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ABSTRACT: Artemisia plants are the most abundant plants species in Iran which contain strong 

antioxidant properties and as such, have medicinal and economic value. Despite wide distribution of 

Artemisisa species, ecophysiology of its adaptation to changes in altitude and soil property had not 

been investigated. In this study, the relationships between ecophysiological and adaptation 

capabilities of A. aucheri to altitude changes through measuring changes in the activity of its 

antioxidant enzymes and secondary metabolites in situ was investigated based on a completely 

randomized experiment. The enzyme activities of superoxide dismutase, catalase, peroxidase, and 

the amount of total phenolics, flavonoids, anthocyanins, malondialdehyde and chlorophylls A and B 

were measured in A. aucheri plants growing in three different altitudes at and above the 36
°
 latitude 

on the southern slopes of Eastern Alborz Mountain ranges in triplicate 10*10 m quadrates. 

Statistical analysis of data showed that soil type was loamy significantly becoming more sandy- 

loam with lowering in altitude and the soil contained greater amounts of oxides of silicone, 

aluminum, magnesium, sodium, potassium and phosphorus in upper altitude except calcium which 

was present in greater quantity in lower altitude. With increasing altitude, activity of superoxide 

dismutase and quantities of chlorophylls and total phenols in leaves increased. Some biochemical 

factors in A. aucheri showed significant positive correlation(P ≤ 0.05) between them. Adaptation of 

A. aucheri to changes in altitude occurred through changing its antioxidant enzymes activity and 

production of secondary metabolites in response to factors related to the altitude including soil type 

and texture, moisture level, temperature and most importantly radiation 

 

INTRODUCTION 

Adaptation of plants to grow in different habitats 

requires specific abilities that differ among plant 

species. Production of reactive oxygen species (ROS) is 

one of the biochemical processes in plants that occurs as 

a result of living and non-living environmental stresses 
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[1] and reduces plant performance through damaging 

plant parts and cell components such as cell membranes, 

proteins, lipids , pigments and DNA expression [2, 3]. 

Plants in order to accommodate more tolerance against 

environmental stresses have developed efficient 

physiological and biochemical enzymatic response 

mechanisms such as production of superoxide 

dismutase, catalase and peroxidases, and non-enzymatic 

antioxidant compounds such as phenolic compounds 

and flavonoids to rid themselves of free radicals [4-10]. 

Thirty four species of Artemisia (with English names 

worm wood and sage brush) are the main and most 

common prennial species in steppic and semi-steppic 

ecosystems of Iran [11]. Due to their distinctive 

features, Artemisia plants are highly resistant against 

extreme environmental conditions and very effective in 

stabilizing the habitat; have great forage value, are 

medicinal and exhibit strong antioxidant property via 

their phenolic compounds and have conservation and 

aesthetic values [12]. Despite wide distribution of 

Artemisisa species, ecophysiology of its adaptation to 

changes in altitude and soil propoerties has not been 

investigated under natural circumstances. In this study, 

the relationship between ecophysiological and 

adaptation of A. aucheri to altitude changes through 

measuring changes in the activity of antioxidant 

enzymes and secondary metabolites is investigated in 

situ. 

MAREIALS AND METHODS 

Sampling of soil and A. aucheri plants was done in 

triplicates in 3 altitudes at and above 36 °latitude line on 

the southern slopes of Alborz Mountains in Semnan 

Province, central Iran (Table 1) in a completely 

randomized design in late May, 2012. Samples were 

transported to the laboratory of Department of Plant 

Sciences, Tarbiat Modarres University for further 

analysis. Plant tissues (Roots, stems and leaves) were 

frozen in liquid nitrogen and were kept in - 80 °C 

freezer to be used for biochemical analysis. The reaction 

mixture without enzyme extract was used as controls. 

All materials used were prepared from Merck Company. 

 

Soil Analysis  

Soil samples were air dried for 72 hours. Soil 

subsamples (3g of 2 mm mesh) were analyzed via XRF 

method in Geology Laboratory of Tarbiat Modares  

 

University. Soil texture was determined using a 

hydrometer after soaking 200 g of soil for 24 h. Soil pH 

was determined using potentiometric method and EC 

was measured using an EC meter [13,14 ].  

Table 1. Geographical coordinates and other properties of sampling stations 

Station  Altitude(m)  Geographical Coordinates coordinates between stations (m) 

Slope 

(percent) 

E1 2338 

N:35,59,55.2 E1- E2 E1-E2 

E:53,35,46.5 3325.89 0.110 

E2 2009 

N:35,58,41.3 E2- E3 E2-E3 

E:53,29,0.97 8059.76 0.031 

E3 1783 

N:36,02,16.6 E1- E3 E1-E3 

E:53,24,48.9 41173.8 1.497 



H. Zare- maivan et al / Journal of Chemical Health Risks 4(3) (2014) 57–66 
 

59 

 

Enzyme Assays  

Total protein content was determined by the Bradford 

(1976) method. The standard curve was developed using 

a solution of 0.5 mg ml bovine serum albumin (BSA) 

and a solution of 0.15 mM NaCl with spectrophotometry 

at 595 nm. The concentration of protein in the plant 

extract was calculated as per mg protein per g of fresh 

tissue [15]. 

Catalase activity (CAT) was measured by the method of 

Cakmak and Horst (1991) using 0.2 g thawed sample in 

3 ml of 25 mM sodium phosphate buffer, pH 6.8. 

Absorption at a wavelength of 240 nm was used. 

Activities of the absorption changes in fresh weight 

were expressed as mg protein per minute [16, 

17].Peroxidase activity (POD) was determined using 

method of Chance and Maehly (1955). Absorption at a 

wavelength of 470 nm was used.  Enzyme activity 

changes were expressed as per mg protein per minute 

[18-20].Superoxide dismutase activity (SOD) was 

determined using method of Giannopolitis and Ries 

(1997) on 0.2 g frozen sample in 3 ml of HEPES-KOH 

buffer, pH 7.8 containing EDTA 0.1 mM at absorbance 

of 560 nm. One unit of SOD activity was defined as the 

amount of enzyme which resulted in 50% inhibition of 

nitro blue tetrazulium at 560 nm [21].Flavonoids were 

measured according to the method of Chang et al. 

(2003) on 0.4 g plant tissue pulverized with and 

centrifuged in 4 ml of methanol at absorbance of 415 

nm. Using a standard solution and linear equation 

routines, the concentration of flavonoids in extracts of 

plant samples were expressed in terms of mg per g of 

plant fresh tissue [22]. Total anthocyanins were 

measured according to the method of Krizek et al. 

(1993) on 0.1 g of plant tissue pulverized with and 

centrifuged in 3 ml of acidified methanol containing 

hydrochloric acid and methanol in the ratio of 99 to 1 at 

absorbance of 550 nm. To calculate the concentration, 

the extinction coefficient of 33000 cm
-2

 mol
-6

 was used. 

The anthocyanin concentration was expressed as mg per 

g of plant fresh tissue [23, 24]. 

Phenols content was calculated using a standard curve 

based on asolution of gallic acid as mg per g of plant 

fresh tissue [25, 26]. Total phenolics were determined 

using the method of Miliauskas et al., (26) on 0.1 g of 

plant tissue pulverized in 3 mL of methanol at 

absorbance of 730 nm.  

Measurement of lipid peroxidation (LPO) was carried 

out according to the method of Heath and Packer (1968) 

[27], using measurements of malondialdehyde (MDA), 

as a final product of membrane lipid peroxidation on 0.2 

g frozen plant material mixed in 3 ml of 10% TCA 

(Trichloroacetic acid) at absorbance of 532, 440 and 600 

nm. MDA content was calculated using a constant 

extinction coefficient (ε=155 mM-1cm-1) applied by De 

vos et al., (1991) [28]. Leaf chlorophyll content was 

measured using method of Arnon (29) on 0.5 g fresh 

leaf tissue in 25 ml of acetone at absorbance of 663 and 

645 nm wavelengths. Contents of chlorophylls A, B and 

total chlorophyll per mg /g wet weight were calculated 

[29].Statistical analyses of data were performed with 

three independent replicates using Excel and SPSS and 

significant differences were determined via analysis of 

variance (ANOVA) and comparisons were tested with 

Duncan's multiple range test, P ≤ 0.05. 

RESULTS 

Statistical analysis of soil samples showed that soil type 

was loamy significantly becoming more sandy- loam 

with decrease in altitude (Table 2). Silt content was 

greater in the lowest altitude. pH and EC did not differ 

(P < 0.05) amongst stations. Soil samples were slightly 

alkaline and haline. Soil elemental analysis showed 

presence of oxides of silica, aluminum, magnesium, 

sodium, potassium and phosphorus in upper altitudes 

except calcium which was present in greater content in 

the lowest altitude. Oxide of silicone (SiO2) occurred in 
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greater quantities in all in all stations. Such a trend was 

not observed for iron and sulfur. 

 

Table 2. Comparison of means by Duncan's test at 5% probability level and standard deviation of soil physical factors sampled at three heights 

Stations (Mean ± SD) Characteristics 

Altitude1800m Altitude2000m Altitude2300m 

 

(E3)  (E2)  (E1)  

76.4
a
±1.632 70.4

c
±1.41 72.4

b 
±1.63

*
 Sand 

5.6
 a
 ±0.00  7.35

 a
 ±0.5 5.6

 a
 ±0 Clay 

18
 a
 ±1.632 22.25

 b
 ±1.25 22

 b
 ±1.63 Silt 

8.0775
a
±0.026 8.0475

a
±0.05 8.13

a
±0.073 Soil acidity (pH) 

1.1875
a
±0.0629 1.175

a
±0.05 1.1

a
±0.081 Electrical conductivity (EC) 

Different letters in each row indicate significant differences between treatments at the 5% level 

Biochemical analysis of Artemisia tissues 

With increasing altitude, the amount of superoxide 

dismutase activity in roots and shoots increased and this 

difference was significant compared to the station 

located at 36
 °
latitude (Table 3). The amount of enzyme 

activity in leaves showed no significant difference 

between the three stations. The lowest peroxidase 

activity and the most catalase activity of Artemisia plant 

roots occurred in the station located at 36
 °
latitude with 

statistically significant differences. Comparison of 

catalase activity in Artemisia stems showed that with 

increasing altitude activity of this enzyme significantly 

decreased. 

The highest amount of total flavonoids in Artemisia 

occurred in plants growing in the station located at 36 

°
latitude with a significant difference with that of 

flavonoids in upper altitude. Amount of flavonoids in 

the roots showed no significant differences between 

different altitudes but flavonoid contents in stems were 

significantly different between the plants growing in the 

lowest and the highest altitudes. The amount of total 

phenolics in A. aucheri significantly increased with 

increasing altitude. The amount of anthocyanin in roots 

of plants, but not in leaves and stems, in all stations 

showed significant difference between plants growing in 

higher altitudes to those plants growing at 36
 
°latitude. 

Content of malondialdehyde in A. aucheri, as an end-

product of lipid peroxidation reaction, decreased with 

increasing altitude (Table 2).Contents of chlorophylls a 

and b in leaves of A. aucheri showed significant 

differences between the plants growing in the highest 

altitude and plants of other stations. Also, at each 

station, the amount of chlorophyll a was significantly 

greater than the amount of chlorophyll b (Figure 1). 

The results showed that there was positive correlation 

between root superoxide dismutase activity with the 

activity of catalase and chlorophyll b content of leaves. 

Also, the amount of anthocyanins correlated moderately 

with contents of flavonoids and malondialdehyde of 

Artemisia vegetative organs. 

. 
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Figure 1. Effect of altitude on the Artemisia aucheri plant chlorophyll content 

Data represent the mean of three replicates and vertical 

bars are standard deviations. In each group, non-

identical letters indicate significant differences at the 

level of p ≤ 0.05. E1: 2300 meters, E2: 2000 m, E3: 

altitude of 1800 m 

DISCUSSION 

The results of this study showed that with increasing 

altitude, the amount of superoxide dismutase activity, 

total phenolic and chlorophyll contents increased and 

membrane lipid peroxidation decreased in mountain 

sagebrush (A. aucheri). Plants differences in 

physiological response of sagebrush plants in different 

altitudes are expected, however factors contributing to 

these differences merits detailed consideration. The fact 

that soil type in all stations was sandy - loamy and only 

contents of sand and silt differing amongst stations 

makes effectiveness of physical and chemical properties 

of soil in determining ecophysiological changes and 

adaptive capabilities of the sagebrush plants arguable. 

This could be further analyzed either by increasing the 

difference in altitude between stations and or selectively 

sampling plant populations with distinct differences in 

their soil types. But still, one cannot rule out the 

importance of soil texture and quality on plant growth. 

Other contributing factors associated with altitude in 

mountainous habitats are changes in UV radiation, 

temperature and humidity due to precipitation which 

potentially and effectively could affect levels of 

oxidative stress and type and quantity of antioxidants in 

A. aucheri plants. 

Oxidative stress resulting from ultraviolet radiation 

leads to the generation of ROS in plants. ROSs is also 

produced during normal metabolic processes and under 

various biotic and abiotic stresses [30, 31]. Superoxide 

radicals are formed in cells under oxidative stress [32] 

and cause aging in plants [33]. Thus, different species, 

in order to improve tolerance against environmental 

stresses have developed complex and effective 

biochemical mechanisms to detoxify antioxidants [34]. 

In fact, higher plants possess a number of enzymatic and 

non-enzymatic brooms to eliminate ROSs and water and 

fat soluble oxidants in different parts of the cell. 

Antioxidants are able to transfer of a hydrogen atom to 

free radicals and thus prevent damaging oxidation 

reactions [35] and triggering mechanisms of resistance 

to stress [36]. Higher peroxidase activity and lower 

peroxidation (lower MDA) in higher altitudes signified 

the importance of adaptive response of A. aucheri to 

maintain root growth, a finding that supported the 

findings of Nematy Corym (1999) [37].  
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The powerful antioxidant properties of Artemisia are 

attributed to chlorogenic acid, a phenolic compound that 

resembles the strong antioxidant, ascorbic acid which 

protects cells from oxidative damage [38, 39]. The 

primary role of superoxide dismutase (SOD) is to 

protect against ROS which can directly determine the 

concentration of intracellular O
-
2 and H2O2 [19] via 

removal of superoxide to prevent production of 

hydroxyl radical [40, 41]. In this study, a significant 

increase in the activity of SOD in root and stem tissues 

reflected an increased rate of (O
-
2) as a result of SOD 

dissmutation of ROSs with increasing altitude. 

Hydrogen peroxide is stored in peroxysomes as well as 

glyoxysomes and broken down by SOD and or UV light 

in presence of oxygen. Furthermore, peroxidases, 

available in cytosol, vacuoles and other cell organels, 

also show a greater affinity towards breaking down 

hydrogen peroxide than catalase which requires 2 

molecules of H2O2 to occupy its active site [42]. Greater 

peroxidase and lower catalase activity in A. aucheri in 

higher altitudes confirms earlier findings [43, 44].  

Peroxidation of cell membrane phospholipids leads to 

the production of free radicals initiated by ROSs and 

cell lipooxygenases and mediated by hydroxyl groups 

[45-48]. It is well known that phenolic compounds are 

important components of plant defense mechanisms and 

play significant role in stress responses of plants to 

biotic and abiotic stresses [8]. Antioxidant properties of 

phenolic compounds are attributed to the presence of 

hydroxyl groups in their structure [49, 50]. Plants such 

as A. aucheri, which contain greater phenolic 

compounds have the potential to detoxify free radicals 

to a greater extent [51-53].  

The quality and quantity of light affects total 

chlorophyll content as well as photosynthetic ability of 

plants. In this study, the amount of chlorophylls A and B 

was significantly higher in upper altitudes. Increased, 

chlorophyll contents along with increased contents of 

anthocyanins and total phenolic compounds indicated 

the adaptive capability of A. aucheri to increased 

radiation, particularly UV radiation in upper altitudes. 

Although, in this investigation, the effect of UV 

radiation on plant performance and adaptive response 

was not directly measured, and since geographical 

location affects the amount of light reception by plants, 

the subject merits detailed investigation [54]. On the 

other hand, increased photosynthesis increases the 

production of soluble sugars, accommodates structural 

polysaccharides and maintains stabilized osmotic 

potential, characteristics essential to preserve and 

maintain basic metabolic processes during stress 

conditions. 

Greater content of some soil elements such as silica, 

aluminum, magnesium, potassium, sodium and 

phosphorus along with height imply occurrence of less 

washing because of lower precipitation, and 

consequently, indicating the adaptive ability of A. 

aucheri to maintain itself under alkaline soil pH and 

slightly moderate salinity. It is hereby, concluded that A. 

aucheri avoids harmful effects of UV radiation in higher 

altitudes via production of strong antioxidants [38, 39]. 

On the other hand, altitude, direction of sunlight and 

degree of slop affect environmental factors such as 

temperature fluctuations, humidity levels and nutrient 

availability [55]. 

 

CONCLUSION 

 

Findings of this research, although corroborated findings 

of earlier studies (56, 57) in regards to the effects of 

topography and the 1800 m elevation above sea level on 

the distribution of sagebrush (A. aucheri) species, 

reports on the ability of this plant growing at lower 

elevations as well. Therefore, it is suggested a more 

detailed quantitative and qualitative investigation of 

antioxidant production by Artemisia species in situ and 

in vitro circumstances be undertaken both with 

conservation and exploitation objectives. 
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Stations Treatment 

Catalase Peroxidase 
Superoxide 

dismutase 
Flavonoids total Anthocyanins Phenol MDA 

(∆Abc240/mg 

protein) 

(∆Abc470/mg 

protein) 
(unite/mg protein) (mg/g F.W) (mg/g F.W) 

(mg GA/g 

F.W) 
(µ mol/g FW) 

         

Altitude 

2,300 m 

(E1) 

Root 4.386
bcd

±0.340 53.787
b*

 ±2.843 189.988
b
 ±10.22 11.288

e
 ±0.30 34.204

f
 ±2.23 3.905

c
 ±0.03 1.807

e
 ±0.08 

Stem 3.606
cd

 ±0.503 63.442
a
 ±7.019 228.271

a
 ±21.76 21.699

d
 ±0.69 42.312

f
 ±3.37 4.506

b
 ±0.19 2.088

dc
 ±0.06 

Leaf 7.248
a
 ±0.900 26.979

c
 ±1.271 183.047

bc
 ±3.89 46.267

b
 ±3.46 97.254

c
 ±9.51 5.024

a
 ±0.03 2.583

c
 ±0.23 

Altitude 

2000 m 

(E2) 

Root 7.493
a
 ±0.852 32.148

c
 ±1.622 144.379

d
 ±11.78 12.399

e
 ±0.92 60.090

de
 ±4.68 3.183

d
 ±0.31 2.445

cd
 ±0.04 

Stem 3.351
d
 ±0.423 32.502

c
 ±3.817 189.611

b
 ±17.54 24.635

cd
±2.44 44.747

f
 ±3.98 4.402

b
±0.02 2.849

bc
±0.18 

Leaf 4.742
bc

 ±0.622 14.869
d
 ±0.441 172.010

bcd
±19.01 49.812

b
 ±4.83 

118.095
b
 

±11.36 
4.948

a
 ±0.36 4.591

a
 ±0.28 

Altitude 

1800 m 

(E3 

Root 6.753
a
 ±1.022 50.617

b
 ±5.635 151.454

cd
 ±6.02 13.424

e
 ±0.73 64.333

d
 ±5.63 2.240

e
 ±0.09 2.901

bc
 ±0.24 

Stem 5.538
b
 ±0.590 69.406

a
 ±7.481 199.357

ab
 ±27.24 28.702

c
 ±2.52 47.716

ef
 ±4.18 4.205 

bc
 ±0.28 3.270

b
±0.33 

Leaf 5.019
b
 ±0.598 33.339

c
 ±4.934 195.275

b
 ±25.15 66.212

a
 ±3.52 

136.702
a
 

±13.54 
4.377

b
±0.29 4.829

a
 ±0.48 

* Different letters in columns indicate significant differences between treatments at the 5% level 
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