
J. Iranian Chem. Res.  
5 (3) (2012) 177-185 

ISSN 2008-1030 

 
Prediction of toxicity of aliphatic carboxylic acids using 
adaptive neuro-fuzzy inference system 
 
 
Vali Zare-Shahabadi* 

 
Young Researchers Club, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran  

* E-mail: valizare@gmail.com 
 
Received 05 August 2012 
Received in revised form 21 August 2012 
Accepted 10 September 2012 
 
 
Toxicity of 38 aliphatic carboxylic acids was studied using non-linear quantitative structure-toxicity 
relationship (QSTR) models. The adaptive neuro-fuzzy inference system (ANFIS) was used to construct the 
nonlinear QSTR models in all stages of study. Two ANFIS models were developed based upon different 
subsets of descriptors. The first one used log owK  and LUMOE as inputs and had good prediction ability; for 

the training set of 28 compounds 2
TrainingR  was 0.86 and for the test set of 10 compounds, the corresponding 

statistic was 2
TestR =0.97. Two outliers were detected for this ANFIS model and removing them improved the 

quality of the model. Another ANFIS model was constructed based on PEOE_VSA_FPNEG and G3u 
descriptors chosen by exhaustive search of all two combinations of calculated descriptors by Dragon and 
MOE softwares. The later ANFIS model showed better performance than the former ( 2

TrainingR  =0.92 and 
2
TestR =0.90) and no outlier was detected.  
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1. INTRODUCTION 
 
Scientific evidence suggests that humans and wildlife species may experience adverse health 
consequences from exposure to environmental chemicals that interact with their endocrine systems 
[1]. Reliable assays are needed to identify hazardous chemicals. The experimental determination of 
toxicological properties is a costly and time-consuming process and, therefore, it is essential to 
develop mathematical predictive relationships to theoretically quantify toxicity. Quantitative 
structure-activity relationship (QSAR) studies can provide a useful tool for achieving this goal. 
Several QSAR [2-6] models have been developed for predicting Tetrahymena pyriformis toxicity of 
some groups of structurally related chemicals, e.g. benzenes, phenols, aromatic compounds, 
aliphatic compounds, and cyanoacetic acids. However, QSAR models of a majority of chemical 
groups are yet to be determined. For instance, only a small number of carboxylic acids are found in 
the QSAR literature [7-10]. QSAR studies on the toxicity of aliphatic carboxylic acids are few and 
scattered. The aquatic toxicity of aliphatic mono- and dicarboxylic acids and their sodium salts were 
investigated by Seward and Schultz [9]. They used log Kow and ELUMO as predictors. Later, 
higher orders of different molecular descriptors were used by Kompany-Zare to establish predictive 
QSTR on the same data set [10].  

QSAR studies are based on the concept that the activity or toxicity of a substance is a function 
of its structure and/or physicochemical properties and the activity/toxicity can, therefore, be 
determined through mathematical relationships developed from architecturally similar compounds. 
Based on a training database containing measured toxicity potencies of compounds and a number of 
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molecular descriptors, QSARs can be used to predict the toxicity of chemicals that are not included 
in the database. Designing of powerful QSAR models requires the selection of a valuable statistical 
method and an accurate description of the molecules. Different statistical methods, such as multiple 
linear regression (MLR) [11-14], partial least square analysis (PLS) [15, 16], radial basis function 
(RBF) neural network [17] and support vector machine (SVM) [18, 19] have been used in QSAR 
studies. 

Neuro-fuzzy as an intelligent computational method uses artificial neural networks theory in 
order to determine fuzzy inference properties by processing data samples. A specific approach in 
neuro-fuzzy development is the adaptive neuro-fuzzy inference system (ANFIS), which has shown 
significant results in modeling complex nonlinear systems with estimation speed, simplicity, error 
free and capacity to learn from examples [20, 21]. Despite the abilities of ANFIS, this technique 
was entered to the toxicological studies with some delay, and only one publication based on ANFIS 
have been reported in the literature [18]. 

The purpose of this study have been twofold: (1) to explore the structure–toxicity relationships 
of aquatic toxicity of aliphatic mono- and di-carboxylic acids by means of ANFIS and (2) to 
compare the developed ANFIS model with the models reported previously [9, 10].  
 
2. MATERIALS AND METHODS 
 
2.1. Data set and descriptors 

 
The total data set consisting of the 38 compounds was collected from the published data [9]. 

For each molecule, the logarithm of reciprocal of the 50% growth inhibition concentration 
-1
50log(IGC )  was used as dependent variable [9]. SPXY method [22] was used to partition all 

molecules to training and prediction sets with size of 28 and 10, respectively. The list of complete 
set of acids, in addition to aquatic toxicity data and physicochemical descriptors, is provided in 
Table 1. 

 
Table 1. Experimental and predicted 1

50log( )IGC   for the training and test sets. 
Chemical 1

50log( )IGC   log OWK  LUMOE  Predicted 1
50log( )IGC   

ANFISa ANFISb 

2-Ethylbutyric acid -0.15 1.68 1.0000 -0.15 -0.12 
Isobutyric acid  -0.33 0.94 0.9800 -0.35 -0.48 
lsovalcric acid -0.34 1.16 0.9600 -0.29 -0.29 
2-Propylpentanoic acid 0.03 2.75 1.0000 0.12 0.23 
Butyric acid -0.57 0.79 0.9700 -0.39 -0.50 
2-Ethylhexanoic acid 0.08 2.64 1.0100 0.10 0.23 
Valeric acid -0.27 1.39 0.9600 -0.24 -0.31 
Trimethylacetic acid -0.25 1.47 1.0200 -0.20 -0.11 
Propionic acid -0.51 0.33 0.9500 -0.53 -0.46 
Heptanoic acid -0.11 2.42 0.9400 -0.01 0.04 
Nonanoic acid  0.35 3.47 0.9700 0.23 0.44 
Decanoic acid  0.51 4.09 0.9600 0.33 0.54 
Undecanoic acid 0.90 4.42 0.9600 0.40 0.72 
3-Methylvaleric acid -0.23 1.75 0.9800 -0.14 -0.12 
4-Methylvaleric acid -0.27 1.75 0.9700 -0.15 -0.12 
Octainoic acid (Caprylic acid) 0.08 3.05 0.9400 0.11 0.22 
Hexanoic acid (Caproic acid) -0.21 1.92 0.9700 -0.11 -0.13 
Glutaric acid -0.64 -0.29 0.8100 -0.68 -0.60 
Adipic acid -0.61 0.08 0.8100 -0.57 -0.56 
Succinic acid -0.94 -0.59 0.6000 -0.90 -0.97 
1 , 12-Dodecanedicarboxylic acid 0.08 4.13 0.9069 0.26 -0.19 
1,I0-Decanedicarboxylic acid  -0.09 3.07 0.8757 0.05 -0.17 
Malonic acid -0.71 -0.58 0.1296 -0.79 -0.71 
Pimelic acid -0.58 0.43 0.7474 -0.51 -0.72 
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Sebacic acid -0.27 2.01 0.8548 -0.16 -0.41 
Suberic acid -0.51 0.95 0.7951 -0.38 -0.59 
Trans-2-pentenoic acid -0.28 1.41 -0.1600 -0.36 -0.30 
4-Pentenoic acid 0.12 0.87 0.9200 -0.37 -0.02 
Trans-2-hexenoic acid -0.13 1.94 -0.1900 -0.10 -0.12 
Trans-3-hexenoic acid -0.22 1.40 0.6500 -0.43 -0.12 
Crotonic acid -0.54 0.72 -0.1900 -0.43 -0.39 
Acrylic acid 0.16 0.35 -0.2000 0.08 0.12 
2-Octenoic acid 0.21 3.00 -0.1700 0.21 0.22 
2-Octynoic acid -0.06 2.12 0.1200 0.00 0.22 
Propiolic acid -0.29 -0.52 0.0600 -0.20 -0.30 
a-Nonynoic acid 0.71 2.65 0.1200 0.67 0.56 
2-Nonenoic acid 0.60 3.53 -0.1700 0.60 0.38 
3-Butenoic acid -0.64 0.64 0.8000 -0.44 -0.52 
a The ANFIS used log Kow and ELUMO as inputs. 
b PEOE_VSA_FPNEG and G3u were used by ANFIS.  

 
The structures of the compounds under study were drawn in 2D ChemDraw. The drawn 

structures were then converted into 3D modules using the default conversion procedure 
implemented in CS Chem3D Ultra. The generated 3D structures of the compounds were 
subsequently subjected to energy minimization in the MOE (Molecular Operating Environment, 
Chemical Computing Group), using the AM1 procedure (AM1: RHF; gradient: 0.05). For each 
compound, 251 descriptors were calculated using the MOE software. Moreover, all of the energy 
minimized structures were ported to Dragon software (Milano Chemometrics and QSAR research 
group, http://www.disat.unimib.it/chm/) to compute of 1481 descriptors. Two descriptors, i.e. log 
Kow and ELUMO, were also extracted from ref. [9]. Auto-scaling and mean-centering were used as 
data pretreatments. 

 
2.2. Adaptive neuro-fuzzy interference system (ANFIS) 

 
Among various fuzzy inference systems, Takagi–Sugeno (TS) systems have been successfully 

applied for data-driven fuzzy modeling [23]. The TS model consists of a set of local input-output 
relations that describe the overall system. The rules in a first-order TS model have the following 
structure:  

Rule i: if 1x  is 1iA , …, and nx  is niA , then: 
       ( 1, 2, 3, ...,  )T

i i iY a x b i k          (1) 
where 1 2[ ,  , ...,  ]Tnx x x x is the input (antecendent) vector, and 1iA , 2iA , …, niA  are the fuzzy sets 
defined for the respective antecedent variables. The rule consequent iY  is an affine combination of 
the inputs with parameters ia  and ib . [24-26]. 
 An ANFIS system can be considered to be an implementation of a TS system in neural-network 
architecture. In the following, we briefly sketch an outline of the ANFIS system by using a model 
with two inputs as an example (see Figure 1). Let the inputs of the fuzzy system be x1 and x2, and let 
the output be z. We consider a TS system with first-order consequents [27] and two rules, as 
follows: 

Rule 1: If 1x is 1A and 2x  is 1B , then 1 1 1 1 2 1f p x q x r   . 
Rule 2: If 1x  is 2A  and 2x  is 2B , then 2 2 1 2 2 2f p x q x r   . 
 

To construct the adaptive system, five layers are used, as shown in Figure 1. Each layer 
involves several nodes described by a node function. The circles in the network represent nodes that 
possess no variable parameters, while the squares represent nodes that possess adaptive parameters 
to be determined by network during training. The node function in each layer is described below. 
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Fig. 1. Basic ANFIS structure. 
 
Layer 1: The nodes in this layer represent the fuzzy sets in the antecedents of the fuzzy rules. It has 
parameters that control the shape and the location of the center of each fuzzy set. In this study, we 
choose ( )Ai x  to be Gaussian with the height equal to 1. The membership function is given by 

 
2 2( ) /2( ) i ix c

Ai x e             (2) 

 
where ci represents the center of the Gaussian function and σi represents the spread of the 
membership function. The outputs of this layer are the values of the antecedent membership 
functions corresponding to the fuzzified inputs of the system. 
 
Layer 2: Every node in this layer computes the product of its inputs. The output of the layer is given 
by 

 1 2( ) ( )i Ai Biw x x            (3) 
 
where Ai  and Bi are the fuzzy sets defined for the variables 1x  and 2x , respectively. The aim of 
this layer is to compute the degrees of activation (firing strength) of particular fuzzy rules. 
 
Layer 3: The nodes in this layer normalize the firing strength of the rules by calculating the ratio of 
the ith rule’s firing strength to the sum of all rules firing strengths by 

 

*

1 2

          ( 1, 2, ...)i
i

ww i
w w

 
         (4)

 

 
Layer 4: Nodes in this layer are adaptive, where each node function represents a first-order model 
with consequent parameters. Thus, the output from this layer is expressed by 
 

 
4 * *

1 2( )i i i i i i iO w f w p x q x r            (5) 

 
where *

iw  is the output of Layer 3, and { ,  ,  }i i ip q r  is the parameter set.  
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Layer 5: This is the output layer where each node is fixed. The single node labeled Σ computes the 
overall output as the summation of all the inputs from the previous layer by 

 

5 * i ii
i i ii

i

w f
O w f

w
 

         (6)
 

 
Optimizing the values of the adaptive parameters is of vital importance for the performance of 

the adaptive system. In particular, the premise parameters in Layer 1 and the consequent parameters 
in Layer 4 need to be determined. Layer 1 parameters define the center and the spread of the 
antecedent membership function. Layer 4 parameters defined by the set { ,  ,  }i i ip q r  corresponding to 
the consequent coefficients in Eq. (5). A hybrid-learning algorithm, which is a combination of the 
gradient descent and least-square techniques, was used to determine the parameters of an ANFIS 
model [28].  
 
3. RESULTS AND DISCUSSION 

 
Seward and Schultz [9] have shown that distinct class-based relationships exist for different 

sub-classes aliphatic carboxylic acids including saturated mono-acids and saturated di-acids. They 
could build a response surface using two molecular descriptors (i.e. log Kow and ELUMO) that 
encompassed all considered acids with exception of four outliers. The best reported R2 in their 
report was 0.848. The main goal in this work was to use ANFIS and develop a QSAR model for all 
considered sub-classes of carboxylic acids, with better quality, and without any outlier elimination. 

In the present study, first of all, log Kow and ELUMO were used as inputs for ANFIS model as did 
Seward and Schultz [9] in their work. For each input two membership functions (Gaussian MF) 
were assigned, this led to 22 = 4 fuzzy rules. The statistical parameters of the resulted model are as 
follows: 2

TrainingR  = 0.86 and 2
TestR =0.97. Figure 2 shows a plot of observed versus calculated log 

( -1
50IGC ) values for both training and prediction sets. A good correlation between the observed and 

predicted values of log ( -1
50IGC ) can be seen in this figure. However, two components had unusual 

errors in their predicted values. The outliers were representative of size extremes; undecanoic acid 
and 4-pentenoic acid. These outliers were belong to the training set and removing them improved 
the 2

TrainingR from 0.86 to 0.93. 

 
Fig. 2. A plot of observed versus predicted aquatic toxicity of carboxcylic acids from the ANFIS 
model used log Kow and ELUMO as inputs. 
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Undecanoic acid is extremely large among the molecules in the data set and very hydrophobic. 
Toxicity of this highly hydrophobic acid may be affected by low aquatic solubility [9]. Other outlier 
was a small carboxylic acid, i.e., 4-pentenoic acid. This molecule with unsatuared carbon-carbon 
bond has two positions for potential electrophilic attack (i.e., C=C and C=O) [9]. Such attraction 
results in a stable intermediate ion and affects the toxicological activity of the chemical. As the 
distance between the terminal carbon and the carbonyl group increases, the potential for such 
attacks decreases.  

In the next step, other descriptors calculated by Dragon and MOE sofwares were used to 
examine whether there were molecular descriptors with better performance than log Kow and ELUMO. 
Since the number of data point in the training set is small, i.e., 28, only two descriptors can be used 
as inputs, provided that for each input only two MF are assigned. In other words, if three descriptors 
is chosen as inputs, each input has at least two MFs, this leads to 23 = 8 fuzzy rules, which results in 
(3+1)×8 = 32 consequent parameters; but there are only 28 data ponits for training, so the ANFIS is 
not able to tune consequent parameters.  

An exhaustive search was employed to select the best subset of molecular descriptors 
containing only two descriptors. The chosen descriptors were: PEOE_VSA_FPNEG and G3u. The 
G3u belongs to WHIM (weighted holistic invariant index/weighted by atomic masses) descriptors. 
It is a geometrical descriptor based on statistical indices, calculated on the projections of the atoms 
along principal axes. WHIM descriptors are built in such a way as to capture relevant molecular 3D 
information regarding molecular shape, size, symmetry and atom distribution with respect to 
invariant reference frames. Interpretability of these descriptors is relatively complex but they 
encode refined structural information for the activity. The PEOE_VSA_FPNEG belongs to partial 
charge descriptors category and refers to fractional negative polar van der Waals surface area. There 
is a high correlation between log Kow and PEOE_VSA_FPNEG (i.e., R2=0.73). However, 
constructing an ANFIS model based on only PEOE_VSA_FPNEG was more predictive than that 
used log Kow as input. 

To show that the ANFIS model was reliable, a permutation test based on the repetitive 
randomization of the response vector was also used. In each cycle of the test, the response vector 
(toxicity values) was randomly rearranged; an ANFIS model was built using the selected 
descriptors and new response vector; the resulted ANFIS model was used to predict the toxicity of 
the chemicals in the training set and the corresponding squared correlation coefficient (R2) was 
recorded. The results of this test are graphically represented in Figure 3. Obviously, the models with 
randomized activities represent very low correlation coefficients compared with the original model. 
These findings confirm the significance of the proposed ANFIS model for predicting the log 
( -1

50IGC ) of the aliphatic carboxylic acids. 

 
Fig. 3. Y-randomization test; the first bar shows the R2 value for the model based on the actual data. 
The other 100 bars show the R2 values for 100 models based on permuted data. 
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Figure 4 shows a plot of observed versus calculated log ( -1

50IGC ) values for both training and 
prediction sets. Figure 5 represents a plot of the standardized residuals versus the indices of all of 
the observations for the new ANFIS model. As can be seen from these figures, the predictive 
abilityof the ANFIS model was improved. Statistical parameters of the model are given in Table 2. 

 
Fig. 4.  A plot of observed versus predicted aquatic toxicity of carboxcylic acids from the ANFIS 
model used PEOE_VSA_FPNEG and G3u as inputs. 

 

 
Fig. 5. A plot of standardized residuals obtained from the ANFIS model versus indices of all the 
carboxylic acids. 

 
Whilst the prediction ability of the ANFIS model obtained for the aquatic toxicity of the 

aliphatic carboxylic acids was confirmed, comparison with the previous QSAR models for the same 
compounds will be beneficial. The first QSAR model on this data set was reported by Seward and 
Schultz [9]. They applied MLR regression on the 38 carboxylic acids using two molecular 
descriptors, log Kow and ELUMO and no external test set was considered. The discovered QSAR 
model had R2 value of 0.727 and quality of the model was improved by removing three outliers. 
The R2 value of the final model approached to 0.848. Another QSAR study on the same data set was 
reported by Kompany-Zareh [10]. He used nine descriptors and second to forth orders of them as 
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inputs for genetic algorithm to choose the best combination of variables in the QSAR study. A 
QSAR model using five variables was developed. The reported R2 values for training and test sets 
were 0.95 and 0.73, respectively. Referring to Table 2 reveals that the proposed ANFIS model has 
better performance. Whilst the calibration quality of the later work is better to what found in this 
work, ANFIS had much better performance on the external set. Moreover, ANFIS used only two 
variables. 

 
Table 2. Comparison of some reported models on the same data set of aliphatic carboxylic acids. 

  

Reference Model Number of 
used variables 

Number of compounds 
in data set 

R2
Training R2

Test 

Number of 
detected 
Outliers Training set Test 

set 

9 MLR 2 38 --- 0.848 --- 3 

10 Nonlinear-
MLR 5 28 10 0.95 0.73 --- 

Current 
work 

ANFIS 2 
28 10 0.923 0.902 --- 

 
4. CONCLUSION 
  

In this paper, non-linear quantitative structure–toxicity relationships (QSTR) were developed 
for the prediction of log( -1

50IGC ) values of aliphatic carboxylic acids based on two subsets of 
molecular descriptors. The first one, which was used previously by Seward and Schltuz [9], 
contained log Kow and ELUMO. ANFIS as a powerful nonlinear tool was used to develop a model 
between these descriptors and log( -1

50IGC ) values. The resulted ANFIS model had better quality 
compared the MLR model developed previously [9]. The other set of molecular descriptors 
contained PEOE_VSA_FPNEG and G3u, which was selected by exhaustive search of all two 
combinations of calculated descriptors (more that 1700 descriptors). The ANFIS model developed 
based on these descriptors had better performance. No outlier was detected. Both of ANFIS models 
were validated using external test set. As final conclusion, ANFIS was able to produce substantially 
better models than the models reported recently for predicting log( -1

50IGC ) values of aliphatic 
carboxylic acids [9, 10]. 
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