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The β-carboline derivatives are a large group of naturally-occurring and synthetic alkaloids which have a 
wide spectrum of biological and pharmaceutical properties. The newly developed procedure called VolSurf 
has been used to explore a significant correlation between the 3D molecular interaction fields (MIF) and 
physicochemical and pharmacokinetic properties of a set of 30 β-carboline compounds acting as antitumor 
agents. In general terms, VolSurf generates a limited set of quantitative numerical descriptors from MIFs by 
calculating the volume or the surface of the interaction contours. These descriptors that encode the 
information content from the chosen probes are simple to interpret from a chemistry point of view. The aim 
of this approach is to allow the analysis of a large number of quantitative descriptors by using chemometric 
tools such as partial least squares (PLS) and principle component analysis (PCA). The PLS model gave 
statistically significant results with R2 and Q2 values of 0.92 and 0.72, respectively. The ability of the model 
was validated by an external test set of 10 compounds, which gave R2

(pred) of 0.85. The VolSurf model 
developed here identifies hydrophobicity as the major physicochemical parameters responsible for the 
antitumor activity of the β-carboline derivatives towards HepG2 cell lines. 
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1. INTRODUCTION 
 

The β-carboline alkaloids which are originally isolated from the medicinal plant Peganum 
Harmala, exert a wide spectrum of pharmaceutical properties [1, 2]. During recent years numerous 
β-carboline derivatives bearing various substituents at positions 1, 3, 7, and 9 have been synthesized 
that all have a thricylic planar system with different degrees of aromaticity. Different biochemical 
and pharmacological effects of these compounds like anxiolytic, antimicrobial [3], antiviral [4], 
sedative [5], antithrombotic [6] and antiparasitic [7] effects are due to presence, location and nature 
of the substituents. These are also associated with nurological diseases such as Paikinson’s disease 
[8]. Moreover, a large series of β-carboline have shown high affinity for several receptors such as 
benzodiazepine (BZ) [9], 5-hydroxytryptamine (5-HT) [10], imidazoline [11], and dopamine (DA) 
12]. 

Recently, β-carboline alkaloids have been characterized as a class of potential antitumor agents 
that apoptosis in HepG2 cells induced by β-carbolines is the main cause of antitumor activity of 
these compounds [13-18]. The VolSurf procedure generates a set of molecular descriptors in order 
to quantify steric, hydrophobic and hydrogen bond interactions between drugs and their receptors 
[19]. The procedure starts with 3D molecular interaction fields generated from the interactions of 
different probes like water probe (OH2), hydrophobic probe (DRY), and ionic probes with the 
target molecule. In the next step the 3D descriptors convert to 2D descriptor called VolSurf 
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descriptors, which refer to molecular size and shape, to hydrophilic and hydrophobic regions and 
the balance between them [20]. The present study is dedicated to select the most appropriate 
descriptors according to the type of 3D features via VolSurf procedure in order to drive 
chemometric models for a dataset of β-carboline derivatives. 
 
2. EXPERIMENTAL 
 
2.1. Data set 

The data set was adopted from the work of Rihui Cao et al [21] in which they reported the 
cytotoxic potential of a number of synthesized β-carbolines against a panel of human tumor cell 
lines. The VolSurf approach was applied to obtain a 3D-QSAR model for the potency of 40 from 
total 47 β-carboline derivatives which have significant pIC50 toward HepG2 human tumor cell lines 
(Table 1). A statistical subset selection was made using most descriptive compound (MDC) [22] 
method in which the compounds are weighted according to their population density. The complete 
molecular set was split into two different sets involving: training and test set. The training set is 
composed of 30 compounds which were used to adjust the parameters of the models. The 
corresponding pIC50 values which are listed in Table 1 range from 3.63 for the most weakly 
compound (45) to a value of 5.8 for the most potent compound (57) and cover a spectrum of 
approximately 3-log units. The 3D QSAR model derived was successfully validated by using a test 
set of 10 similar compounds, with comparable pIC50. 

 
2.2. VolSurf approach 
 

The VolSurf program has been extensively used to calculate a set of 2D descriptors from the 3D 
maps of molecular interaction field (MIF) related to pharmacokinetic properties of drugs. The 
principles of this procedure have been described elsewhere [23, 24] in more detail, but it is worth 
mentioning about whole procedure briefly. 

The strategy for the VolSurf calculation consist in two main steps: firstly the 3D molecular 
interaction fields are calculated from the interaction of water (OH2) probe simulating solvation and 
desolvation, the hydrophobic (DRY) probe representing the hydrophobicity, and the carbonyl 
oxygen (O) and amide nitrogen (N1) probes representing, the hydrogen bond acceptor and donor, 
respectively, around the target molecule. Then the Volume and Surface descriptors are obtained at 
different energy levels [25]. Thus during this procedure all relevant information contained in Grid 
maps are transferred from 3D to 2D descriptors, that are alignment-independent and are only 
marginally influenced by conformational sampling [20]. Some of these descriptors are easily 
interpretive because they can be projected back into the original 3D-Grid maps from which they are 
obtained. 

Among all kinds of descriptors produced and used in 3D-QSAR methods, the VolSurf 
descriptors are well suited for modeling some permeation properties, and also to describe some 
ADME properties of drug compounds[26]. 

 
2.3. Model construction and validation 
 

The 3D structures of dataset were constructed and minimized in SYBYL7.3 molecular modeling 
package (Tripos Inc., St. Louis, USA). Geometries of the molecules were optimized by using the 
Tripos force field with a distance dependent dielectric and the Powell conjugate gradient algorithm 
with a convergence criterion of 0.01kcal/mol.  Partial atomic charges were calculated using the 
Gasteiger-Hückel method. From the 3D structures, molecular descriptors were calculated using the 
VolSurf+ 1.0.4 program. All these calculations were carried out on Linux workstation. 
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Table 1. Structures and potencies toward HepG2 tumor cell lines of compounds 1-40.  

 

 

 

Substituents Comp. 

R1 R2 R3 R7 R9 

pIC50 

(exp.) 

pIC50 

(cal.) 

1 3,4,5-trimethoxyphenyl _ CO2C2H5 H H 3.78 3.75 

3 3,4,5-trimethoxyphenyl _ CO2H H n-C4H9 3.68 3.74 

4 3,4,5-trimethoxyphenyl _ CONH(CH2)2OH H n-C4H9 4.06 4 

11 H _ CONH(CH2)2NH2 H n-C4H9 4.08 4 

12 H _ CONH(CH2)6NH2 H n-C4H9 4.02 4.24 

13a CH3 _ CONH(CH2)2OH H n-C4H9 3.85 3.67 

14 CH3 _ CONH(CH2)2NH2 H n-C4H9 4.66 4.62 

15a CH3 _ CONH(CH2)2NH2 H CH2C6H5 4.46 4.34 

17 H _ CONH(CH2)2NH2 H CH2C6H5 3.98 3.84 

18a H _ CONH(CH2)6NH2 H CH2C6H5 4.23 3.94 

21a CH3 _ CH2OH H n-C4H9 3.89 3.87 

23 CH3 _ CHO H n-C4H9 3.84 3.71 

29 CH3 CH2C6H5 H H H 4.16 4.08 

30 CH3 (CH2)3C6H5 H H H 4.48 4.53 

31 CH3 CH2C6H5 CO2C2H5 H H 4.28 4.03 

32 CH3 CH2C6H5 H OCH3 H 4.26 4.17 

33 H n-C4H9 H H H 4.03 3.97 

34a H CH2C6H5 H H H 4.11 4.1 

35 H (CH2)3C6H5 H H H 4.35 4.48 

40 CH3 _ H OH C2H5 3.87 4.14 

41a CH3 _ H OH n-C4H9 4.09 4.16 

42 CH3 _ H OH i-C4H9 3.94 4.02 

43 CH3 _ H OH (CH2)3C6H5 4.55 4.45 

44 CH3 _ H OC2H5 C2H5 4.16 4.36 

45 CH3 _ H OCH2C6F5 C2H5 3.63 3.59 

46a CH3 _ H OC2H5 n-C4H9 4.36 4.28 
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Continued Table 1. 

Comp. R1 R2 R3 R7 R9 pIC50 

(exp.) 

pIC50 

(cal.) 

47 CH3 _ H OCH(CH3)2 n-C4H9 4.52 4.66 

48 CH3 _ H OC4H9 n-C4H9 4.81 4.48 

49 CH3 _ H OC10H21 n-C4H9 3.90 3.91 

50 CH3 _ H OC4H9 i-C4H9 4.92 4.73 

51 CH3 _ H OCH2C6H5 i-C4H9 4.65 4.6 

52a CH3 _ H OCH(CH3)2 (CH2)3C6H5 4.84 4.34 

53 CH3 _ H OC8H17 (CH2)3C6H5 3.98 4.18 

54a CH3 _ H OCH2C6H5 (CH2)3C6H5 4.80 4.22 

55 CH3 _ H OCH2C6F5 (CH2)3C6H5 3.83 4.14 

56 CH3 CH2C6H5 H OC2H5 C2H5 4.84 4.92 

57 CH3 CH2C6H5 H OCH2C6F5 C2H5 5.80 5.56 

58 CH3 CH2C6H5 H OC4H9 i-C4H9 5.74 5.91 

59a CH3 CH2C6H5 H OCH2C6F5 i-C4H9 5.72 5.66 

60 CH3 CH2C6H5 H OC8H17 (CH2)3C6H5 5.41 5.33 

 
In the present study, the water (OH2), hydrophobic (DRY), carbonyl oxygen (O), and amide 

nitrogen (N1) probes were used, resulting in 123 descriptors. Since there is no variable selection 
implemented in the VolSurf+  program, in order to extract the more informative descriptors and 
build a predictive model, a variable selection techniques namely genetic algorithm (GA)[27] 
performed in the MATLAB (version 7.6.0., Math Works, Inc.) was applied that yields 23 out of 
total 123 descriptors. The GA-PLS analysis resulted in a model with six latent variables and a 
correlation coefficient of 0.92 and a standard deviation of the error of calculation (SDEC) of 0.15. 
Also, the validation of this model using cross-validation method and an external test set shows Q2

loo 
=0.72 of the validated model and the R2

Pred for the external test set was 0.85. The statistical 
parameters of the PLS analysis resulted in a six-latent-variables (LV) are given in Table 2. The plot 
of experimental vs. predicted values of pIC50 in Fig.1 proves the good quality of PLS model 
obtained. 

 
Table 2.  The statistical results of the PLS model developed for the series of β-carboline alkaloids. 

N a R2b Q2
(loo)

c SDECd SDEPe 

6 0.92 0.70 0.15 0.30 

a optimum number of latent variables 

b noncross-validated correlation coefficient 
c cross-validated correlation coefficient 
d standard deviation of error of calculation 
e standard deviation of error of prediction 
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3. RESULTS AND DISCUSSION 
 
The PLS coefficient plot (Fig. 2) shows the contribuation of all 23 VolSurf descriptors selected 

by GA to explain the PLS model, is reported in. The GRID molecular interaction fields (MIFs) 
around an active (58), and an inactive (45) is shown in Fig. 3. The colored areas around the 
molecules are the Grid fields produced by the molecule: green for DRY probe and cyan for OH2 
probe, red for O and blue for N1 probe. As can be seen from Fig. 3 for the most inactive compounds 
red and blue color that represent O and N1 probes and refer to H-bond acceptor and H-bond donor 
respectively are dominant in Grid maps of inactive compounds e.g. 3 and 45. Also for the most 
active compounds like 57 and 58 DRY probe that hydrophobic effects has high impact on activity. 
It is worth mentioning that all compounds have hydrophobic effects due to their three-ring system, 
but the active compounds have more hydrophobic moieties like phenyl ring in 2-benzyl substituent 
for compounds 57 and 58. 

 
Fig. 1. Plot of Experimental vs. Predicted pIC50 values for 3D-QSAR model. 

 

 
 
Fig. 2. PLS coefficient plots for 3D-QSAR model. Direct and reverse correlation with the activity 
are indicated with positive and negative PLS coefficients, respectively. Bars with the most intensive 
height in the PLS plots have the most profound impact on the model obtained. 
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The five most significant VolSurf descriptors extracted by GA feature selection procedure and 
used as PLS input are: Capacity factor (CD3), hydrophobic regions (D1), H-bond donor volumes 
(WO5), hydrophobic integy moment (ID3), and 3D-pharmacophoric descriptors (DRACDO), that 
the activity particularly increases with high values of D1, and the rest are inversely related to the 
antitumor activity of β-carboline derivatives. 

Capacity factor (CD3): which is measure of amount of hydrophobic regions per surface unit is 
an important factor and according to PLS coefficient plot is detrimental for activity. Hydrophobic 
regions (D1): it can be defined as the molecular envelope generating attractive hydrophobic 
interactions. These interactions were calculated by using a special probe called DRY. According to 
PLS coefficient plot the activity is directly proportional to the value of this descriptor which is in 
agreement with Gird maps of active and inactive compounds. High values of this descriptor for 
active compounds like 57 and 58, and low values for inactive compounds like 3 and 45 are in 
complete agreement with the PLS coefficient plot for the correlation of Volsurf descriptors with β-
carboline antitumor activity (Fig. 2). We can deduce from the plot that activity is directly 
proportional to the higher values of D1. 

The green zones around molecules represent the hydrophobic regions. From the field maps it is 
clear that hydrophobic regions of 45 are larger than 58, thus it means there is a clear concentration 
of hydrophobic regions in only one part of the compound 45 as an inactive one, whereas the lower 
integy moments in case of 58 indicates that the polar moieties are distributed throughout the 
molecule and the resultant barycenter is close to the centre of this compound as a active one. All 
these results suggest that the value of this descriptor correlate inversely with the activity of 
compounds which is evidently shown in PLS coefficient plot. 

H-bond donor volumes (WO5): Fig. 3 shows the visual comparison of Grid 3D molecular fields 
of active compound 58 and inactive compound 45 calculated with O (carbonylic oxygen) probe. 
The red zones around molecules represent the H-bond donor fields, which may be defined as the 
molecular envelope generating attractive H-donor interaction. Since this descriptor is inversely 
proportional to activity it is expected result that there is no H-bond donor fields around the active 
compounds. 

 

      
Compound 58                                                       Compound 45 
 

Fig. 3. GRID Molecular Interaction Fields (MIFs) around compound 58 as an active one, and 
compound 45 as an inactive one. 

 
Hydrophobic Integy moments (ID3): this descriptor indicates the unbalance between the 

molecular center of mass and the barycenter of polar moieties (in this case hydrophobic regions) 
were measured with integy moments. High values of integy moments  means clear concentration of 
hydrophobic regions in only one part of the inactive compounds, and low values of integy moment 
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in inactive compounds  means that the hydrophobic interaction sites are either close to the center of 
mass or they balance at opposite ends of the molecules.  

3D-pharmacophoric descriptors (DRACDO): VolSurf+ 3D pharmacophoric descriptors are 
generated from all possible triplets of distances between  the atoms (points) of structures which are 
classified as hydrophobic (DR), H-bond donor (DO) and H-bond acceptor (AC). The descriptor 
DRACDO, being pharmacophoric in nature, shows a negative correlation with the activity of the 
compounds. Most of these descriptors mainly represent hydrophobicity as the major 
physicochemical parameter influencing on the antitumor activity of β-carboline derivatives. To 
summarize the importance of different VolSurf descriptors, it can be concluded that hydrophobic 
interaction contribute more than do other descriptors 
 
4- CONCLUSION 

 
The VolSurf approach was applied to a set of 40 β-carboline derivatives acting as antitumor 

compounds. It is straightforward to recognize the most relevant physicochemical properties 
characterizing the β-carboline derivatives in this study using the VolSurf descriptors that are lattice-
independent and have clear chemical meaning. The method produced a reliable in silico model, 
based on four MIFs, which is able to predict the affinity of β-carboline derivatives towards the 
HepG2 tumor cell lines. Actually, the 3D QSAR analysis confirmed the crucial role of 
hydrophobicity on antitumor activity in these compounds. The results show that Volsurf approach is 
highly efficient in predicting the biological activities and the characterization of descriptors related 
pharmacokinetic behaviour of these compounds revealed some novel perspectives for designing 
new lead compounds. 
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