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ABSTRACT: The aim of this study was to investigate the effects of process parameter on crude oil (CO) 

biodegradation of palm oil mill effluent (POME) by using response surface optimization. Physiochemical 

characterization of the uncontaminated soil (UCS), crude oil contaminated soils (COCS), and POME were 

investigated. Further characterization on the POME was done employing the scanning electron microscope (SEM) and 

Fourier transform infrared (FT-IR). First and second order kinetics models were used to estimate the kinetic 

parameters. Results obtained indicated that POME contained valuable soil nutrient as it showed a stimulatory effect on 

the physiochemical properties of the COCS. However, POME was able to degrade 51% of CO with an initial CO 

concentration of 130 g/L. The first order kinetics proved a better model with a high rate constant, lower biological 

half-life and R² greater than 0.96. From the optimization process, the quadratic model with 78.8% contribution and R² 

of 0.993 satisfactorily explained the interactions between the independent variable and the response. The FT-IR 

spectrum revealed the presence of nitrogen and phosphorous on the surface of POME, while SEM indicated a smooth 

surface of POME.  

 

                             INTRODUCTION 

The utilization of palm oil in various domestic and 

industrial processes to produce a number of products has 

contributed immensely to the global economy. 

Therefore, the need for the constant supply of palm oil 

in order to meet domestic and industrial needs cannot be 

overemphasized. However, one of the pressing 

challenges facing global palm oil production industries 

is on how to manage the huge wastes generated from 

palm oil extraction from fresh palm fruit bunches [1]. 

Nigeria alongside Indonesia, Malaysia, and Thailand 

produce palm oil for economic growth in large 

quantities. However, these countries are faced with the 

challenges of managing the numerous wastes generated 

from palm oil extraction such as the palm oil mill 

effluent (POME) [1]. Environmental issues as a result of 

POME discharge are increasingly becoming a source of 

concern in Nigeria.  Due to the huge amount of water 

required for palm oil extraction, POME in most cases is 

discharged in nearby soil and/or water without treatment 

[2].   

The indiscriminate discharge of POME from palm oil 

mill factories could contaminate underground water 

resources and destroy aquatic animals etc. However, 

existing researches are focused on the physicochemical 

treatments of POME like sedimentation by coagulation 

and flocculation [3] adsorption and membrane filtration 
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[4].  There are growing interests in the utilization of 

POME for agricultural composting processes since 

POME are biological in nature and degradable [5].    

Results from previous studies showed that POME 

contains a high concentration of organic matter [1]. 

Also, the application of POME to soil enriched the soil 

with Phosphorous, Nitrogen, Calcium and Magnesium 

which will lead to an improved soil fertility and 

sustainable environment [6]. However, the application 

of biologically treated POME for irrigation purposes and 

liquid fertilizer has been reported [7].  In a study carried 

out [8]  to study the co-composting of POME with 

empty fruit bunch (EFB) on a pilot scale, authors 

reported that the pilot scale co-composting of POME 

with EFB gave acceptable quality of compost with 

considerably high amount of calcium, Nitrogen, 

Phosphorous, and Magnesium [8]. 

However, little or no information exists on the 

utilization of POME as an organic nutrient in crude oil 

contaminated soil (COCS), which was the focus of this 

study. Hence, the objectives of this study were to 

characterize the uncontaminated soil (UCS), COCS, and 

POME. Investigations were also carried out on the 

effects of POME on the COCS properties.  Response 

surface optimization process was also employed to 

estimate the optimum conditions of the process variables 

in the COCS treated with POME (COCS-POME). 

Finally, the SEM and FT-IR were used to characterize 

POME. 

MATERIALS AND METHODS 

Samples collection 

The UCS used in this study was collected from the 

botanical garden of Nnamdi Azikiwe University Awka 

Anambra State Nigeria. The POME used in this study 

was collected from a palm oil mill factory located in 

Ogwofia-Ozom Mgbagbu Owa in Ezeagu Local 

Government Area of Enugu State Nigeria. The crude oil 

(CO) chosen as a choice contaminant to be monitored 

during the process was collected from Eleme 

Petrochemical refinery Port Harcourt Rivers State 

Nigeria. The samples were transported to the Soil 

Science Laboratory of the University of Nigeria Nsukka, 

Enugu State Nigeria for further analysis. 

Samples preparation 

Stock solutions of the raw CO sample were prepared by 

weighing out (PCE analytical weighing balance PCE-

6000) 50, 70, 90, 110 and 130 g of CO. Each of the mass 

of CO weighed out was diluted with 1.0 L of distilled 

water to give the desired CO concentrations (50, 70, 90, 

110 and 130 g/L) range. The CO concentrations used 

were relatively low, due to the dilution process. The 

UCS and POME used in this study were air dried for 30 

days to remove the inherent moisture. After drying, the 

samples were crushed and sieved using 2 mm particle 

size sieve, in order to obtain a homogenous sample and 

remove unwanted particles. 

CO degradation procedure  

The experimental procedure described in this section 

was carried out to study the effect of POME on the 

degradation of CO concentrations. 200 g of the UCS 

was placed in five plastic containers with dimensions of 

60 x 40 cm. The prepared CO stock solutions in section 

2.2 were used in contaminating the soil thereby creating 

an artificial COCS. The contaminated soil was 

thoroughly mixed with 100 g of POME at a constant 

ratio of 2:1 w/w, ensuring the homogeneity of the COCS 

and POME.  

The containers were covered with a black polyethylene 

bag, in order to prevent the volatilization and photo-

oxidation of the CO fractions [9]. Experimental control 

samples were used for comparative purposes. Distil 

water was used to adjust the water content of the 

treatment containers when necessary [10]. All 

experiments were carried out in duplicates and the 

statistical mean of the results obtained were recorded. 

The effectiveness of the CO degradation process was 

monitored by estimating CO degradation on a weekly 

basis during a 56 days remediation exercise using the 

expression in Eq. (1). 

CO analysis 

In order to determine CO concentration in the treatment 

mixtures, solvent extraction method according to [10] 

was used. 10 g sub-samples were dried in an oven. The 

sub-samples were extracted using Soxhlet extraction 

process for three hours using acetone/dichloromethane 
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(1:1 v/v) as solvent. After the extraction process, the 

solvent was left evaporate. The remaining residue 

(extract) was dissolved in 5ml dichloromethane. The CO 

concentration was quantified using gas chromatography. 

The Gas chromatography was equipped with split less 

injector and flame ionization detector (FID). The initial 

temperature was maintained at 40°C for 2min before 

increasing it to 320°C at a rate of 7°C/min. The rate was 

increased to 20°C/min until the temperature reached 

400°C and was kept constant for 10min. The recovery of 

CO using this method was higher than 65%. The CO 

concentrations were determined after calibration of the 

method with standard CO samples at different 

concentrations. The percentage of CO degraded was 

calculated using the expression in Eq. (1): 

%CO degradation = 
                       

           
         (1) 

Where: 

Initial COC is the Initial crude oil concentration  

Final COC is the final crude oil concentration  

Experimental design procedure  

The central composite design (CCD) of response surface 

methodology (RSM) was employed to investigate the 

interaction and effect of the independent variables on 

CO degradation. These independent variables were pH 

(2 –10), Temperature (10 – 50°C) and CO concentration 

(50 – 130 g/L). The variables levels used in the 

statistical analysis of data were coded with the symbols 

─1, 0, and, 1 as shown in Table 1. MINITAB 17.0, 

which was the statistical software used in this study 

estimated the axial level (α) to be ±1.633 according to 

the number of experimental runs displayed. 

Table 1. Levels of experimental variables  

Variables Symbol 
Levels 

minimum (-1) medium (0) maximum (1) 

pH A 2 6 10 

Temperature (°C) B 10 30 50 

CO concentration (gL¯¹) C 50 90 130 

 

Table 2 presents the experimental design matrix which 

includes the variables combinations, responses, first and 

second order predicted responses.  CCD was used to 

generate 20 experimental runs, which were carried out in 

a randomized order. A second-order quadratic model of 

(Eq. 2), which corresponds to the CCD of crude oil 

contaminated soil treated with POME (COCS-POME), 

was fitted to the CO degradation data using multiple 

regression method. This was in order to correlate the 

mathematical relationship between the independent 

variables and the response as presented in Eq. (2): 

  

      ∑       
 
   ∑       

 
      ∑ ∑        

 
   

   
                       

(2) 

From Eq. (2),   is the dependent variable (response),    

is the constant term,   ,      and     are the linear, 

quadratic and interaction coefficients, respectively.   , 

    and        are the linear, quadratic and interaction 

terms, respectively. The second order quadratic model 

used in process optimization allows the estimation of a 

full quadratic model for the system response [10]. 

However, the second order quadratic model, describing 

the mathematical relationship between the response 

(%CO degradation) and the independent variables as 

displayed by MINITAB 17.0 is presented in Eq. (3): 

 

% CO degradation = 26.64 + 0.711A + 2.262B + 

13.881C – 0.09427A² – 0.02886B² – 0.002922C² + 

0.0188AB – 0.00289BC – 0.02735AC   (3) 

 

According to Eq. (3), A, B, and, C are the coded values 

of the independent variables of pH, Temperature (°C) 

and CO concentration (g/L), respectively. The quadratic 

model of Eq. (3) could be used to predict the system 

response (%CO degradation) within the limits of the 

studied experimental independent variables. 
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Table 2. Experimental Design matrix 

Run Order Blocks pH (A) Temp (B) CO Conc.(C) 
% CO degradation 

Exp. First order Second order 

1 1 2 (1) 50 (-1) 50 (-1) 60.32 51.33 44.11 

2 1 2 (1) 50 (-1) 130 (1) 53.87 49.19 42.96 

3 1 10 (-1) 10 (1) 130 (1) 40.31 40.01 56.18 

4 1 10 (-1) 10 (1) 50 (-1) 54.77 58.72 45.67 

5 1 10 (1) 50 (1) 130 (1) 55.83 50.55 49.36 

6 1 6 (0) 30 (0) 90 (0) 85.85 70.15 72.15 

7 1 6 (0) 30 (0) 90 (0) 85.01 65.44 69.34 

8 1 2 (-1) 10 (-1) 50 (-1) 41.81 45.06 55.43 

9 1 10 (1) 50 (1) 50 (-1) 72.29 66.41 70.94 

10 1 2 (-1) 10 (-1) 130 (1) 51.36 48.13 55.43 

11 1 6 (0) 30 (0) 90 (0) 85.49 79.42 80.38 

12 1 6 (0) 30 (0) 90 (0) 85.33 77.11 70.35 

13 2 6 (-α) 60 (0) 90 (0) 70.08 65.13 75.59 

14 2 6 (0) 30 (0) 90 (0) 85.63 70.66 65.37 

15 2 6 (0) 7 (0) 90 (0) 41.33 36.64 49.37 

16 2 6 (0) 30 (0) 24 (-α) 77.78 70.95 66.47 

17 2 6 (0) 30 (0) 150 (α) 71.66 64.33 66.27 

18 2 12 (0) 30 (α) 90 (0) 51.81 44.12 59.34 

19 2 1.5 (0) 30 (-α) 90 (0) 40.72 47.83 56.83 

20 2 6 (0) 30 (0) 90 (0) 85.11 75.44 70.16 

 

Analytical procedure for physiochemical characterizations  

The analytical methods presented in this section were 

used to characterize the POME, UCS, and COCS. 

Moisture and organic matter contents were determined 

using [11] and [12], respectively.  The Total nitrogen 

was determined using the Kjeldahl method as described 

by [13]. The pH was determined following the method 

outlined by [14]. Total organic carbon (TOC) was 

estimated as detailed by American Public Health 

Association standard method [15]. Available nutrients 

such as calcium, sodium, magnesium potassium and 

phosphorous were determined according to [16].  The 

physiochemical characteristics of POME, UCS, and 

COCS are presented in Table 3. 

Error analysis of the kinetic models 

The accuracy of both first and second order kinetic 

models in explaining CO degradation process was 

estimated by analysing the error deviation between the 

experimental and model predicted values on CO 

degradation. The error functions from Eqs. (4) to (7) 

were used to estimate the errors deviations at different 

initial CO concentration [17]. According to Eqs (4) to 

(7),       is the experimental value of the ith 

experiment;         is the predicted value of the ith 

experiment by the model and n is the number of 

experiments. 

ARED =  
 

 
 ∑ (

              

     
) 

           (4) 

RMSE = √∑ (            )
 
 ⁄ 

            (5) 

MAE = 
 

 
 ∑ (            )
 
                   (6) 

SEP =  
    

     
                                     (7)   
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From Eqs (4) to (7), ARED is the Average relative error 

deviation, RMSE is the Root mean square error, MAE is 

the Mean absolute error and SEP is the Standard error of 

prediction.  

RESULTS AND DISCUSSIONS 

Physiochemical characterization  

The physiochemical properties of the UCS, COCS, and 

POME are summarized in Table 3. It was observed in 

Table 3 that POME (95.68%) contained high organic 

matter (OM) followed by the UCS (48.52%) and lastly 

the COCS (26.62%). The high OM of POME could be a 

source of soil nutrient and also enhance the growth of 

soil microbial population [18]. However, POME could 

also be a source of microbial biomass carbon as it 

contained a high level of OM [18]. 

The macro and micro soil nutrient compositions present 

in Table 3 indicated that the UCS and POME contained 

higher levels of calcium, potassium, and magnesium, 

total nitrogen, and sodium in comparison with the 

COCS. In terms of the organic carbon, the COCS 

(67.04%) showed higher level of organic carbon in 

comparison with the UCS (21.46%) and POME (55.5%) 

indicating that CO might be contributing significantly to 

soil organic carbon, which was needed for microbial 

growth [19, 20]. 

Furthermore, the pH values of COCS, UCS, and POME 

were observed to vary as the pH values for POME (5.3) 

and COCS (5.9) were moderately acidic. The acidic pH 

of POME was attributed to the organic acid produced 

during the fermentation process [21, 22] whereas that of 

COCS was due to the leaching of fundamental salt, 

which affects the soil pH [23]. The moderate acidic pH 

of COCS could be responsible for the deficiencies 

observed in the macro and micronutrients of the soil [24] 

(Table 3).  The dried samples used during the 

physiochemical characterization test resulted in low 

levels of moisture content, which was observed in 

COCS, UCS, and POME (Table 3). 

Table 3. Physiochemical properties of UCS, COCS, and POME 

Parameters Unit UCS COCS POME 

pH value 

 

7.7 5.9 5.3 

Organic matter % 48.52 26.62 95.68 

Total organic carbon % 21.46 56.04 55.5 

Nitrogen % 6.09 0.82 5.7 

sodium ppm 1.13 0.24 4.66 

potassium ppm 3.16 0.37 12.4 

calcium mgL
-1

 20.2 0.48 7.44 

magnesium mgL
-1

 2.00 1.44 2.24 

moisture content % 11.23 6.24 12.32 

 

Effect of POME on COCS physiochemical properties 

Post characterization of the crude oil contaminated soil 

treated with (COCS-POME) was carried out using the 

standard methods in section 2.5. This was in order to 

investigate the effects of POME on the COCS properties 

after 56 days. Significant effect of POME was observed 

on the COCS properties except for the pH (5.9), which 

remained relatively within the acidic range. This might 

be attributed to the acidic pH (5.3) of POME prior to its 

addition in the COCS. Also, an increase was observed in 

the nitrogen level, which in turn could activate the 

microbial activity and increase CO degradation rate 

[25]. 

It was observed that the OM of the COCS increased 

after 56 days of treatment with POME. This observation 

indicated that the addition of POME to COCS could 

supply additional nutrients and also enhance microbial 

growth and activity [26].  Improvements were also 

observed in the calcium, potassium, magnesium, and 

sodium suggesting that POME had a stimulating effect 

on soil nutrients (Table 4). The diverse microbial 
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population in the OM rich POME could be responsible 

for breaking down the CO concentration. 

The results obtained from the organic carbon test as 

presented in Table 4, showed that POME contributed to 

the increase in organic carbon. Accordingly, organic 

carbon of the COCS-POME increased by 5% compared 

with the organic carbon of the COCS shown in Table 3. 

Normally, low concentrations of raw crude oil is less 

volatile to atmospheric loss and could be regarded as a 

source of soil organic carbon for microbial growth [27, 

20]. 

Table 4. Physiochemical Characterization of COCS-POME 

Parameters Unit 
a 

COCS-POME
 

pH value 

 

5.9 

Organic matter % 45.34 

Total organic carbon % 61.02 

Nitrogen % 3.92 

Moisture content % 11.09 

Sodium ppm 2.99 

Potassium ppm 1.02 

Calcium mg/L 6.14 

Magnesium mg/L 1.05 

                                                     a 
COCS-POME crude oil contaminated soil treated with POME 

 

Scanning Electron Microscope (SEM) 

The morphological examination of the dried POME 

sample was carried out using a VEGA 3 SEM. The SEM 

result for POME shows that the surface morphology 

appears to be smooth (Figure 1). This may be attributed 

to the presence of smooth surface particles of the POME 

as it was sieved after drying prior to SEM examination. 

The smooth surface of POME could also be attributed to 

the compaction and adhesion of the oil to the POME 

sample [28].   Also, the morphological view of POME 

produced by SEM showed that the porous nature of 

POME appears to be obvious at a magnification of 

3000x and 20 µm.  Furthermore, the porous nature of 

POME contributed significantly to the reduction in 

weight of the dried POME sample (Figure 1.) 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. SEM Image of POME 
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FT-IR analysis of POME  

The prevalent functional groups in the POME sample 

were identified using FT-IR (SHIMADZU, 8400S) 

(Figure 2). The FT-IR scan for POME sample in 

transmission (%) mode was in the range of 4339.02 to 

396.31 cm-1.  The peak located at 4339.02 cm-1 with a 

transmittance of 59% was assigned to O–H stretching of 

oxygen. The peaks at 3827.87 to 3420.87 cm-1 with a 

transmittance of 57% and 55%, respectively are 

characteristics of primary amide NH2 and phenol O-H 

stretching of oxygen compound. [29] reported that fat 

and lipids were located at 2925.15 and 2860.35 cm-1 

with 51% transmittance (Figure 2). The peak range 

found at 1729.2 cm-1 with 55% transmittance is a 

characteristic of an aliphatic ketone of C=O stretching. 

The peaks at 1644.37 and 1534.42 cm-1 with 57% 

transmittance were nitrogen in origin (amine I and II 

correspondingly). [8] suggested that the IR spectrum of 

nitrogen band was mostly present in the form of amine. 

Methyl asymmetric C-H bending was observed at 

1449.4cm-1, with 56% transmittance [30]. The peak at 

1166.97cm-1 with a transmittance of 56% in POME 

sample was assigned to lignin [31, 8]. The peaks at 

440.75 and 396.31 cm-1 with 39% transmittance are a 

characteristic of P-S stretching of phosphorous 

compound [32]. Finally, it was obvious, that the FT-IR 

of POME indicated the presence of nitrogen and 

phosphorous compounds.  

 
 

 

 

 

 

 

 

 

 

Figure 2. FT-IR spectrum for POME 

Effects of initial CO concentration  

Figure 3 presents the variation in results obtained for CO 

degradation at different initial CO concentration. It was 

obvious that some fractions of the CO degraded in the 

presence of POME as organic nutrient. However, 

varying rates were obtained for CO degradation at 

different CO concentrations (Figure 3). When 

comparing the CO degradation rates obtained at 

different CO concentrations, it was observed that 51.3% 

was obtained, at 130 g/L initial CO concentration 

(Figure 3).  

The CO concentration (130 g/L) could be providing 

enough carbon to satisfy microbial energy needs and 

maintenance [33]. Similarly, during the composting 

biodegradation of pyrene, [10] reported that a high 

degradation rate was achieved when high pollutant 

concentration is available while low concentration might 

not be sufficient for microbial activity [10]. Also, during 

the biodegradation of poly aromatic hydrocarbon (PAH), 

[34] reported that low PAH did not degrade in the 
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system even when it was supplemented with additional 

carbon source. 

On the other hand, CO degradation rates of 35%, 29%, 

22%, and 21% were obtained at 110, 90, 70, and 50 g/L, 

respectively (Figure 3).  The CO degradation potentials 

of POME could be related to the high level of organic 

matter, which could be supplying diverse microbial 

population capable of degrading the CO.  However, 

previous studies showed that microbial community was 

always preferable and can degrade a wide range of 

hydrocarbon contaminants compared with single species 

of microbe [35, 36]. The CO degradation might also be 

due to the decomposition of the biodegradable organic 

materials in POME with some CO fractions. However, 

the effect of POME on soil microbial population was not 

estimated, as this study focuses on the effect of POME 

on CO concentrations. 

The CO degradation rate of 51% was considered not 

satisfactory, due to the fact that the utilization of POME 

as organic nutrient might be causing the release of toxic 

calcium and magnesium, which are known to harm soil 

microorganisms and plant (Figure 3). Another reason 

could be attributed to the fact that the acidic pH (5.3) of 

POME might not be favourable for the proliferation of 

soil acinetobacter, as these organisms have been 

identified as hydrocarbon degraders [37]. In order to 

counter this effect, estimates of the appropriate amount 

of lime required to neutralize the moderate acidic pH of 

POME is strongly encouraged. 

 

 
 

Figure 3. Effect of CO initial concentrations on CO degradation 

Kinetics of CO degradation  

The integrated forms of the nonlinear first and second 

order kinetic models in Table 5 were used to estimate 

the rate constants (K) at different initial CO 

concentrations. Where [Co] and [Ct] are the initial and 

final CO concentrations in the soil at time t = 0 and t = t, 

respectively, and t is the time in days. The kinetic 

parameters in Table 6 were estimated from the nonlinear 

first and second order kinetic using the Microsoft excel 

solver function according to [38]. 

Table 5. CO degradation kinetic models 
  

Models Equations Plots 

First order [  ]   [  ]      [Ct] vs t 

Second order 
[  ]    

 

        
 

   [  ]

 
[Ct] vs t 

The variations in the degradation of CO concentrations 

for first and second order are shown in Figure 4 (a to e). 

It was evident from the plots in Figures 4(a to e) that the 

CO concentrations approaches zero more slowly in the 

second-order, in comparison with the first order. These 

observations indicated that the first order CO 
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degradation kinetic model results in a nearly complete 

degradation of the CO contaminant.  

After 56 days, the first order CO degradation rates 

constants of 0.0119, 0.0117, 0.0141, 0.0159, and 0.0165 

day¯¹ were obtained (Table 6). These values correspond 

to the initial CO concentrations of 50, 70, 90, 110, and 

130 g/L, respectively. The second order CO degradation 

rate constants at the same initial CO concentrations were 

0.00025, 0.00020, 0.00016, 0.00015 and 0.0117 day¯¹. 

Despite the low intrinsic rate constants generally 

observed, the first order rate constants were higher 

compared with the second order. Similarly, the addition 

of nitrogen and phosphorous amendments in total 

petroleum hydrocarbon (TPH) contaminated soil, 

resulted in TPH biodegradation rate constants of 0.011 

to 0.018 day¯¹ [39]. 

The biological half-lives for CO degradation at different 

initial CO concentrations were calculated for first and 

second order kinetic models using Eqs. (8) and (9), 

respectively.  For a first order kinetic model, the half-life 

is inversely related to the first order rate constant (k ) as 

expressed in Eq. (8). While for a second-order kinetic 

model, the half-life is inversely related to the initial CO 

concentration and the second order rate constant (k₂) as 

expressed in Eq. (9): 

T1
1/2   

   

  
    (8) 

T2
1/2   

 

 ₂[  ]
                (9) 

The first order biological half-lives corresponding to the 

initial CO concentrations of 50, 70, 90, 110 and 130 g/L 

were 56, 54, 49, 43, and 42 days, respectively (Table 6). 

However, the second order biological half-lives at the 

same initial CO concentrations were 80, 71, 69, 60, and 

45 g/L.day¯¹.  These observations indicated that the 

biological half-lives were longer at low CO 

concentrations. However, the second order half-lives 

were higher than the first order at all initial CO 

concentrations indicating that the CO degradation in the 

COCS according to second-order kinetics might be very 

slow. 

Table 6. Kinetic parameters for CO degradation at different CO concentrations 

Parameters  
CO concentrations (gL¯¹) 

 
50 70 90 110 130 

First order 
     

K  (day¯¹) 0.0122 0.0127 0.0141 0.0159 0.0165 

T½ (days) 56 54 49 43 42 

R² 
 

0.966 0.992 0.971 0.962 0.987 

Second order 
     

K₂ (day¯¹) 0.00025 0.00020 0.00016 0.00015 0.00017 

T½ (g/L.day¯¹) 80 71 69 60 45 

R² 
 

0.844 0.911 0.853 0.902 0.923 

       

      

 
 Figure 4. 4a to 4e. Non-linear first and second order plots for CO degradation. 
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Figure 4. Continued. 

 

Error estimations for first and second order models 

Both first and second order models were compared for 

their predictive capability on CO degradation. The 

experimental values as well as the values obtained using 

first and second order models are presented in Table 2. 

However, error analysis using statistical error functions 

such as ARED, RMSE, MAE, and SEP as presented in 

Eqs. (4) to (7), were used to compare the results between 

the experimental and first and second order models. The 

results of the statistical error analysis at different initial 

CO concentration [17] for first and second order model 

are listed in Table 7. 

However, lower values of the Average relative error 

deviation (ARED), Root mean square error (RMSE), 

Mean absolute error (MAE), and Standard error of 

prediction (SEP) were obtained for first order at all 

initial CO concentration indicating a higher predictive 

accuracy of the first order model (Table 7). [40] reported 

that the lower the values of error analysis the better the 

goodness of fit of the model. Similarly, [41] 

demonstrated that the lowest values of root mean square 

error (RMS), sum of absolute error (EABS) and average 

relative error (ARE) were obtained when the total 

petroleum hydrocarbon (TPH) was modelled using first 

order kinetic model. Also, previous studies reported the 

accuracy of TPH modelling using the first order kinetic 

model as the contaminant degradation was inversely 

proportional to its concentration [42]. 

Table 7. Kinetic error deviation data at different initial CO concentration 

Kinetic models RMSE ARED 

 

MAE SEP 

   

50g/L 

  First order 0.057731 0.02788 

 

2.82945 1.719186 

Second order 0.874881 2.02176 

 

7.535176 4.96045 

   

70g/L 

  First order 0.118588 0.997014 

 

2.101729 4.291186 

Second order 0.694602 4.78976 

 

3.965301 14.09257 
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90g/L 

  First order 0.587441 1.683001 

 

1.775002 2.87586 

Second order 1.881634 2.94057 

 

5.764321 6.778613 

   

110g/L 

  First order 0.41381 5.96426 

 

2.85919 5.03452 

Second order 0.570069 8.79331 

 

7.636318 10.60316 

   

130g/L 

  First order 0.643771 5.163387 

 

2.077854 2.224611 

Second order 0.993276 8.593211 

 

9.226021 12.11765 

 

ANOVA for the quadratic model  

The lack of fit test, P-value, and R2 in the ANOVA 

Table 8 were used to check the significance of the 

quadratic model. The diagnostic test of the lack of fit 

compares both the residual and pure errors from a 

replicated experimental design point [43]. The R² 

measures the degree of total variability explained by the 

quadratic model. However, P-value of lack of fit if 

greater than 0.05 clearly showed the non-significant lack 

of fit [43]. A non-significance lack of fit suggests the 

suitability of the model and the significant effect of the 

independent variables on the response [44]. 

From the ANOVA Table 8, the P-value and F-value for 

the lack of fit were 0.260 and 8.17, respectively. These 

values indicated that the model lack of fit was non-

significant, which confirmed the adequacy of the 

quadratic model in explaining the effects of the 

independent variables on the response. From the P-

values in the ANOVA Table 8, it was found that the 

independent variables of A, B, C, A², B², C², BC, and 

AC were significant model terms (P < 0.05). Hence, 

eliminating the non-significant variable (AB), from Eq. 

(3), the final significant quadratic model of Eq. (10) was 

obtained. 

 

% CO degradation = 26.64 + 0.711A + 2.262B + 

13.881C – 0.09427A² – 0.02886B² –0.002922C² – 

0.00289BC – 0.02735AC  (10) 

Eq. (10) was used to study the interactions between the 

independent variables and the response. The 

contributions of the independent variables of the 

quadratic model were important in order to understand 

the influence of each of them during the CO degradation 

process. Therefore, ANOVA of MINITAB 17.0 was 

used to calculate the percentage contributions of the 

independent variables presented in Table 8. 

Accordingly, the independent variables of A² and B² in 

the quadratic term of the model were more influential. 

These independent variables contributed 50.13% and 

24.22%, respectively. The independent variables of A 

and B in the linear term contributed 13.25% and 1.86% 

respectively. The two-way interactions between the 

independent variables of AB and BC contributed 1.50% 

and 0.70%, respectively.  

[45] noted that by studying the main effects and 

contributions of each variable, the studied process could 

be characterized and predicted. Consequently, the 

quadratic model in the ANOVA Table 9 was the primary 

determining factor for the CO degradation with 78.8%. 

The linear and two-way interactions had the least 

contributions, accounting for 16.6% and 3.52%, 

respectively (Table 8).  

The values of the adjusted coefficient of determination 

(R² Adj) and the predicted coefficient of determination 

(R² Pred) were 97.96% and 89.64%, respectively, 

indicating a high correlation between the observed and 

predicted values of the quadratic model. From Table 9, 

the optimize results obtained were in good agreement 

with the model actual solution, which confirmed the 

validity of the quadratic model. 

 

 

 

Table 7. Continued  
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Table 8. ANOVA for the response surface quadratic model 

Source DF Seq SS Contribution% Adj SS Adj MS F-value P-value 

Model 10 5720.22 99.03 5720.22 572.02 92.36 0.000 

Blocks 1 6.48 0.11 6.48 6.48 1.05 0.333 

Linear 3 958.89 16.6 958.89 319.63 52.61 0.000 

A- pH 1 86.44 13.25 765.21 765.21 123.55 0.000 

B-Temp 1 765.21 1.86 86.44 86.44 13.96 0.005 

C-CO conc. 1 107.24 1.5 107.24 107.24 17.32 0.002 

Quadratic 3 4551.62 78.8 4551.62 1517.21 244.97 0.000 

A² 1 1399.18 50.13 1759.88 1759.88 284.15 0.000 

B² 1 2895.22 24.22 3004.73 3004.73 485.15 0.000 

C² 1 257.21 4.52 257.21 257.21 41.53 0.000 

2-way interaction 3 203.23 3.52 203.23 67.74 10.94 0.002 

AB 1 18.06 1.50 18.06 18.06 2.92 0.122 

BC 1 40.50 0.70 40.50 40.5 6.54 0.031 

AC 1 144.67 0.13 144.67 144.67 23.36 0.001 

Error 9 55.74 0.97 55.74 6.19 

  Lack-of-fit 5 55.24 0.96 55.24 11.05 8.17 0.260 

Pure Error 4 0.50 0.01 0.50 0.13 

  Total 19 5775.96 100 

    
        
        

 

R
2 

R
2
 (Adj) PRESS R

2
 (Pred) 

   Model Summary 99.03% 97.96% 58.404 89.64% 

    

Table 9. Response Optimization 

Variables Starting values Optimized solution 
Response prediction 

(Optimized values) 

Temp (°C ) 7.11 35.58 30.5 

CO Conc. (g/L) 24.75 71.35 75 

pH 1.571 6.12 6 

%CO degradation 

 

78.036 78.4 

 

Response surface plots  

The graphical representation of the quadratic model was 

in form of the 3D response surface. These plots showed 

the interactions of the independent variables at different 

levels for the studied CO degradation using POME. It 

was observed from the 3D surface plots in Figures. 5, 6 

and 7, that a temperature and pH of 30°C and 7, 

respectively with CO concentration of 75 g/L increased 

CO degradation. Similarly, [46] observed an increase in 

atrazine degradation from a temperature of 20 °C to 

29.3°C and pH 6.7 using microbial mixed culture.  

However, they noted that with further increase in 

temperature and pH, atrazine degradation decreased and 

was attributed to the loss of the viable microbial cell. 
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Furthermore, experimental validation of the model 

prediction in Table 9 was carried out using the 

optimized conditions of pH (6); temperature (30.5oC) 

and CO concentration (75 g/L). A maximum CO 

degradation of 71.3% ± 0.043 was achieved. The 

satisfactory agreement between the predicted (78.4%) 

and the experimental result (71.3%) on CO degradation 

validated the optimal values. These results further 

showed that the quadratic model correctly explains the 

influence of the chosen independent variables on CO 

degradation using POME. 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
Figure 5. 3D surface plot of pH and Concentration 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 
 

Figure 6. 3D surface plot of Temperature and pH 

 

 

  

 

 

 

 

 

 

 

 

 

 
 

Figure 7. 3D surface plot of Temperature and Concentration 
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                          CONCLUSIONS 

In this study, the effects of process parameters on crude 

oil biodegradation of POME using response surface 

optimization were investigated. From the effects of 

POME on initial CO concentrations, it was observed that 

higher CO degradation rates were obtained at 130 g/L 

initial CO concentration. Furthermore, this study also 

revealed the potentials of POME as organic manure. 

This was due to the fact that some of the scarce nutrients 

in the COCS were restored after 56 days of treatment 

with POME.  The first order kinetic model proved a 

better model with higher degradation rate constants and 

lower biological half-lives. The RSM optimization 

process showed that the optimum condition for CO 

degradation using POME was CO concentration (75 

g/L), temperature (30.5°C) and pH (6) with CO 

degradation efficiency of 78.04%. From the ANOVA 

results, the quadratic model significantly contributed to 

the CO degradation process with 78.8%. The results 

obtained from this study suggest that POME can be used 

as organic manure in COCS. 
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