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ABSTRACT: In the current work, a new version of rank annihilation factor analysis was 

developed to circumvent the rank deficiency problem in multivariate data measurements. 

Simultaneous determination of dissociation constant and concentration of monoprotic acids was 

performed by applying model-based rank annihilation factor analysis on variation matrices of 

spectrophotometric acid-base titrations data. Variation matrices can be obtained by subtracting first 

row of data matrix from all rows of the main data matrix. This method uses variation matrices 

instead of multivariate spectrophotometric acid-base titrations matrices to circumvent the rank 

deficiency problem in the rank quantitation step. The applicability of this approach was evaluated 

by simulated data at first stage, then the binary mixtures of ascorbic and sorbic acids as model 

compounds were investigated by the proposed method. At the end, the proposed method was 

successfully applied for resolving the ascorbic and sorbic acid in an orange juice real sample. 

Therefore, unique results were achieved by applying rank annihilation factor analysis on variation 

matrix and using hard soft model combination advantage without any problem and difficulty in 

rank determination. 

 

INTRODUCTION 

In analytical chemistry, quantitative analysis of 

multicomponent systems with overlapping spectrum and  

 

complex matrices in black or gray systems without any 

primitive or some incomplete information about 
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components is one of the goals of the chemometrics 

methods. Multivariate calibration methods, a broad 

branch of chemometrics-based methods, are employed 

for resolving this problem. First order, second order, and 

higher order methods are the branches of multivariate 

calibrations which utilize first, second, and higher order 

data, respectively [1]. In first-order multivariate 

calibration which uses first order data, the matrix and 

nature of standard samples must be similar to those of 

the unknown samples, otherwise, the effect of unknown 

components in real samples cannot be modeled [2]. 

Therefore, accurate results cannot be obtained. In 

addition, the model building in these methods based on 

calibration set requires a lot of experiments [3]. Hence, 

second order calibrations such as parallel factor analysis 

(PARAFAC) [4], multivariate curve resolution (MCR) 

[5], and rank annihilation factor analysis (RAFA)[6-8] 

are applied to overcome the aforementioned 

disadvantages even in the presence of unknown and 

uncalibrated interferences. These methods frequently 

utilize only pure analyte standards to quantify unknown 

samples. This feature is known as second order 

advantage [9]. Instead of large set of samples required in 

first-order calibration, second order calibrations can be 

performed with a few samples.  

Using diverse approaches such as MCR, RAFA etc. 

second order acid–base spectroscopic titration data have 

been used in the literature [10-12] for quantitative 

analysis of spectroscopic and acid base behavior of 

components simultaneously as a result of higher order 

dimensions. Among them, RAFA has many individual 

advantages compared with similar methods. In contrast 

to some other second order calibrations like MCR, 

quantitative analysis can be performed using RAFA 

without any augmentation of the matrix of the unknown 

and standard samples [10]. Moreover, RAFA avoids the 

need to estimate initial concentration or spectral profiles 

using different complex factor analysis based methods 

such as evolving factor analysis (EFA) and simple to use 

interactive self-modeling mixture analysis 

(SIMPLISMA). Therefore, the answers can be easily 

achieved without any ambiguity. In addition, application 

of RAFA on second order data obviates the need for 

selection and implementation of several constraints such 

as non-negativity, unimodality, and closure which is an 

important factor to achieve convergency in MCR [13]. 

RAFA has been used in quantitative analyses of 

mixtures of monoprotic acids[10], dipropic acids[14], 

polyproticacids[6], conditional acidity constant of 

organic acids [15] and some other components based on 

multivariate pH-spectrophotometric titrations[12, 16]. 

In monoprotic acids, RAFA can be easily applied to 

second order acid-base spectrophotometric data in order 

to find the concentration and corresponding dissociation 

constant, simultaneously [10]. The procedure uses 

chemical rank, the number of components for 

quantification of analytes along with calculation of 

dissociation constant. The chemical rank–which can be 

estimated by singular value decomposition or other 

related factor analysis techniques– is the number of 

significant contributions to the data variance; In some 

cases, especially in analyzing complex chemical systems 

such as the mixtures of substances with acid–base 

behavior, this rank is lower than the real number of 

chemical components present in the system and the data 

matrix is the rank-deficient. Then, the number of 

independent species will be lower than that of real 

chemical species in the system. Consequently, the 

application of this method for quantification of 

monoprotic acid is not straightforward because 

obtaining the correct rank of the system and accurate 

results are not possible.  

For resolving this problem in parallel reaction systems, 

the variation matrix is exploited instead of the original 

data matrix in this study. Simply, the variation matrix 

including both analyte and unknown sample can be 

acquired by subtracting the zero-point spectrum from 

each spectrum at each measurement point. 
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In a system involving parallel reactions, if the original 

data matrix is converted into variation data matrix, a full 

rank matrix will be found based on the reaction rank 

instead of the chemical rank. In other words, the matrix 

reaction rank is the number of independent reactions or 

processes in which they take place. Using this approach, 

a chemical rank-deficient system can be converted to 

full-rank reaction system by a simple pretreatment.  

The variation matrix can be decomposed in two vectors 

containing reaction extent vector and reaction spectrum. 

The reaction extent vector of monoprotic acid can be 

expressed as a function of total concentration of analyte 

and dissociation constant. This vector is calculated 

based on the respective dissociation constant and the 

concentration of the analyte. The reaction spectrum of 

the analyte is estimated by least squares method using 

reconstructed reaction extent vector and standard 

variation matrix of analyte. Computed reaction spectrum 

by least squares method and the reconstructed reaction 

extent vector based on hard chemical models, are 

multiplied by each other and hence make some variation 

matrices with similar dimensions as the unknown 

sample variation matrix. Over a wide range, the 

concentration and dissociation constant of an analyte are 

altered simultaneously and the reaction extent vector is 

calculated at each step. By applying RAFA on the 

estimated analyte variation matrix and the unknown 

sample variation matrix, the best values will be achieved 

for analyte concentration and the related dissociation 

constant on condition that the rank of unknown sample 

variation matrix decreases, correctly. 

The main aim of this study was to improve a model 

based on RAFA strategy for quantification of analytes 

and subsequent calculations of model parameters based 

on the reaction rank instead of the chemical rank 

discarding any problem and ambiguity in rank 

determination. The modifications of the RAFA were 

investigated with simulated data at the first stage. Then, 

the binary mixtures of ascorbic and sorbic acids as 

synthetic samples were prepared and good analytical 

results were obtained using the proposed procedure. 

Finally, the method was successfully applied to the 

analysis of experimental pH-spectral data of ascorbic 

and sorbic acids in a real sample. To the best of our 

knowledge, this is the first study, which focuses on 

analyzing the acidic-spectrophotometric data by 

combining the variation matrix and the rank annihilation 

factor analysis. 

MATERIALS AND METHODS 

Materials 

All materials with analytical grade were purchased from 

Merck (Darmstadt, Germany) and were used without 

further purification. Stock solutions of sorbic acid were 

prepared in brown flask and were stored in dark place. 

These solutions are stable for six months in dark place. 

Stock solution of ascorbic acid were prepared and used 

daily. 

Apparatus 

Shimadzu UV-1800 spectrophotometer equipped with 

matched 1 cm quartz cells were applied for recording all 

UV-spectra over the range 200-350 nm with 1nm 

intervals. All pH measurements were carried out with 

Metrohm 744 digital pH meter using a combined glass 

electrode. For subsequent manipulation of data by 

RAFA, all spectra data were transferred into a personal 

computer. Homemade m-files written in MATLAB7 

software were used for calculations of concentration and 

dissociation constant of all analytes. 

Preparing the real sample 

The real sample (orange juice) was first completely 

homogenized, filtered through a 0.45 mm filter, and 

degassed by introducing nitrogen into it.  
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Procedure 

Fresh working solutions were prepared daily by 

appropriate dilution of stock solution. The adjustment of 

pH and titration of samples were performed with 

standard solutions of hydrochloric acid and sodium 

hydroxide ranging between 0.01–12 mol L
-1

.  In order to 

adjust the ionic strength of all solutions to 

approximately 0.1 mol L
-1

, all experiments were 

fulfilled in 0.1 mol L
-1 

KCl. In the beginning of titration, 

all working solutions were prepared with 0.1 mol L
-1 

HCl (pH=1). Following this stage, in order to increase 

the pH value in each step of titration with 0.5 unit 

intervals, a few microliter of concentrated NaOH were 

injected into the solution. Since concentration of  NaOH 

was high enough (12 mol L
-1

) and a very small amount 

of it was needed for titration, the added volume did not 

change the total volume of solutions and therefore it did 

not significantly affect the initial concentration of all 

samples. 

Theoretical background 

Variation matrix, reaction extent vector and reaction 

spectrum vector 

Consider a typical monoprotic acid base equilibrium 

titration reaction: 

HA⇌ A
-
 + H

+
                                       (eqn. 1) 

The reaction extent can be defined as follows [17, 18]: 

ra= -cHA = cA
-
 = cJ                           (eqn. 2) 

Where cJ is concentration variation vector whose 

elements show concentration variation between initial 

point and that point of titration and ra is the reaction 

extent vector whose elements represent the reaction 

extent at these points. Subscript a stands for HA 

monoprotic acid. 

The progress of chemical reaction is being shown by the 

reaction extent. Generally, the previous equation can be 

re-written as follows: 

                         
                      

       

(eqn. 3) 

Where cJ
o 

is the concentration of component J at zero 

point and 1 is a column vector all element of which is 1. 

Then, the concentration of HAand A
-
can be calculated 

using the following vectors: 

              
                                       (eqn. 4) 

              
                                          (eqn. 5) 

Consider Da matrix obtained by acid-base 

spectrophotometric titration of monoprotic acid (HA). 

This matrix can be divided into concentration and 

spectral matrix as: 

Da=CS
T 

                                                       (eqn.6) 

Where C is concentration matrix the columns of which 

are pure concentration pH dependent acid components 

and rows of S
T
 contains pure spectral profile of related 

components. Each row of absorbance data matrix, Da, is 

UV-visible spectra recorded at any step of titration. 

Hence: 

     
  [        ] [

   
 

   
 ]                          (eqn.7) 

Where sHA and sA- are the pure spectra of HA and A
-
, 

respectively. Here the following equation can be 

achieved by replacing equation 7 with the equivalent 

expressions (equations 4 and 5): 

   [         
         

 ] [
   
 

   
 ]      (    

  

   
 )   (   

    
      

    
 )             (eqn.8) 

Let    
      

     
 and  
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Hence, the equation 8 can be summarized as follows: 

         
     

                                 (eqn.9) 

Where    
  and da

oT 
are the reaction spectrum and zero 

point spectrum of monoprotic acid (HA), respectively. 

In this case, da
oT 

can be obtained simply by recording the 

absorbance spectrum at the initial point of reaction. 

On the other hand, reaction spectrum, a constant vector, 

is achieved by linear combination of the pure spectra of 

the components, which contribute to the reaction. In this 

vector, the coefficient of pure spectrum will be negative 

if the component is reactant and positive if it is product. 

The variation matrix is constructed by multiplying 

reaction spectrum by their related reaction extent vector, 

which is related to, the concentration [17, 19]. Hence: 

         
     

         
  or         

     

(eqn.10)  

Where Va is the variation matrix for HA acid.  

When zero point spectrum of HA is subtracted from any 

row of the data matrix Da, the variation matrix is 

concluded. In other words, if one subtracts the first row 

of data matrix from all rows of the same data matrix the 

variation matrix will easily be obtained as: 

           (   )                                (eqn.11) 

Variation matrix, reaction extent matrix, and reaction 

spectra matrix 

The variation matrix of mixture of monoprotic acids is 

calculated in the same way as single monoprotic acid.  

Consider a system in which titration reaction for a 

mixture of two monoprotic acids (HA, HB) takes place. 

The independent reactions are as follows: 

HA⇌ A
-
 + H

+  
                                              (eqn.12) 

HB⇌ B
-
 + H

+ 
                                                    (eqn.13)  

According to the beer law, considering the independent 

behavior of the components, the total absorbance data 

matrix of mixture (Dx) can be expressed as:  

Dx= Da + Db                                                 (eqn.14) 

Subscripts a and b stand for HA and HB monoprotic 

acid, respectively. 

The data matrices (Da and Db) are replaced with the 

related equation (equation 10): 

               
     

         
     

  

 [      ] [
   
 

   
 ]   [  

     
  ] 

          
     

         
                  (eqn.15) 

Where Erx, Srx
T
,Vx and dx

oT
 are the reaction extent 

matrix, reaction spectra matrix, variation matrix and 

zero point spectrum of the mixture, respectively. The 

variation matrix can be constructed by subtracting the 

first row of data matrix Dx from all rows of this data 

matrix: 

         
  or          (   )         (eqn.16) 

Finally, the abstract form of variation data matrix can be 

re-written as follows: 

         
        

 or                        (eqn.17) 

The rank of a matrix is called reaction rank on condition 

that it is based on a number of independent reactions in 

which they take place. Then the variation matrix will be 

a full rank matrix based on the number of monoprotic 

acids as analytes involved in one step reaction. In other 

words, the rank of the variation matrix containing K 

independent reaction or processes is equal to the number 

of reactions (K) for a closed system [17, 18]. 
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Hence, RAFA can be applied on the variation matrix 

easily to quantify the dissociation constant and 

concentration of monoprotic acids without any 

ambiguity, as it is explained in the next section.  

Performing modified model-based RAFA on variation 

matrices 

Consider the acid-base behavior of a monoprotic acid 

(HA) in unknown samples containing some inert 

interference and other some pH-dependent interference. 

The equilibrium, which explains the dissociation of 

monoprotic acid (HA), is as follows: 

HA ⇌  A
-
 + H

+   
                                                 (eqn.18) 

With equilibrium constant equal to: 

  
[  ]   

   
                                                         (eqn.19) 

Here, the total concentration of acid (cHAt) can be shown 

as: 

cHAt= cHA + cA
- 
                                                     (eqn.20) 

By combining this equation with the equilibrium 

constant of an analyte, one can calculate the equilibrium 

concentration values of each form of the monoprotic 

acid: 

         
[  ]

[  ]  
                                             (eqn.21) 

         
 

[  ]  
                                             (eqn.22) 

As mentioned before in equation 5, the reaction extent 

vector can be calculated as follows:  

            
                                                 (eqn.23) 

The concentration of A
-
 at initial point (   

 ) will be zero 

on condition that the start point of titration is placed at 

low pH values. Given this: 

                                                                (eqn.24) 

         
 

[  ]   
 

It is obvious that the reaction extent vector of 

monoprotic acid (HA) is explained as a function of two 

kinds of parameters: the total acid-base system 

concentration (cHAt) related to the analytical information 

sought and acidic dissociation constant (k) related to the 

physicochemical behavior of the monoprotic acid. 

As stated above, the variation matrix of monoprotic acid 

(Va) is constructed by multiplying reaction 

spectrum(   
 ) by their related reaction extent vector (ra) 

which is related to the concentration. This bilinear 

combination of (ra) and(   
 ) can be shown as follows:  

         
                                                          (eqn. 25) 

In addition, the variation matrix of unknown sample 

(Vx) which is containing some inert interference or other 

some pH-dependent interference can be obtained easily 

by subtracting the first row of data matrixDx from all 

rows of this data matrix. 

          (   )                                         (eqn. 26) 

         
        

        
            (eqn. 27) 

A portion of Vx matrix which expresses contribution of 

analyte (HA monoprotic acid) in the model is the 

variation matrix of monoprotic acid Va and the other 

portion is residual variation matrix VR, containing any 

other independent reaction or process in the sample 

except analyte.  

In principal component analysis (PCA) the contribution 

of reaction rank in the variance of the data matrix is 

much greater than the noise effects or instrumental 

contributions. In addition, the variation matrix is a full-

rank matrix in terms of the number of the independent 

reaction or process. Hence, the reaction rank of variation 
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matrix Vx can be easily obtained by applying singular 

value decomposition (SVD). In this way, the reaction 

rank of Vx matrix is the number of singular values 

whose variance is larger than that of noise. Therefore, 

correct reaction rank quantification of variation matrix 

even in the presence of inert interfering agents or with 

any number of closed equilibrium systems besides 

analyte is very simple and straightforward. It is evident 

that there is not any rank deficiency problem and 

difficulty in the matrix quantitation. For this reason, we 

do not require any further approach for resolving rank 

deficiency problem such as matrix augmentation or 

entering other constraints in the model.  

Given these points, consider the unknown sample 

variation matrix Vx and standard (monoprotic acid) 

variation matrix Va possesses rank of n and of 1, 

respectively. Since these matrices aren’t rank deficient, 

if one subtract matrix Va from Vx, the obtained matrix 

will comprise rank of n-1. 

As mentioned before, in equation 24, the reaction extent 

vector of monoprotic acid (ra) in the sample can be 

expressed as a function of two kinds of known 

parameters, the total concentration of analyte (cHAt) and 

dissociation constant (k). If reaction spectrum (   
 ) for 

analyte is known, RAFA procedure can be performed as 

follows:  

                  
                            (eqn. 28) 

The aim of RAFA application in monoprotic acid 

quantitation is to find the best parameters at reaction 

extent vector of monoprotic acid that can reduce the 

rank of Vx matrix to n-1 unit. For this purpose, the 

analyte concentration (cHAt) and the dissociation 

constant (k) of HA are changed over a wide range and 

then rank of Vx matrix is investigated. By using the 

reconstructed reaction extent vector and standard 

variation matrix of HA, the reaction spectrum of the 

analyte was computed by the least squares method. It 

should be noted that the calculated reaction extent 

vector is multiplied by α scalar, defined as:  

  
    

  
                                                         (eqn. 29) 

Where Cs is the concentration of analyte in standard pH-

spectral data and Cest is the estimated concentration of 

analyte in the reconstructed reaction extent vector. 

Reaction spectrum derived from the least squares 

method and the reconstructed reaction extent vector 

based on hard chemical models, is multiplied by each 

other and hence makes some variation matrix similar 

dimension as Vx matrix. Concentration (cHAt) and the 

dissociation constant (k) of analyte are changed 

simultaneously in a wide range and at each value; the 

reaction extent vector is calculated. The best answers for 

cHAt and the related k are obtained whenever the rank of 

Vx matrix decreases correctly.  

As mentioned earlier, the titration at the start point is 

carried out in extreme low pH value while the 

concentration of A
-
 at the initial point (   

 ) was equal to 

zero. Therefore, the reaction extent vector of monoprotic 

acid at this study will be computed using equation 24. 

Algorithm of the proposed method  

Modified RAFA algorithm can be explained in the 

following steps: 

1. The dissociation constant (k) and the concentration 

(cHAt) of analyte were changed simultaneously in a given 

range and at each value; the reaction extent vector of 

analyte was calculated using equation 24. The resulted 

reaction extent vector was multiplied by corresponded α 

scalar,    
  .  

2. The variation matrixes of standard Va and the 

unknown sample Vx were obtained using equations 11 

and 16, respectively. 

3. The reaction spectrum(   
 (  )

) of the analyte was 

computed using    
   by applying the least squares 

method on the standard variation matrix (Va). 
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4. The calculated analyte reaction spectrum(   
 (  )

) and 

the reaction extent vector (   
  )were multiplied by each 

other and hence made the reconstructed standard 

variation matrix (Va
re
). 

5. The residual variation matrix, VR was calculated by 

applying equation 28. 

6. The rank analysis was done on VR and then RSD 

value was calculated using equation 30 for all values of 

parameters. The best values were obtained for the 

dissociation constant (k) and analyte concentration 

(cHAt), when the RSD was minimum and the process 

came to its end. Hence, using the proposed algorithm, 

the dissociation constant and analyte concentration can 

be obtained simultaneously.  

RESULTS AND DISCUSSION 

Simulation 

To evaluate the performance of the proposed method, 

simulated data were investigated at first. For this 

purpose, the mixture of two monoprotic acids and an 

inert agent were considered as unknown matrices. This 

means that in the unknown matrix, there are some 

unknown components, some of which have acid-base 

behavior and some are inert.  

Simulated pH-dependent concentration profiles of all 

components in acid-base titration system were 

constructed by means of equations 21 and 22. 

Absorbance spectra were created by the normal 

Gaussian distribution function. The absorbance data 

matrix were then constructed by multiplying 

concentration profiles of each species by their related 

spectral profiles, and then random errors with mean zero 

and standard deviation equal to the 0.2% of the 

absorbance values were added to the absorbance data 

matrix in order to test the method with enough rigidity. 

The variation matrices were obtained by subtracting the 

first row of the data matrix from all rows of the data 

matrix. 

Considering known values of cHAt and k(HA), in the 

presence of an interfering acid with cHBt and k(HB) or in 

the presence of an inert agent with certain CI 

concentration, profiles of all components can be 

calculated. The simulated data is not presented for space 

constraints. All of the simulated data were created in 

MATLAB7 software. In addition, different pk values 

and different spectral overlapping were simulated to 

evaluate the ability of the method for resolving different 

kinds of data. 

Simulated data 

The proposed method was utilized for analyzing the 

simulated chemical systems. RAFA procedure was 

applied to the simulated variation matrix Vx and the 

relationship between the residual standard deviation 

(RSD)[10] of the residual variation matrix (VR) and 

values of model fitted parameters (cHAt, k) were 

examined. When the RSD of the residual variation 

matrix (VR) reached to its minimum, the best solution 

was obtained.  RSD as the criterion of the lack of fit of a 

principal component modeled to a data set can be 

defined as follows: 

   (  )  (∑
  

[  (   )]

 
      )

   

                    (eqn. 30) 

Where Ei is the eigenvalue and pc is the number of 

considered principal components (independent reactions 

or process in the case of variation matrix) and s is the 

number of samples. RSD value of matrix VR can be 

plotted versus values of pkHA and the total concentration 

of acid cHAt and hence the 3D surface plot can be 

obtained. For each value of cHAt, the reaction extent 

vector (ra) for all values of pkHA were calculated and the 

corresponding VR matrices were determined. The 

proposed method was applied in the simulated data and 

its ability as a function of concentration of analyte, the 

pk value and the magnitude of noise level were tested.  
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Several types of simulated systems were analyzed. The 

spectral profile, the concentration profile, and the data 

matrix of one of these simulated data system are shown 

in Figure 1. 

 

 

 

 

 

Figure 1. The Simulated (a) spectral profile (b) concentration profile  
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Figure 1Continued. (c) the data matrix of monoprotic acid (HA) in the presence of an interfering acid (HB) and an inert component (I) 

 
The procedure was utilized to resolve the simulated 

data in order to find the total concentration and the 

dissociation constant of the monoprotic acid. As can 

be seen in Figure2, the optimum values for 

parameters can be obtained when the RSD values of 

the residual variation matrix reaches to its minimum.  

 

Figure 2. RSD surface and counter plot obtained by using modified RAFA for the simulated data which has been presented in Figure 1 (pkHA= 5; pkHB= 

5.1) 

 

RAFA was applied to different data set including 

analyte in the presence of another monoprotic acid (HB) 

with or without inert reagent under different Δpk 

conditions. Δpk value was the difference between pka of 

the analyte (HA) and that of the interference with acid-

base behavior (HB).The real values are in good 

agreement with those obtained from the computer 

simulations shown in Table 1. 
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Table 1. The results obtained by using modified procedure on the mixtures of two monoprotic acids and an inert interference as a function of pk and 
concentration, in simulated data set 

pk 0.1 0.1 0.1 0.5 0.5 0.5 1 1 1 

pkHA (Real) 5 5 5 5 5 5 5 5 5 

pkHA (Cal.
b
) 4.9 5 5 5 5 5 5 5 5 

pkHB (Real) 5.1 5.1 5.1 5.5 5.5 5.5 6 6 6 

pkHB (Cal.
b
) 5.2 5.1 5.1 5.5 5.5 5.5 6 6 6 

C
a

HA (Real) 410
-6

 410
-6

 410
-6

 410
-6

 410
-6

 410
-6

 410
-6

 410
-6

 410
-6

 

C
a

HA (Cal.
b
) 3.810

-6
 410

-6
 410

-6
 410

-6
 410

-6
 410

-6
 410

-6
 410

-6
 410

-6
 

C
a

HB (Real) 4.110
-6

 4.510
-6

 510
-6

 4.110
-6

 4.510
-6

 510
-6

 4.110
-6

 4.510
-6

 510
-6

 

C
a

HB (Cal.
b
) 3.910

-6
 4.610

-6
 4.910

-6
 4.110

-6
 4.510

-6
 510

-6
 4.110

-6
 4.510

-6
 510

-6
 

 a
Concentration / (mol L

-1
);  

b
Calculated. 

The obtained optimum values for pk and C were 

employed for the concentration profile calculation of 

analyte or pH-dependent interference. Figure 3 shows 

the reconstructed concentration profiles for the analyte 

and interference. 

As can be seen, in any case, in spite of severe 

overlapping spectral and concentration profiles, the 

calculated results are in good agreement with the 

simulated profiles at a reasonable noise level (Figure 3). 

 

Figure 3. The Simulated (circle and diamond markers) and calculated (solid line) Concentration profiles obtained by modified model based RAFA 

 
As mentioned earlier, the correct determination of the 

chemical rank of a black or gray sample with unknown 

constituents is really one of the most important steps in 

performing the rank annihilation factor analysis. In 

some cases, the system is ranked deficient and the real 

chemical rank especially in complex matrices cannot be 

acquired simply. For this reason, correct resolution and 

quantitation of the analytes is not possible. In order to 

circumvent this problem, this approach uses the rank 

annihilation factor analysis based on the reaction rank 

instead of chemical rank. To evaluate the performance 

of the proposed method for the rank quantitation, several 

sets of the simulated original and the variation data 

matrix containing monoprotic acids in the presence of 

inert reagents were created at different noise levels, 

according to the defined model in the previous section. 
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Random homoscedastic noise having equal variance 

with zero mean and different relative standard 

deviations was added to the set of the simulated data. 

Added noise levels were 0.1%, 0.2%, and 0.3% of the 

maximum absorbance of the mixtures. The applied 

extent of spectral overlap of components was at high 

level. The ratio of consecutive eigenvalues method was 

used to determine principal components in any sets. 

Table 2 presents the eigenvalues and ratios of 

consecutive eigenvalues of the simulated original and 

variation data matrix. The eigenvalues obtained from the 

singular value decomposition of original and variation 

data matrix as well as the ratio of consecutive 

eigenvalues illustrate that in contrast to the original data 

matrix, the variation matrix is a full-rank matrix in terms 

of the number of independent reaction or process. 

Hence, determination of the matrix real rank in systems 

containing a high level of noise is possible.  

 
Table 2. Results of Eigen analysis for data matrices from simulated original and variation data matrix 

Simulated data 

(noise level) 

 Original data matrix Variation data matrix 

n
a
 EV

b
 ROEV

c
 pc

d
 EV

b
 ROEV

c
 pc

d
 

HA
e⇌A

-
 

HB
e⇌B

- 

Inert
f
 

(0.1%) 

1 123.9112 20573.06 

3 

2.614679 137.1352 

2 

2 0.863895 99.04147 0.223277 7.64606010
6
 

3 0.086807 7.06922110
6
 8.0710

-5
 6.170574 

4 3.2610
-5

 1.051555 3.2510
-5

 1.052427 

5 3.1810
-5

 1.108634 3.1710
-5

 1.088092 

HA
e⇌A

-
 

HB
e⇌B

- 

Inert
f
 

(0.2%) 

1 123.8878 20610.19 

3 

2.612399 136.4908 

2 

2 0.862954 98.84077 0.223608 3.70087710
5
 

3 0.0868 4.42127410
5
 0.000368 7.954485 

4 0.000131 1.06103 0.00013 1.258642 

5 0.000127 1.334469 0.000116 1.09673 

HA
e⇌A

-
 

HB
e⇌B

- 

Inert
f
 

(0.3%) 

1 123.8936 20657.7 

3 

2.609697 131.1626 

2 

2 0.862001 95.05065 0.227869 9.52485110
4
 

3 0.088416 8.3612710
4
 0.000738 6.228389 

4 0.000306 1.109023 0.000296 1.113439 

5 0.00029 1.224477 0.00028 1.183434 

a
Principal components; 

b
Eigen values; 

c
Ratio of consecutive eigen values; 

d
Significant principal components; 

e
Monoprotic acid; 

f
Inert 

reagent. 

 

Experimental Data 

Sorbic acid and its potassium salt as food additive have 

been used to prevent the growth of bacteria, yeast and 

molds in a wide variety of food industry and drinks [20]. 

Nowadays, this chemical preservative has been 

recognized as ‘generally recognized as safe’ (GRAS)[21] 

and the maximum permitted concentration of it in any 

kind of food products is set by legislation[22]. However,  

the excess amount of this preservative can cause the 

adverse effects such as metabolic acidosis, hyperpnoea  

 

and convulsions in humans[23] and hence analytical 

determination of this additive is of great importance. 

Ascorbic acid also known as vitamin C, an essential 

nutrient, plays a major role in health by reducing the 

oxidative damage which can be caused by free radicals 

[24]. Ascorbic acid, which benefits health and increase 

vitality, is found mainly in fruit juices, vegetables, and 

some pharmaceuticals. In spectrophotometric 

determinations, ascorbic acid has strong spectral overlap 
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with sorbic acid and hence developing a 

spectrophotometry-based method for simultaneous 

determination of these compounds in food products such 

as fruit juices is of great interest. Due to the importance 

attached to these compounds in food industry, in this work 

ascorbic acid and sorbic acid have been selected as model 

compounds for evaluation of proposed method in orange 

juice as a real sample.  

Binary mixtures of sorbic and ascorbic acids in different 

proportions were prepared and analyzed by the proposed 

method. The measured spectrophotometric titration 

spectra of one binary mixture as well as the standard of 

ascorbic and sorbic acid systems are shown in Figure 4, 5, 

and 6, respectively.  

 

Figure 4. Plots of the measured spectrophotometric titration spectra of mixture of 16 mg L
-1

 ascorbic and 3 mg L
-1

sorbic acids (pH range was between 1 

and 9 with 0.5 unit intervals) 

 

 

 

Figure 5. Plots of the measured spectrophotometric titration spectra of 20 mg L
-1

 ascorbic acid (pH range was between 1 and 9 with 0.5 unit intervals). 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

A
b

so
rb

a
n

ce
 

Wavelength / nm 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

A
b

so
rb

a
n

ce
 

Wavelength / nm 

93 



E. Ghorbani-Kalhor et al / Journal of Chemical Health Risks 5(2) (2015) 81–98 

 

2 
 

 

Figure 6. Plots of the measured spectrophotometric titration spectra of 2 mg L-1sorbic acid (pH range was between 1 and 9 with 0.5 unit intervals). 

 

 
The pH range for all spectrophotometric titrations was 

between 1 and 9 with 0.5 unit intervals. Sorbic acid as 

monoprotic acid has the dissociation constant of pka = 

4.77.  Ascorbic acid as a diprotic acid has two 

dissociation constants: pka1 = 4.17 and pka2 = 11.57. 

However, in this range of pH, ascorbic acid acts like a 

monoprotic acid[25]. Hence, in this study all considered 

acids were considered as monoprotic acids.  

For evaluating the ability of the proposed method to 

resolve the chemical systems with rank deficiency 

problem, the analysis was carried out on binary mixtures 

of various solutions containing ascorbic and sorbic acids 

with different concentrations. At first, one binary 

mixture of analytes (ascorbic=6 mg L
-1

 and sorbic=4 mg 

L
-1

) were studied. The related RSD surface of sorbic 

acid (as one of the monoprotic acids) is shown in 

Figure7. 

Using reaction rank instead of chemical rank, the 

minimum point of RSD surface can be used for 

acquiring the concentration and dissociation constant of 

sorbic acid in the presence of other components without 

rank deficiency problem. 

 

.  

Figure 7. RSD surface and counter plot of sorbic acid obtained by proposed procedure in the binary mixture.  
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Again, the proposed procedure was repeated for the 

same binary mixture and the initial concentration and 

dissociation constant of ascorbic acid in the presence of 

other components were calculated from minimum point 

of the related RSD. The results for just three analyses 

and all analytes are shown in Table 3.  

Table 3. pka and concentrations of ascorbic and sorbic acids obtained by RAFA in the binary mixture of analytes 

 

 Binary mixture No. 1 Binary mixture No. 2 Binary mixture No. 3 

Analyte Ascorbic  Sorbic Ascorbic  Sorbic Ascorbic  Sorbic 

CReal(mg L
-1

) 16 3 10 2 6 4 

CCalculated(mg L
-1

) 16 2.95 10.04 1.98 5.97 4 

pka(Real)[25] 4.17 4.77 4.17 4.77 4.17 4.77 

pka(Obtained) 4.17 4.75 4.18 4.80 4.19 4.76 

 
As can be seen in Table 3, the analysis of each analyte 

in the presence of other analytes is possible by using the 

proposed method even in the presence of the rank 

deficiency problem in the original data matrix.  

It is worth noting that different methods have been used 

to estimate the principal components such as cross 

validation, the scree plot and the ratio of consecutive 

eigenvalues [1, 26]. However, in this study, the latest 

method was used to determine it in the real sample 

system. 

Lastly, the wider applicability of the proposed method 

was investigated by analyzing the real sample with the 

complex matrix. For this purpose, the orange juice 

produced by Sunich Company (Iran) was used as the 

real sample. The juice's basic ingredients were natural 

orange concentrate, water, sugar, and vitamin C. This 

sample was spiked with 1 mg L
-1

sorbic acid after the 

preliminary treatment and dilution. This sample was 

analyzed for its ascorbic and sorbic content. To 

eliminate the matrix effect in determination of analytes 

in the real sample the standard addition strategy was 

exploited. In this method, the standard matrix of analyte 

was obtained by standard addition of a certain amount of 

each component to the unknown samples and then by 

subtraction the standard addition unknown matrix from 

the unknown matrix. In this way, not only using an extra 

titration of the standard and augmentation with sample 

matrix were avoided, but also the spectra of each 

standard were obtained in the exact real matrix of 

samples[10]. 

Determination of sorbic and ascorbic acids in the orange 

juice was conducted by the modified RAFA. Titration of 

the orange juice has been performed in pH ranges 

between 1 and 9 with 0.5 unit intervals and the results 

are shown in Figure 8.  
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Figure 8. Plots of the measured spectrophotometric titration spectra of orange juice as real sample (pH range was between 1 and 9 with 0.5 unit intervals). 

In order to examine the accuracy of the results in the 

real sample quantification, recoveries of analytes in the 

standard added samples were investigated. Various 

amounts of ascorbic and sorbic acids were added to the 

juice and the concentration of analytes in the real sample 

as well as recoveries of them in standard added samples 

were determined with the proposed method. The results 

obtained by applying the modified RAFA on real 

sample are shown in Table 4. 

 
Table 4. The results obtained by RAFA on orange juice sample spiked by different concentrations of ascorbic and sorbic acids 

Sample OJ
b
 Spiked OJ

b
 No.1 Spiked OJ

b
 No.2 Spiked OJ

b
 No.3 

Analyte Ascorbic Sorbic Ascorbic Sorbic Ascorbic Sorbic Ascorbic Sorbic 

Added (C
a
) - - 3 4 5 2 7 2.5 

Found (C
a
) 7 1.02 9.76 4.82 12.2 3.18 13.86 3.59 

Recovery (%) - - 92 95 104 108 98 102.8 

a
Concentration /(mg L

-1
);

b
Orange juice. 

 

As shown in Table 4, satisfactory results were obtained. 

Recoveries of analytes were between 92-108% and these 

values fell within acceptable range for such a real 

sample. 

As can be seen from results, the procedure is successful 

in the simultaneous determination of concentration and 

the dissociation constant of an analyte in the presence of 

interferent(s) reaction and inert components in the rank 

deficient data. The modified RAFA was used to analyze 

the rank deficient data, in which inert components or 

other reactions in addition to the present analyte. It 

should be noted that the original rank annihilation factor 

analysis (RAFA) of such cases may be difficult and fails 

to give the correct concentration of the analyte of 

interest. Hence, to circumvent this issue, the rank 

deficiency problem is solved using the variation matrix 

prior to analyzing. In other words, this preprocessing 

strategy has been applied prior to the rank annihilation 

factor analysis to analyze rank-deficient 

spectrophotometric acid-base titrations data and 

decrease ambiguity in the rank quantitation step. 

CONCLUSIONS 

The proposed procedure combines the advantages of the 

variation matrix and hard soft modeling through 

applying the rank annihilation factor analysis on full 

rank variation pH-UV data matrix. Accordingly, by 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
b

so
rb

a
n

ce
 

Wavelength / nm 

96 



E. Ghorbani-Kalhor et al / Journal of Chemical Health Risks 5(2) (2015) 81–98 

 

2 
 

performing a simple mathematical pretreatment on pH-

absorbance data matrix, the rank deficient data was 

converted to variation data with full rank in terms of the 

number of independent reaction or process. The 

ambiguity in the matrix rank determination step is 

negligible because the studied matrix is full rank and the 

rank of which is equal to the reaction numbers. It was 

also shown that the possible rank-deficiency problem 

was circumvented using the variation matrix concept. 

The obtained results (theoretical and experimental) 

confirm that applying RAFA on the variation matrix 

produces unique results in concentration and the 

dissociation constant of monoprotic acids without any 

ambiguity in the rank quantitation step. 
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NOTES 

In equations, lowercase normal letters, lowercase bold 

letters, and capital letters are used as scalars, vectors and 

matrices, respectively. 
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