

J. Iran. Chem. Res. 3 (2010) 59-63

www.iau-jicr.com

Antiplasmodial ativity of akaloids from Garcinia Parvifolia Miq. Stem Bark

U.Z. Lathifah ^{a,b,*}, R.A. Rahim^a, H. Sudrajat ^b, S. Khairi ^b

^a Advance Medical & Dental Institute, Suite 121, EUREKA Complex, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia ^b Ikatan Mahasiswa Eksakta Indonesia, Barek, Sleman 55281, Yogyakarta, Indonesia

Received 27 July 2009; received in revised form 16 October 2009; accepted 3 November 2009

Abstract

Garciniavalline (1), a novel aporphinoid alkaloid, in addition to four known alkaloids, cleistopholine (2), O-methylmoschatoline (3), (-)-oliveroline (4) and (-)-oliveridine (5), were isolated and characterized from *Garcinia Parvifolia* Miq. stem bark. Structural elucidation of these compounds was established by spectroscopic methods. Among them, alkaloids (2) and (4) exhibited antiplasmodial activity against *Plasmodium falciparum*

Keywords: Isoquinoline alkaloids; Garcinia Parvifolia Miq.; Antiplasmodial.

1. Introduction

The genus *Garcinia* (Guttiferae) is composed of about 250 different species confined to the warm humid tropics of the world [1]. Extensive chemical investigation of this genus has resulted in the isolation of a wide variety of natural products, including xanthones, coumarins, flavonoids, chalcones, benzofurans and triterpenes [2-4]. Some of these species are frequently employed in folk medicine to treat several injuries [5]. Several experimental studies have reported that extracts and/or the oil of several species of this genus are potential antimalarial [6-9] and antifungal sources [2]. *Garcinia Parvifolia* Miq., an endemic plant found in Indonesia, has not previously been the subject of phytochemical analyses. In this paper we discuss the isolation and structure elucidation of a new oxoaporphine, garciniavalline (1), along with four known compounds, cleistopholine (2) [10], O-methylmoschatoline (3) [11], (-)-oliveroline (4) and (-)-oliveridine (5) [12], from the alkaloidal extract of the *Garcinia Parvifolia* Miq. Stem bark. The compounds were evaluated for their antiplasmodial activity against *Plasmodium falciparum*.

2. Experimantal

2.1. Plant material

Garcinia Parvifolia Miq. was collected in july 2008 in the West Province of Indonesia. A specimen was identified and maintained at the Herbarium Bogoriense, Bogor, Indonesia.

2.2. General procedures

^{*} Corresponding author.

E-mail address: bakyin@yahoo.com (U.Z. Lathifah)

The UV spectra were obtained in MeOH, using Shimadzu UV 1201 spectrophotometer, IR spectra were recorded on a Perkin-Elmer 241 MC (FT-IR). ¹H NMR (300 and 400 MHz) and ¹³C NMR (75 MHz) spectra (all in CDCl₃) were recorded with a Bruker AMX 300 and Bruker AM 400, using TMS as internal standard. The mixing time for the HMBC spectra was 0.8 s, and the delay, in NOESY experiments, 2 s. CIMS were obtained with a Nermag-Sidar R10-10C mass spectrometer. Si gel 60 (Merck 0.063-0.200 mesh) was used for column chromatography, precoated Si gel plates (Merck 60 F₂₅₄ 0.2 mm) were used for TLC. Plates were visualized by spraying with Dragendorff's reagent or with 50% H₂SO₄ and then heating.

2.3. Extraction and isolation

The air-dried stem bark of *Garcinia Parvifolia* Mig. (1.5 kg) were defatted by percolation with petroleum ether; the solid residue was then basified with 5% aq. NH₄OH solution and extracted with CH₂Cl₂. The combined organic extracts were then evaporated under reduced pressure. The bases were extracted with 3% aq. HCl from the CH₂Cl₂ solution. The HCl solution was basified with NH₄OH (pH 8-9) and extracted with CH₂Cl₂. The CH₂Cl₂ solution was dried over anhydrous Na₂SO₄, filtered and then evaporated to leave a brownish solid residue (17 g, 1.1%). The residue was flash chromatographed on Si gel (500 g), eluted with increasing polarities of CH₂Cl₂/MeOH mixtures. Ninety fractions of 100 mL each were collected. Fractions of similar composition (as indicated by TLC) were combined. From fractions 30-36 and fractions 37-40, cleistopholine (2, 200 mg) and O-methylmoschatoline (3, 500 mg) were obtained respectively. Fractions 41-44 (600 mg) was subjected to Si gel CC (100 g), eluting with EtOAc/MeOH (99:1). Thirty fractions were collected; fractions 5-12 furnished garciniavalline (1, 50 mg). Fractions 52-56 (1200 mg), were subjected to Si gel CC (200 g), eluting with EtOAc/MeOH (96:4). Fifty fractions were thus collected. Fractions 10-25 were, subjected to preparative TLC, using hexane:EtOAc:diethylamine (8:1:1) as eluent, by which (-)-oliveroline (4, 150 mg) and (-)-oliveridine (5, 200 mg) were obtained.

2.4. Antiplasmodial Assay

Antiplasmodial activity of the compounds was assessed by an *in vitro* radioisotope incorporation test using [³H] hypoxanthine [13]. Each compound, plus chloroquine as a control, was assayed in triplicate at 4 different concentrations. Concentrations of both compounds tested, and positive controls, which inhibited parasitespecific incorporation of [³H] hypoxanthine by 50% (IC₅₀), were determined by non-linear regression analysis. Zero-drug controls were defined as 100% incorporation.

3. Results and discussion

Garciniavalline (1): orange needles (CH₃Cl); m.p. 198-200 °C; UV (MeOH) λ_{max} 205 (3.01), 214 (3.09), 223 (3.73), 289 (3.04), and 385 (2.11) nm; IR (KBr) v _{max} 2936, 1638, 1596, 1446, 1337, 1202 and 963 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see Table **1**. LRMS *m*/z 366 [M+H]⁺ (48), 351 (100), 334 (56), 223 (8), 308 (4) and 272 (2).

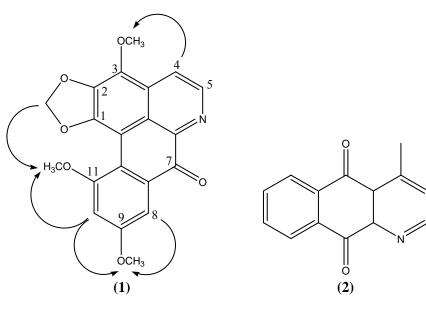
Garciniavalline (1) was obtained as orange needles from CHCl₃, m.p. 198-200 °C. It displayed a green spot on spraying with Dragendorff's reagent. The CIMS data showed the $[M+H]^+$ at m/z 366 corresponding to the molecular formula $C_{20}H_{15}O_6N$. An IR band at v1638 cm⁻¹ and a signal at δ 183.3 ppm in the ¹³C NMR spectrum indicated that a carbonyl group was present. Its UV absorption maxima at λ 205, 214, 223, 289, and 385 nm were characteristic of an oxoaporphine skeleton [10]. The ¹H NMR spectrum of (1) (Table 1) showed the presence of a methylenedioxy singlet at δ 6.25 assigned to positions 1 and 2, whereas three methoxy groups

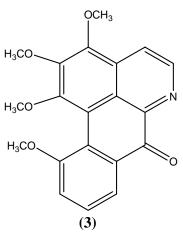
U.Z. Lathifah et al. / J. Iran. Chem. Res. 3 (2010) 59-63

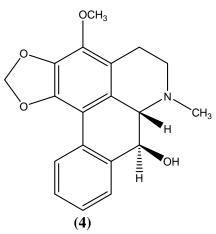
were identified, respectively at δ 4.24 characteristic of position 3 [11] and δ 3.98 and 3.96 located in ring D.

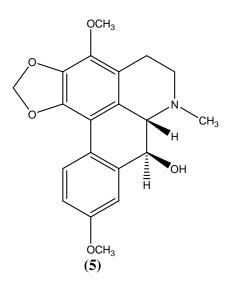
Position	$\delta_{\rm C}$	δ_{H}	HMBC	^{1}H - ^{1}H COSY
1	136.6		6.25	
1a	107.5			
1b	111.4			
2	135.2		4.25	
3	152.0		4.25	
3a	121.6	8.12 d 5.2		
4	118.0	8.86 d 5.2	8.86	8.86
5	144.4		8.12	8.12
6a	148.3			
7	183.3		7.65	
7a	133.8		7.65	
8	102.7	7.65 d 2.5	6.83	6.83
9	161.6		6.83, 3.98	
10	107.9	6.83 d 2.5	7.65	7.65
11	154.8		3.96, 6.83	
11a	125.0			
OCH ₂ O	101.3	6.25		
MeO-3	61.8	4.25		
MeO-9	55.6	3.98		
MeO-11	55.2	3.96		

Table 1


Correlated ¹³C-NMR, ¹H-NMR, HMBC and COSY for Compound (1) in CDCl₃.


The aromatic region of the spectrum revealed the presence of one pair of doublets at δ 8.86 and 8.12 (J = 5.2 Hz), assigned to H-5 and H-4 [12], and another pair at δ 7.65 and 6.83 (J = 2.5 Hz), which was in accord with a *meta*-substitution in ring D. The absence of the characteristic deshielded H-11 signal indicates the MeO-9/MeO-11 substitution. The unambiguous assignment of the *meta* substitution was achieved by NOESY experiments (Scheme 1). Observation of the NOESY correlations between MeO-11 and both 1,2-methylenedioxy and H-10, between MeO-9 and both H-8 and H-10, and between H-4 and both MeO-3 and H-5 protons corroborated the MeO-9/MeO-11 substitution. Further HMQC, HMBC, COSY data (Table 1) provided confirmation of structure (1).


The *meta*-substitution pattern in the D ring of aporphines has a taxonomic significance in the Annonaceae family. Although some aporphines with *meta*-substitution in the D ring have been reported in other families [12], these alkaloids are mainly present in the *Duguetia* and *Guatteria* genera [13]. Thus, only one oxoaporphine with a 9,11 *meta*-substitution pattern was reported from *Guatteria discolor* [14].


Chromatographic separation also yielded cleistopholine (2), O-methylmoschatoline (3), (-)-oliveroline (4), and (-)-oliveridine (5) from the total alkaloidal extract; their structures were established by comparison of their physical and spectral data (UV, IR, ¹H NMR, ¹³C NMR, LRMS) with those published in the literature. The structures of (4) and (5) were further supported by NOESY data.

The antiplasmodial activity of the isolated compounds was assayed against *Plasmodium falciparum* sensitive strain ITG2 (Table 2). In this study, the most active compounds were cleistopholine (**2**), and (-)-oliveroline (**4**), which showed $IC_{50} = 17.8$ and 14.9 µM, respectively.

Scheme 1

Compound	IC_{50} (µmol mL ⁻¹)		
1	75.9		
2	17.8		
3	32.3		
4	14.9		
5	55.7		
Chloroquine	0.06		

The in Vitro Antiplasmodial Activity of Alkaloids 1-5 Against Plasmodium Falciparum.

4. Conclusion

Table 2

In conclusion, these studies demonstrated the good *in vitro* antiplasmodial activity of the compounds isolated from *Garcinia Parvifolia* Miq. stem bark. Efforts will be undertaken to continue the bioassay guided fractionation in order to isolate and identify the active compounds, as well as to understand the mechanism of action.

References

- [1] S. Jones, Morphology and Major Taxonomy of *Garcinia* (Guttiferae). Ph.D. dissertation, University of Leicester and British Museum, London, 1980.
- [2] P.W. Grasvenol, A. Supriono, D.A. Gray, J. Ethnopharmacol. 45 (1995) 97-111.
- [3] K. Likhitwitayawuit, T. Phadungcharoen, J. Krungkrai, Planta Med. 64 (1998) 70-72.
- [4] A.E. Hay, J. Helesbeux, O. Duval, M. Lay, P. Grellier, P. Richomne, Life Sci. 75 (2004) 3077-3085.
- [5] M. Linuma, H. Tosa, R. Tanaka, F. Shimano, T. Asai, Y. Shigetomo, Phytochemistry. 35 (1994) 1355-1360.
- [6] Likhitwitayawuit, W. Chamahasathien, N. Ruangrungsi, J. Krungkrai, Planta Med. 64 (1998) 281-182.
- [7] M.M. Mackeen, A.M. Ali, N.H. Lajis, K. Kawazu, Z. Hassan, M. Amran, M. Habsah, L.Y. Mooi, S.M. Mohamed, J. Ethnopharmacol. 72 (2000) 395-402.
- [8] Mustofa, E.N. Solikhah, S. Wahyuono, J. Trop. Public Health. 38 (2007) 609-615.
- [9] R.S. Phillips, Clin. Microbial. Rev. 14 (2001) 155-171.
- [10] P.G. Waterman, I. Muhammad, Phytochemistry. 24 (1985) 523-528.
- [11] A.J. Marsaioli, A.F. Magalhaes, E.A. Rùveda, F. Reis, Phytochemistry. 19 (1980) 995-1002.
- [12] M. Hamonniere, M. Leboeuf, A. Cavé, Phytochemistry. 16 (1977) 1029-1036.
- [13] T. Murningsih, Subekti, K. Matsuura, H. Takahashi, M. Yamasaki, O. Yamamoto, Y. Maeda, K. Katakura, M. Suzuki, S. Kobayashi, T. Chairul, J. Yoshihara, Vet. Med. Sci. 67 (2005) 829-831.