the control design is evaluated 

by measuring the error of tracking. This paper is 

organized as follows. In section 2, the 

computational model of KHEPERA IV based on 

kinematic and dynamic equations has been 

presented. In section 3, an optimal control design 

based on LQR method is proposed. In section 4, 

the system has been evaluated by analyzing the 

simulation results. And section 5 is the conclusion. 

 - Computational Model of KHEPERA IV 

 In this section, a computational model for 

KHEPERA IV, based on kinematic and dynamic 

equations of the robot is presented. To create this 

model, it’s assumed that robot moves on a 

perfectly flat surface with no sliding and no slope. 

KHEPERA IV has two independently driven 

wheels, which rotate around a common axis. Two 

passive wheels, which rotate in all the directions, 

ensure the stability of the robot. Fig. 1 shows the 

kinematic model of KHEPERA IV. Motion of 

two-wheeled mobile robots is controlled by 

angular velocity of the wheels    and  . 

Tangential velocity of the wheels    and    can be 

calculated from the following equations: 

         (1) 

            (2) 

Where   is radius of the wheels.Angular velocity 

  and tangential velocity   of the robot can be 

obtained from equations (3) and (4) respectively. 

  
     
 

 (3) 

  
     
 

 
(4) 

Where   is the distance between the wheels. 

Position of the robot is given by coordinates   and 

  and angle . To obtain ,   and   from   and  , 

the following relations can be used: 

 ̇( )           ( )  ∫ ( )   
(5) 

 ̇( )                   ( )  ∫         
(6) 

 ̇( )                   ( )  ∫         
(7) 

According to equations (1) to (7) and the robot 

model shown in  

Fig. 1, the inputs to kinematic model are    and 

   output variables are  ,   and  . 

 

Fig. 1: Kinematic Model of KHEPERA IV 

 - - Dynamic Model of KHEPERA IV:  

Some parameters of the system such as friction 

force and mass of the robot are dynamic 

specifications, and have not mentioned in 

kinematic model. Therefore, the computational 

model can be improved using mathematical 

equations of dynamic model. Dynamic model of 

KHEPERA IV has shown in FIG. 2 and shape of 

the mathematical equations are as follows: 

          (8) 

(     ) 

 
     

(9) 
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Where    and    are the forces applied to left and 

right wheel respectively.  (Mass of the robot),   

(tangential acceleration)   (moment of inertia) and 

  (angular acceleration) are dynamic parameters of 

the robot. Now the state space model of the system 

can be defined using kinematic and dynamic 

specifications of KHEPERA IV. Inputs, outputs 

and state variables of the model have chosen as 

follows: 

 ( )  ,  ( )   ( )   ( )   ( )-
 , ( )  ( )   ( )   ( )- 

 

(10) 

 ( )  ,  ( )   ( )   ( )   ( )-  ,           - 
 

(11) 

 ( )  ,  ( )   ( )-  
                 ,  ( )   ( )-  [  ( )   ( )] 
 

(12) 

Where    and    are voltages applied to DC 

motors which drive the wheels of the robot. From 

equation (10) we have 

  ( )   ( ).  (13) 

After taking derivation from the sides of the 

equation we have  ̇ ( )   ( ) and using equation 

(8) the following relation will be obtained: 

(14)  ̇ ( )  
     
 

 
 

 
   

 

 
   

  

 

FIG. 2: DYNAMIC MODEL OF KHEPERA IV 

From equation (9),   ( )     and   ( )    . 

Therefore, the equation (13) can be written as: 

(14) 
 ̇ ( )  

 

 
  ( )  

 

 
  ( ) 

As it’s given from equation (10)   ( )   ( ). By 

taking derivation from the equation we 

have ̇ ( )   ( ). By applying equation (9) the 

second state equation will be given as: 

(15)  ̇ ( )  
  

  
  ( )  

 

  
  ( ) 

   and    have applied to generate the angular 

velocities    and    respectively. Voltage values 

of the motors are described by the following 

equations [4]: 

(16)    ( )     ( )         

(17)    ( )     ( )         

Where    and    are angular accelerations of the 

wheels and   is the friction force.  By choosing 

third state variable as   ( )     and fourth state 

variable as   ( )     and also by considering    

and    as third and fourth input variables 

respectively, following state equations will be 

obtained: 

(18) 
 ̇ ( )   

 

 
  ( )  

 

 
  ( )  

 

 
  ( ) 

(19) 
 ̇ ( )   

 

 
  ( )  

 

 
  ( )  

 

 
  ( ) 

Therefore, there are four state equations which can 

be represented in form of state space matrix as 

below[4]: 
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To have the realistic results, real specification of 

KHEPERA IV has been applied for simulation of 

the model. The constant parameter values are 

considered as following[5]: 

          ,           

          ,            

          . 

 - Presenting a Control Model for Trajectory 

Tracking of KHEPERA IV: 

In this section a control method for trajectory 

tracking of the robot is presented. Control model 

of the system has two parts: in the first part, 

coordinates and angel of the robot will be obtained 

from input angular velocity of the wheels, and in 

the second part, angular velocities required for the 

first part of the system with the aim of the best 

possible tracking of reference trajectory will be 

generated. For the first part of the system the 

proposed model in [4] has been applied. 

As shown in Fig. 3, there are four input variables 

applied to state space model of the robot.    and 

   are tangential forces which generate the 

acceleration of the motion by acting on left and 

right wheel respectively. Third and fourth input 

variables    and    are voltage values of DC 

motors which drive left and right wheel 

respectively. These voltages have given from PID 

controllers which control the angular velocity of 

the wheels. It’s been assumed that, the frictional 

forces applied to the wheels are equal and take 

constant values. By considering that, the friction 

forces are the only forces applied on wheels, these 

inputs can be modeled as Step functions with 

similar Final Values and similar Step Times. With 

this consideration, the only variables, which 

determine the speed of the wheels, are    and    

controlled by PID controllers. 

 Parameter values for both PIDs have chosen as: 

     ,      ,     .  

These parameters have obtained by observing the 

tracking quality of input signals and trajectory 

curve. In the second part of the control model a 

reference trajectory (    ,      and     ) is given 

to the system and comparing to the output 

trajectory ( ,   and  ) the error of trajectory 

tracking will be determined. In the next step, the 

angular velocities    and    have to be generated 

due to minimizing the error signal. Therefore, 

input variables to this part of the control model are 

    ,      and     , and output variables are    

and   . To implement LQR optimal control on the 

system we need to define a mathematical model to 

determine    and    from     ,      and     . 

According to equations (5 to 7), the motion 

equation in matrix form is as following. 

(21) 

[
 ̇
 ̇

 ̇

]  [
     
     
  

]  [
 
 
] 

By determining   and  , tangential velocities of 

the wheels can be calculated from the following 

equations: 
(22) 

     
   

 
 

(23) 
     

   

 
 

From the given reference trajectory (    ,     ), 

the angle      can be obtained by equation (24): 

(24)          
 ̇   

 ̇   
                

Where     is for forward drive direction and 

    is for reverse drive direction.  

The reference angular velocity      and tangential 

velocity      of the robot can be calculated from 

the following equations: 

(25) 
     

 ̇     ̈     ̇     ̈   

( ̇   )
  ( ̇   )

 
 

(26) 
      √( ̇   )

  ( ̇   )
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For calculating tangential velocity, ( ) is for 

forward direction ( ̇     ), and ( ) is for 

reverse direction ( ̇     ).  

It’s clear that the tangential velocity of robot 

should be non-zero (      ) because for 

       equation (25) goes to infinity and also 

     cannot be calculated from equation (24).  

When the robot tracks a reference trajectory, 

several tracking errors will appear in  ,   and  . 

these errors can be expressed as: 

(27) 

[

  
  
  
]   [

      
      

      
] 

where    is error of   position,    is error of   

position, and    is error of the angle. These errors 

are in base frame coordinate system. Therefore, to 

transform the error matrix to the robot coordinate, 

a rotation matrix has been applied as below: 

(28) [

  
  
  
]  [

         
          
   

]  [

  
  
  
] 

As shown in FIG. 3 a control design based on LQR 

method is used for determining    and   . 

Linearized state space form of the system around 

the operating point O.P (O.P:           ), 

has found from [6] as below: 

(29) [

 ̇ 
 ̇ 
 ̇ 

]  [

      

           
   

]  [

  
  
  
]  [

  
  
  

]  [
   
   
] 

Where     and     are inputs from the closed-loop. 

The closed-loop system has three state variables  , 

   and   , and two inputs     and    . In order to 

determine inputs of the closed-loop system the 

LQR optimal control is used. According to the 

LQR definitions, for the system state space 

model ̇       , the inputs can be obtained 

from      , where   is the gain matrix 

determined by LQR controller optimally. 

Therefore, to obtain the inputs of the closed-loop, 

the equation (30) is available:  

(30) [
   
   
]   [

         
         

]   [

  
  
  
] 

Fig. 3: The Schematic Diagram of Optimal Control System 

 



46 

A. Abbasi et al./ Journal of Simulation & Analysis of Novel Technologies in Mechanical Engineering    (    )     ~     

 

As discussed in section 1, the LQR controller can 

be tuned optimally by adjusting the elements of 

matrices   and  . For simulating the performance 

of tracking system,   and   have taken the 

following values: 

  [
   
   
    

]                [
  
  

] 

Commonly used method for obtaining the values 

of matrices   and   is trial and error method[7], 

and this method is applied in this paper. Three 

elements of the main diagonal of matrix   belong 

to the state variables  ,    and   . Therefore, by 

changing these elements, the sensitivity of the 

system to the state variables can be adjusted. The 

elements of the main diagonal of matrix , belong 

to the control inputs     and    .  

In this case, increasing the value of the matrix 

elements, leads to less trajectory tracking quality 

and by reducing these values rapid changes in 

input signals will appear, which can lead to 

instability of the system.  After determining     
and     from equation (30), inputs to robot model, 

  and   are obtained from the following 

equations[6]: 

(31)                  

(32)            

Now by applying equations (22) and (23), 

tangential speeds of the wheels    and    are 

calculated from   and  , and angular velocities 

   
  

 
 and    

  

 
 are available easily. To 

evaluate the performance of the system, trajectory 

tracking error is considered. Tracking error of the 

system    is as expressed in Error! Reference 

source not found., and it’s calculated from 

equation (33). 

(33)    √(  )
  (  )

  

 

Fig. 4: Trajectory Tracking Error of the System 

To examine the system capabilities, several 

challenging paths are implemented to the control 

design as reference trajectory. Applied paths are 

described in Table 1. 

TABLE 1 –APPLIED PATHS TO THE ROBOT 

No. Path Name Specification 

1 Circle Path 
          (    ) 

          (    ) 

2 Ellipse Path 
          (    ) 

          (    ) 

3 Spiral Path 
            (    ) 

            (    ) 

4 
Eight-Shape 

Path 

          (    ) 

         (    )     (    ) 

5 
Multi-

Direction Path 

Acute Point: 

  *                  + 

  *                + 

 - Simulation Results: 

Simulation has performed with sample time 0.1 

second, and for all the paths mentioned in Error! 

Reference source not found., the initial position 

of the robot is located in start point of reference 

trajectory. This provides the linearity condition of 

the linearized model of equation (29). Figures 5 to 

9 show the trajectory tracking (part A), error signal 

(part B) and angular speed of right and left wheel 

(part C and D respectively) in input and output of 

the robot model for each path. 
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B

A

C

D

 

Fig. 5: Circle Path Simulation Results 

Fig. 5 shows the circle path with 1.88 meters of 

length. In part (B) the error signal has two peak 

points. These points are related to changing the 

direction of tangential velocity of the robot which 

was appeared in equation (26).  

In parts (C) and (D) both wheels were able to track 

input control signal with good performance. 

C

B

A

D

 

FIG. 6: ELLIPSE PATH SIMULATION RESULTS 

In Fig. 6 the length of the ellipse path was 2.51 

meters. Similar to circle path two peak points in 

error signal were appeared and the system was 

able to track the applied angular speeds as input 

control signals. 
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B

A

C

D

 

Fig. 7: Ellipse Path Simulation Results 

In Fig. 7 a spiral path with the length of 7.05 

meters has been applied to the system. The error 

signal has increasing behavior because the radius 

of the rotation in at the first of the path is very 

small and by increasing the speed, physical 

specification of the robot did not allow it to follow 

the path curve precisely. Besides, in part (C) and 

(D) the speed of the wheels showed good tracking 

accuracy, but the value of the angular speeds are 

not logical. 

A

C

D

B

 

Fig. 8: Ellipse Path Simulation Results 

An eight-shape path in Fig. 8 is applied to the 

system. The length of path is 3.05 meters. In part 

(B) the error signal has three peak points which 

indicates to the number of changing the direction 

of tangential velocity vector of the robot. In parts 
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(C) and (D) though the input signal has a little 

oscillation, but the system shows a good tracking 

behavior. 

B

A

C

D

 

FIG. 9: ELLIPSE PATH SIMULATION RESULTS 

Fig. 9 shows a multi-directional path with sharp 

edges in the path curve and 2.3 meters of length. 

The system was able to track all the acute points in 

the path curve and the tracking performance was 

almost perfect. The result of system tracking error 

in five different paths is shown in Table 2. 

TABLE 2 –MAXIMUM AND MINIMUM OF TRACKING 

ERROR 

 

Table 2 shows the minimum and maximum of 

tracking error signal of each applied path. 

Considering the information from the table, the 

best tracking quality based on error signal belongs 

to the Circle path and the Spiral path shows the 

worst result.  

 - Conclusion 

In a previous work on KHEPERA platform [8], a 

model-free control design for determining the 

angular velocity of the wheels based on reference 

trajectory inputs is proposed. In the mentioned 

paper, determining several parameters such as 

Gain values and Saturation limits which define the 

boundary of output angular speeds was difficult. 

Therefore, in this article, a new method with more 

elaboration is presented. The proposed control 

method was based on LQR optimal control and 

simulation results in figures 5 to 9 showed that the 

presented model was able to track applied 

reference trajectories with the satisfying tracking 

precision and system performance. According to 

the information from Table 2, the maximum 

tracking error belongs to Spiral path and the 

minimum one is related to Circle and Ellipse 

paths. As seen in Figures 5 to 9 in all of the paths 

the input signals    and    have some oscillation. 

It seems that it’s because of the sensitivity of the 

LQR controller to control the error signal. By 

adjusting the LQR matrices these oscillations can 

Path Name 

Maximum 

Tracking Error 

(mm) 

Minimum Tracking 

Error (mm) 

Circle 4.2 0.5 

Ellipse 6 1 

Spiral 25 0.4 

Eight-Shape 7.8 3.2 

Multi-Direction 4.5 0.2 
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be reduced but it leads to less trajectory tracking 

quality. Besides, changing the sign of tangential 

velocity signal leads to several peak points in error 

signal. It seems that it’s because of the overshot of 

input signals    and    in mentioned sample 

times. This problem is more sensible in the parts 

(C) and (D) of Fig. 9 and it may to cause the 

uncertainties in the real experimental performance 

of the robot, but seems that the tracking quality 

would be satisfying. 
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