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Abstract: This work develops a statistical model to assess the frost risk in Rafsanjan, one of the largest pistachio 

production regions in the world. These models can be used to estimate the probability that a frost happens in a 

given time-period during the year; a frost happens after 10 warm days in the growing season. These probability 

estimates then can be used for: (1) assessing the agroclimate risk of investing in this industry; (2) pricing of 

weather derivatives. Autoregressive models with time-varying coefficients and different lags are compared using 

AIC/BIC/AICc and cross validation criterions. The optimal model is an AR (1) with both intercept and the “auto-

regressive coefficients” vary with time. The long-term trends are also accounted for and estimated from data. 

The optimal models are then used to simulate future weather from which the probabilities of appropriate hazard 

events are estimated. 
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INTRODUCTION 

Rafsanjan County in the north of Kerman Province 

in Iran is a region with the largest pistachio 

production in the world and most of the region's 

economy relies on pistachio production [1]. 

 

 

 

 

 

 

 

 

 

 
 

 

Fig 1.Map and geographic location of Rafsanjan.Latitude 30  25  

N, Longitude 55  54  E, Elevation 1580.9 MET. The above map 

was created using google maps. 

 

In the recent years the most important risk factor 

for pistachio producers and industry (e.g. farmers, 

distributers) has been frosts that have destroyed a 

large proportion of the yield. Therefore methods 

that can estimate the probability of such events are 

useful. In particular such methods can: (1) assess 

the agroclimate risk of investing in this industry; 

(2) be used in pricing of weather derivatives. In 

fact, weather derivatives, which may be created as 

part of a risk management program, can be written 

in terms of the attainment or non-attainment of 

specific target-values stipulated in the contract. 

Temperature-related trades account for 80% of the 

transactions among all weather derivatives [2]. 

Most of the work in this area has focused on 

HDD/CDD (heating degree days/cooling degree 

days) (e.g. [3, 4]). In this paper we focus on the 

occurrence of frosts, an issue recently considered in 

[5], for agricultural crops in Canada. 

Rafsanjan 
weather 
station 
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The models developed in this paper can be applied 

to estimate the probability that a given period is 

frost-free; the probability that a given day is the 

start of a long frost-free period; the distribution of 

the length of the frost-free period and so on. The 

same model can be used to compute the probability 

that a given day of the year is the beginning of the 

growing season (the first day that the mean 

temperature is higher than 5 degrees for 5 

consequent days) as well as the length of the 

growing season which are important for 

agricultural applications. For example in this study 

we estimate the probability of a useful event: “the 

minimum temperature goes below zero at least one 

day in the period March 27th-April 20th”. This is an 

important event because it coincides with the 

general flowering time of pistachio trees.  

Laboratory studies in Rafsanjan region show that 

temperatures below -2 degrees Celsius damage to 

pistachio buds. Also temperatures below +2 

degrees Celsius damages open flowers [6]. In this 

study we considered zero degree Celsius as a 

critical point, because in flowering period some of 

the crops are buds and some of them are open 

flowers. However the same model we developed 

here can be applied to other thresholds such as +2 

and -2 degrees Celsius. 

Throughout this paper, temperature is measured in 

degrees Celsius. Let us denote the minimum 

temperature series by {Y (t)}, t = 0, 1, 2… where t 

denotes time. We let F to be the investor's defined 

frost which we take it to be zero in this work. Then 

we can define the binary frost process:  

푌 (푡) =
1						푌(푡) ≤ 퐹(degC)
퐹						푌(푡) > 퐹(degC).																											(1) 

In order to study frosts, we can use these 

approaches among others: (a) Fit the continuous-

valued Markov model to the Y (t) chain; (b) Fit a 

binary Markov model to the YF (t) chain. Hosseini 

et al. [5] suggest using binary Markov models to 

avoid assumptions regarding the distribution of 

temperature and gain robustness for modeling 

frosts in Alberta, Canada. They show time-varying 

high-order Markov models with complex seasonal 

structure are needed and therefore their 

computations become challenging. Here we 

investigate Method (a) in fitting such chains and 

calculating the probabilities of frost events. The 

advantages of Method (a) are: (1) the fitting can be 

done with standard packages such as R with less 

computational problems; (2) only this method can 

estimate the probability of complicated events. One 

such complicated event is: “the temperature in 

March-April is above 5 (deg C) for at least 3 

consecutive days and is below zero after”. A 

comparison of the two methods in terms of 

estimation when they are both applicable is left to 

future research. 

It is clear the temperature series away from the 

equator is non-homogenous in time because of the 

seasonal effects during the year (resulted from the 

relative location of Sun and the Earth and the tilt of 

the Earth's axis relative to the plane of revolution). 

Therefore time series models that allow for a 

seasonally-varying “mean structure” are obviously 

needed. However it is less trivial that the 

autocorrelation structure also varies with season. 

[7, 5] show that the temperature autocorrelation 

varies with season (in Los Angeles and Alberta 

respectively). In [7] the authors found that the 

autocorrelation values in summer and winter are 

different, therefore they propose to fit two separate 

models for winter and summer. But they expressed 

that: “In any event, we stress that this is only a 

temporary solution; a more satisfactory one would 

be to fit the entire data series using seasonally 

varying parameters”. In this paper we solve this 

problem by allowing the coefficients of the 

autoregressive models to vary with season and 

showing how such models can be fit in standard 

statistical packages. 
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푓 (푦 ; 휃). 

STATISTICAL MODELS 

The data in this study are daily minimum 

temperature values collected at Rafsanjan weather 

station from 1992 to 2010. Currently, we do not 

have access to more data from other stations in the 

area but we hope to acquire those data for future 

studies to offer more local predictions. In order to 

model frost occurrences, we introduce statistical 

models for minimum daily temperature in 

Rafsanjan. Several features of the temperature 

process should be considered in modeling:  

      1. Seasonal trends over time: the temperature 

process is driven mostly by the sun energy. This 

energy is dependent on the position of earth relative 

to sun which goes through a periodic cycle through 

the year. 

     2. Long-term trends: Other than seasonal 

patterns in temperature, long-term climate patterns 

can be present in the temperature process, for 

example due to greenhouse gas emissions (climate 

change) or long-term natural climate shifts as a 

result of large volcanic activities and so on. 

      3. Dependence in time: seasonal and long-term 

climate shifts alone cannot explain the variation in 

the temperature process in short time-scales. The 

weather is also influenced by short-time weather 

regimes that last for a few days to couple of weeks. 

This causes time dependence in the weather data 

which can be modeled by relating the minimum 

temperature of a given day to a few days previous 

to that. Markov chains (or high-order Markov 

chains) are the natural statistical framework to 

model such dependence using the conditional 

distributions. 

Let {Y (t)}, t = 0, 1, 2… T denote the daily 

minimum temperature process in centigrade, where 

t denotes the day starting from March 1st 1992 to 

December 28th 2010. Here we consider 

autoregressive models with a seasonal component 

and various lags: 

푌(푡) = μ(푡) + ϵ(푡),																																																			(2)               

휇(푡) = 푎 (푡) + 푎 푌(푡 − 푖)																															(3) 

Where µ(t)=E{Y(t)|Y(t-1),Y(t-2),…} is the 

conditional mean of minimum temperature at time 

t; ε(t) are independent identically distributed 

normal errors ε(t) ~ N(0,σ2 ); a0(t) is the fixed trend 

coefficient; a1, a2,…,ar are autoregressive 

coefficients. We allow a0(t) to include both seasonal 

and long-term effects by using a Fourier series with 

period,	휔 =  , and a quadratic trend: 

푎 (푡) = {푎 + 푎 cos(푗휔푡) + 훽 sin(푗휔푡)} 

											+	{훾 푡 + 훾 푡 },																																																(4) 

In fact in this paper we extend the above model by 

allowing a1(t),...,ar(t) also vary with season by 

using Fourier series. This was to allow for the 

autocorrelation to vary with season as suggested in 

[7]. 

To fit our models, we use the partial likelihood 

maximization. By the way of an introduction, we 

would note that “generalized linear models” were 

developed to extend ordinary linear regression to 

the case that the response is not normal. However, 

that extension required the assumption of 

independently observed responses. The notion of 

partial likelihood was introduced to generalize 

these ideas to time series where the data are 

dependent. The following definition from [8], gives 

a more precise description. 

Definition: Let Ft ,t=1,2,… be an increasing 

sequence of휎 − fields, F0,F1,F2, … and let Y1,Y2,… 

be a sequence of random variables such that Yt is 

Ft-measurable. Denote the density of Ytgiven Ft ,by 

Ft(Yt;θ), where	휃 ∈ ℝ is a fixed parameter. The 

partial likelihood (PL) is defined by: 

 

PL(휃; 푦 ,… , 푦 ) = 																																																			 (5) 

 

The reader unfamiliar with휎 − fieldsnotion can 

think of Ft as the information available to us up to 

time t. 
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As an example, suppose Yt represents the 0-1 frost 

day process in Rafsanjan. We can define	ℱ =

휎{푌 ,푌 ,… }. In this case, we are assuming the 

information available to us is the value of the 

process on each of the previous days. If moreover 

we assume that Yt is a fixed-coefficient 2nd-order 

stationary Markov chain, then 푃(푌 |	ℱ ) =

푃(푌 |푌 , 푌 ). 

We define		푍 = (1,푌 ,푌 ,푌 ,푌 )	to be 

the covariate process in the sense that푌 |푍 =

(휃푍 )+ 휖(푡),which is a linear form. Other useful 

covariate processes can be considered. For example 

푍 = (1,푌 , cos(휔푡), sin(휔푡))corresponds to a 

non-stationary 1st-order Markov chain. 

For any such						푍 , if we 

assume		휖(푡)	~	푁 0, 휎 (푡) , by definition the log 

partial-likelihood is equal to: 

log푃(푌 |푍 ) = 

log{
1

√2휋휎(푡)
exp	[

−(푦 − 휇 )
2휎(푡)

]}																					(6)			 

− log √2휋 − log{휎(푡)} +
−(푦 − 휇 )
2휎(푡)

 

Where		휇 = 퐸(푌 |푍 ) = 휃푍 . In this study we 

assume 휎(푡) is fixed over time. The vector θ that 

maximizes the above equation is called the 

maximum partial likelihood (MPLE); [9] showed 

its consistency, asymptotic normality and efficiency 

(under certain regularity conditions). 

Such models can be fit easily using standard 

packages to perform statistical analysis such as R, 

SAS, etc. The fits can be done easily since the 

above model can be viewed as a linear 

autoregressive model. In this paper we used R 

which is a free and powerful tool for analysis of 

data. 

 

STATISTICAL MODEL SELECTION 

In the above we introduced several autoregressive 

models of: (1) various lags; (2) various seasonal 

complexity (number of Fourier terms); (3) various 

long-term trends. Therefore we need to use some 

criteria to select an optimal model. The problem of 

model selection is an important one in statistical 

theory and application. Various criteria are 

suggested in the literature for example: AIC in [10]; 

BIC in [11] and AICc in [12]. Denote the likelihood 

of the data by L (in this paper the “partial 

likelihood”), the number of covariates by p and the 

sample size by n. Then we have: 

퐴퐼퐶 = 2푝 − 2 ln(퐿),																																																	(7)          

퐴퐼퐶 = 퐴퐼퐶 +
2푘(푘 + 1)
푛 − 푘 − 1

,																																							(8) 

퐵퐼퐶 = 푝 log(푛) − 2 ln(퐿) . 																																					(9) 

Since n in our data is large compared to k, AIC and 

AICc are very close. In order to perform model 

selection we used the following algorithm using 

each of the above criteria (for example AIC). 

Model selection algorithm: 

Step 1: Finding seasonal model for the fixed 

coefficient (a0 (t)): For n=1,2,... in the Fourier 

series (to model a0(t)) calculate AIC starting from 

n=1 until AIC does not decrease anymore. 

Step 2: Finding long-term model for the fixed 

coefficient (a0 (t)): To the best model found in Step 

1 add long-term covariates t, t2,... until AIC does 

not decrease. 

Step 3: To the best model found in Step 2 add Y(t-

1),Y(t-2),Y(t-3),... with fixed coefficients over time 

until AIC does not decrease any further. 

Step 4: To the model found  in Step 3 add 

seasonally-varying autoregressive covariates such 

as Y(t-1) sin(ωt),Y(t-1)cos(ωt),Y(t-1)sin(2ωt),Y(t-

1)cos(2ωt) ,..., one by one until AIC does not 

decrease any further. 

The reason we perform the model selection in steps 

rather than comparing all possible models is 

because the number of models to be compared 

increases exponentially with the number of 

covariates (explanatory variables such as Fourier 

series terms, Y1 etc). For example if we use 40 

covariates, then we will have to compare 240 ≈1012 
models which would be computationally infeasible. 
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We have chosen the steps and their order in the 

above algorithm (model selection) based on our 

explanatory analysis (and well-known properties of 

the temperature processes in regions such as 

Rafsanjan). For example the reason for performing 

Step 1 at first is: the seasonal effects in temperature 

explain most of the variation in the temperature 

series.  

When we compared the models using these criteria, 

AIC and AICc give rise to the same optimal model 

while BIC picked a simpler model. In Table 1 we 

have compared these optimal models using cross-

validation error and cross-validated correlation. 

The cross-validation proceeds by: (1) taking an 

existing data point out; (2) fitting the model; (3) 

predicting the value of the point we took out 

(validation). Then the cross-validation error (CVE) 

is the mean square error of the predictions and the 

cross-validation correlation (CVR) is the 

correlation between the predictions and the 

observed. Table 1 shows that while the CVE and 

CVR are very close for the two models, the model 

picked by AIC/AICc slightly outperforms the one 

picked by BIC and therefore we use that model for 

estimation. Figure 2 shows the fitted model for 

minimum temperature in Rafsanjan. 

 

Table 1. We compare the optimal model picked by AIC and AICc (first row) with the optimal model picked by BIC (second row) using cross 

validation error and cross-validated correlation. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig 2.The fitted model for minimum temperature.Circles denote the observed values and the continuous curve 

denotes the fit from the model 

 

 

Criterion Optimal Model: 푍  CVE CVR 

AIC and AICc 푠푖푛(휔푡), 푐표푠(휔푡) , … , 푠푖푛(6휔푡) , 푐표푠(6휔푡) , 푌 , 푡, 푡  2.691 0.9458 

BIC 푠푖푛(휔푡) , 푐표푠(휔푡) , 푌  2.696 0.9456 



Journal of Nuts, 3(2):45-52, 2012 

50 
 

APPLICATIONS IN FROST RISK 

ASSESSMENT 

Previous section found an optimal fit to the data 

from which estimating the probability of any 

desired (possibly complex) event is possible by 

performing multiple simulations. In order to find 

out the probability of frost in any given day during 

2011-2012, we have done 10000 simulations from 

the model for 2011-2012 and then for each day we 

have calculated the proportion of frost days 

(number of frost days divided by 10000). The 

results are plotted in Figure 1. As we pointed out in 

the introduction because the flowering time of 

different varieties of pistachios in Rafsanjan is 

generally between March 27th and April 20th, it is 

important to investigate the frost-occurrence during 

this period which we call the hazard period. Figure 

2 shows the distribution of the “number of frost 

days” during the hazard period of 2012, where the 

frequency out of 10000 of any “number of frost 

days” is plotted. We observe that while it is most 

likely that no frost occurrs in that period, there is a 

considerable probability that there is at least one 

frost. This estimated probability turns out to be 

about 9 percent which is a plausible number with 

our experience of pistachio damages caused by 

frosts in the past 20 years. 

In the above we estimated the probability of at least 

one frost “between March 27th to April 20th”, 

which turned out to be 0.088 (about 9 percent). 

This is an estimate of the “true probability” and our 

uncertainty in estimating this probability should be 

specified. Such an uncertainty is induced from the 

uncertainty in estimating the regression parameters 

of the model fitted to the data and therefore 

depends on the data available and the statistical 

model. In order to quantify this uncertainty, we 

calculate a confidence interval for the true 

probability as follows: (1) We sample a vector of 

parameters from the estimated variance-covariance 

matrix of the regression parameters; (2) For each 

vector of sampled parameters, we estimate the 

probability by simulations as outlined above. We 

repeat the above procedure 1000 times and 

therefore obtain 1000 estimated probabilities. Then 

to get a confidence interval, we calculate the 

0.025th and 0.975 quantities of the 1000 numbers. 

The 95 percent confidence interval for our data and 

model turned out to be (0.7, 0.11). 

 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Fig 3. Estimated daily frost probability for 2011-2012 from the 
model, obtained using 1000 simulations of future Weather. To 
create this Figure, we estimated the model parameters using  

available minimum temperature values from 1992 to 2010 and 
then we simulated the future weather 10000 times to estimate 

daily probabilities. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4.Distribution of frost days during the hazard period (March 
27th to April 20th 2012). This is based on 10000 simulations of the 
future chains for the model fitted to the available data from 1992 

to 2010. The probability of at least one frost based on this 
simulations is 0.0882 which is about 9 percent. 
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CONCLUSION 

This paper developed and compared several 

statistical models to estimate the probability of 

hazard frost events for pistachio industry in 

Rafsanjan. Despite the importance of such risk 

factors, no systematic estimation of these risks are 

available in this region as far as we know; this 

paper is one of the first attempts in developing 

methods that can assess such risks. Assessing the 

probabilities of the hazard events are useful in 

estimating the risk of investing in this industry 

from production to distribution and exporting. 

However here we have not investigated other risk 

factors such as: extremely high temperature during 

summer; heavy short-time rain during flowering 

period; slow but long rain during the flowering 

time. For future studies we plan to acquire the data 

for precipitation, maximum temperature and 

developing models that assess these other risk 

factors. 

Another important aspect of assessing the risk is 

relating the risk factors to the losses in yield or 

monetary values involved. For this study we relied 

on expert knowledge (by interviewing farmers and 

agriculture engineers) to define our hazard period. 

However if the data for yield per km2 become 

available for enough number of years and/or 

locations, one can develop a statistical model to 

relate the weather events to the losses in the yield 

in the same model. 

The methodology developed in this work can also 

be applied to other nuts and crops in various 

regions of the world. The model selection 

procedure needs to be repeated to find an 

appropriate model for different plants and regions. 

Moreover the critical period should be defined 

differently depending on the plant and region.  

From a statistical modeling point of view two 

important extensions of these models are subject of 

our future research. One is the assumption of 

gaussian errors in the autoregressive models and 

the other one is the assumption of fixed variance 

for the errors. Both these assumptions should be 

assessed and models that do not assume these two 

assumptions should be compared to the models 

developed here. However for those extensions 

standard statistical packages cannot be utilized and 

we plan to develop packages to estimate such 

models. 
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