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Abstract. In this work, we analyse a pair of two-dimensional coupled reaction-diffusion
equations known as the Gray-Scott model, in which spot patterns have been observed. We
focus on stationary patterns, and begin by deriving the asymptotic scaling of the parameters
and variables necessary for the analysis of these patterns. A complete numerical study of the
system is presented. We use backward Euler and Crank-Nicolson methods to study the model
1. We compute the error in L2 and L∞ norms and also the EOCS are calculated for each
method. The errors and the EOCs show that the methods converge with the correct order.
The main mathematical techniques employed in this analysis of the stationary patterns is
the Turing instability theory. This paper addresses the question of how population diffusion
affects the formation of the spatial patterns in the Gray-Scott model by Turing mechanisms.
In particular, we present a theoretical analysis of results of the numerical simulations in two
dimensions. We have observed the formation of spatial patterns during the evolution, which
are sparsely isolated ordered spot patterns that emerge in space. In this research we focuse
on three areas: first, the analytical analysis; second, the numerical analysis and third, the
application. We use these spatial patterns to understand the nature of population distribution
and to understand the mechanism of interaction of the populations.
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1. Introduction

Various spatial patterns have been observed in the physical world, such as stripe,
spot, mixture of both patterns on animal skins; spiral waves in the Belousov-
Zhabotinsky (BT) model, among many others. In 1952, Alan Turing [14] first pro-
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posed a simple mathematical model (reaction-diffusion system) to describe chem-
ical reaction and diffusion to account for morphogenesis, that is, how patterns
develope in biological systems. This study is the foundation of modern pattern for-
mation. In [14], Turing employed linear stability analysis to determine the thresh-
old for the instability of spatially homogeneous equilibrium solutions of general
two components reaction diffusion models. Turings original work has stimulated
numerous theoretical and numerical studies of reaction diffusion systems, which
focus on pattern formation from a spatially uniform state that is near the transi-
tion from linear stability to linear instability. In 1993, Pearson [9] observed that
for parameter values far from the Turing instability regime, the Gray-Scott model
in a two-dimensional spatial domain can exhibit a rich variety of spatio-temporal
patterns including, stationary spots, traveling spots, spot self-replication, spot-
annihilation, growing stripes, labyrinthian patterns , stripe filaments, and spatial-
temporal chaos, etc. The common feature in all of these patterns is that each
consists of two distinct states of solutions: some localized regions where the chemi-
cal concentrations are very large, and a background ambient spatially homogeneous
state. As time evolves, the localized regions of elevated chemical concentrations can
remain stable, or develop very complicated structures through drifting, splitting,
breaking, etc., driven by intricate and unknown mechanisms that depend on the
range of parameters in the reaction-diffusion model.
The dynamics of spontaneous spatial pattern formation, first introduced to biol-

ogy by Turing [14] five decades ago, has recently been attracting attention in many
subfields of biology to describe various phenomena. Spatial modelling today is a
leading scientific research area aiming at studying and understanding disease trans-
mission in space [14]. We want to use the spatial epidemic models to investigate the
dynamical behaviour of complex physical systems with relation to epidemic spread
[13]. In modelling the dynamics of infectious diseases a particular important role is
played by correct identification of the precise mechanism for a disease transmission
[4].
In epidemiology, one of the central goals of mathematical epidemiology is to

predict in populations how diseases transmit in space. For instance, the SARS
epidemic spread through 12 countries within a few weeks. The classical epidemic
SIR model describes the infection and recovery process in terms of three ordinary
differential equations for susceptibles (S), infected (I) and recovered (R), which has
been studied by many researchers [1–4, 6, 13] and the reference cited therein. These
systems depend mainly on two parameters, the infection rate and the recovery rate.
A growing body of work reports on the role of spatial patterns on evolutionary
processes in the host population structure [5, 7, 9, 10]. Projections of the spatial
spread of an epidemic and the interactions of human movement at multiple levels
with a response protocol will facilitate the assessment of policy alternatives.
In the last several decades, chemical kinetics has produced a variety of phe-

nomenon that have translated into challenging mathematical problems. A classical
example is seen in the waves of the Belousov-Zhabotinskii reaction. Other examples
have been produced that are not quite as complicated and require fewer species
interactions, but still yield very interesting behavior. One aspect of these systems
is that they do not involve thermal transfer as an essential part of the interac-
tion. Since the 1950s, fundamental studies in reaction kinetics have focused on
nonisothermal systems, i.e. where thermal feedback is a critical element. In 1968,
Selkov described a particular autocatalytic model of glycolysis. The version of this
model due to Gray and Scott is investigated below. Gray-Scott wanted to provide
the same foundation for isothermal autocatalytic systems, i.e. chemical feedback.
This model becomes the basis of our paper.
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In the paper by Pearson [13], very complicated patterns were described for a
parabolic system known as the Gray-Scott system. Pearson did a thorough numer-
ical study of the system and found a complex structure in the solutions. However,
Pearson used a simple integration scheme and left open the question regarding
numerical artifacts. We are able to confirm the results from Pearson and show that
more robust numerical schemes produce the same results. We also provide a bifur-
cation analysis giving the existence of non-uniform solutions for the steady state
problem, i.e. the elliptic system of Gray-Scott.

2. The Schnakenberg Reaction

A well studied reaction-diffusion equation is the Schnakenberg system
∂S

∂t
−∇2S = γ(a− S + S2I)

∂I

∂t
− d∇2I = γ(b− S2I) ,

Ω , t > t0 (1)

for the pair (S(x, t), I(x, t)), some real numbers a, b and d and to be completed
with appropriate initial conditions and boundary conditions. For concreteness, let
us choose homogeneous Neumann boundary conditions on all the boundary.
It is easily shown that the steady state values of (1) are

S∗ = a+ b, I∗ =
b

(a+ b)2
. (2)

A detailed linear stability can be found in [6] and the following borrows their
methods. Let f(S, I) and g(S, I) denote the RHS of the first and second equation
in (1) respectively. Then in the absence of diffusion the system is linearly stable
provided that

fS + gI < 0 and fSgI − fIgS > 0, (3)

where the derivatives are evaluated at the equilibrium point. With the addition
of diffusion the system can evolve to an inhomogeneous steady state. This phe-
nomenon is known as diffusion driven instability, or Turing instability after the
author who first described it in [14]. Let us consider a small perturbation from
the equilibrium and write it as S̃=S − Sc and Ĩ= I − Ic. Write ψ=(S̃, Ĩ). Then
linearising (1) we obtain

∂ψ

∂t
= γ

(
fS fI
gS gI

)
ψ +

(
1 0
0 d

)
∇2ψ (4)

This can be solved by separation of variables to yield

ψ(x, t) =
∑
k

cke
λtψk, (5)

where the ξk are the modes which solve the homogeneous Neumann problem

∇2ψk + k2ψk = 0. (6)
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These modes will decay with time unless their wavenumber k lies in the range

k2− < k2 < k2+, (7)

where

k± =
γ

2d

[
dfS + gI ±

√
(dfS + gI)

2 − 4dfSgI − fIgS

]
, (8)

and the derivatives are evaluated at equilibrium. Thus if we perturb the system
from equilibrium, under certain choices of parameters, we can expect exponential
growth of some modes which correspond to the linearly unstable modes of (5).

3. Numerical Solution

Due to the non-linearity, an analytical solution to (1) is not readily available. Thus
let us try to obtain a solution numerically, using the unit square as a simple domain.
To discretise space we use the finite element method, and we shall experiment with
a few time discretisation methods. The treatment of the non-linear terms were
always explicit - here we shall consider ways to treat the non-linear terms implicitly
thereby hopefully adding greater stability to the methods.
The choices a = 0.1, b = 0.9, d = 10 and γ = 29 will lead to diffusion driven

instability. The eigenmodes of (6) have the form cos(nπx) cos(mπy) for n,m ∈ Z.
The parameters chosen guarantee that the modes corresponding to n2 +m2 = 1
are linearly unstable.
Let Th be a mesh of the 2D unit square and call each node xi. With each xi

associate the pyramid function ϕi which is one on xi and zero everywhere else. Then
{ϕi} spans the space of piecewise linear polynomials on Th. Now, implementation
of FEM yields {

(1 + γ)M Ṡ+AS− γB(S, I)S = γa1ϕ

M İ+ dAI+ γB(S,S)I = γb1ϕ
(9)

where the matrices A and M are the matrices with entries

aij =

∫
Ω
∇ϕi ·∇ϕj dx, mij =

∫
Ω
ϕiϕj dx. (10)

1ϕ is the column matrix with j-th entry ϕj and, given some vectors a and b, B(a,b)
is the matrix matrices with entries

Bij =

Nh∑
k=1

Nh∑
l=1

akbl

∫
Ω
ϕkϕlϕiϕj dx. (11)

It is readily checked that given a third vector c, the matrix B satisfies

B(a,b)c = B(a, c)b = B(c,b)a. (12)

Equation (9) does not yet lend itself to a numerical solution. First, it still con-
tinuous with respect to time. Second, the nonlinearity in the matrix B does not
allow a solution to be gained by “simple” inversion. There are a number of ways
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to discretise in time. We will consider the backward Euler, Crank-Nicholson, and
the multi-step θ method. Define

G1(S, I) = AS+ γMS− γB(S, I)S− γa1ϕ (13)

G2(S, I) = dAI+ γB(S,S)I− γb1ϕ (14)

Using the uniform step size ∆t, using the backward Euler method we solve at the
(n+1)-th timestep 

Sn+1 − Sn

∆t
+G1(S

n+1, In+1) = 0

In+1 − In

∆t
+G2(S

n+1, In+1) = 0

(15)

The backward Euler is first order convergent. For Crank-Nicholson we solve
Sn+1 − Sn

∆t
+

1

2

[
G1(S

n+1, In+1 +G1(S
n, In)

]
= 0

In+1 − In

∆t
+

1

2

[
G2(S

n+1, In+1) +G2(S
n, In)

]
= 0

(16)

The Crank-Nicholson method is second order convergent.
In this problem it is natural to split the operatorsG1 andG2 into their linear and

non-linear parts. The multistep θ-method divides each timestep into three unequal
portions and allows us solve the linear and non-linear parts separately. Thus, we
first solve 

Sn+θ − Sn

θ∆t
+ASn+θ + γMSn+θ = γa1ϕ + γB(Sn, In)Sn

In+θ − In

θ∆t
+ dAIn+θ = γb1ϕ − γB(Sn, In)Sn

(17)

then
Sn+1−θ − Sn+θ

(1− 2θ)∆t
− γB(Sn+1−θ, In+1−θ)Sn+1−θ = γa1ϕ −ASn+θ − γMSn+θ

In+1−θ − In+θ

(1− 2θ)∆t
+ γB(Sn+1−θ, In+1−θ)Sn+1−θ = γb1ϕ − dASn+θ

(18)
and finally

Sn+1 − Sn+1−θ

θ∆t
+ASn+1 + γMSn+1 = γa1ϕ + γB(Sn+1−θ, In+1−θ)Sn+1−θ

In+1 − In+1−θ

θ∆t
+ dAIn+1 = γb1ϕ − γB(Sn+1−θ, In+1−θ)Sn+1−θ

(19)
The first and third step the non-linear term is treated explicitly and the linear terms
implicitly, whilst in the second step it is the other way around. For θ=1− 1√

2
this

method is second order convergent.
To deal with the non-linearity, we shall use Picard iteration and the Newton-

Raphson method which are both iterative techniques. For ease, we shall illustrate
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their use on the backward Euler formula (15) only. At the (n+1)-th timestep, the
(k+1)-th Picard iterate of (15) is the solution of


[(

1

∆t
+ γ

)
M +A− γB(Sn+1

k , In+1
k )

]
Sn+1
k+1 = γa1ϕ +

1

∆t
MSn

[
1

∆t
M + dA+ γB(Sn+1

k ,Sn+1
k )

]
In+1
k+1 = γb1ϕ +

1

∆t
MIn

. (20)

Alternatively, we may use the Newton-Raphson method. Taking everything to
the RHS of (15), define

F1(S
n+1, In+1) =[(

1

∆t
+ γ

)
M +A− γB(Sn+1, In+1)

]
Sn+1 − γa1ϕ − 1

∆t
MSn (21)

F2(S
n+1, In+1) =[

1

∆t
M + dA+ γB(Sn+1,Sn+1)

]
In+1 − γb1ϕ − 1

∆t
MIn . (22)

The (k+1)-th Newton-Raphson iterate is the solution of

JFi
(Sn+1

k , In+1
k )

(
Sn+1
k+1 − Sn+1

k , In+1
k+1 − In+1

k

)
= −Fi(S

n+1
k , In+1

k ) i = 1, 2 , (23)

where JFi
is the Jacobian matrix and the column vector

(
Sn+1
k+1−Sn+1

k , In+1
k+1−In+1

k

)
is understood to be the vertical concatenation of the first and second arguements.
Using property (12) of the matrix B we have for some vector ξ the derivative

∂F1(S
n+1
k , In+1

k )

∂Sn+1
ξ := lim

h→0

F1(S
n+1
k + hξ, In+1

k )− F1(S
n+1
k , In+1

k )

h

=

[( 1

∆t
+ γ

)
M +A− 2γB(Sn+1

k , In+1
k )

]
ξ (24)

Similarly we have,

∂F1(S
n+1
k , In+1

k )

∂In+1
ξ = −γB(Sn+1

k ,Sn+1
k )ξ (25)

∂F2(S
n+1
k , In+1

k )

∂Sn+1
ξ = 2γB(Sn+1

k , In+1
k )ξ (26)

∂F2(S
n+1
k , In+1

k )

∂In+1
ξ =

[
1

∆t
M + dA+ γB(Sn+1

k ,Sn+1
k )

]
ξ. (27)

Thus, at the (n+1)-th timestep the (k+1)-th Newton iterate (23) is the solution
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of the system[(
1

∆t
+ γ

)
M +A− 2γB(Sn+1

k , In+1
k )

]
Sn+1
k+1 − γB(Sn+1

k ,Sn+1
k )In+1

k+1

= −2γB(Sn+1
k , In+1

k )Sn+1
k + γa1ϕ +

1

∆t
MSn

(28a)

[
1

∆t
M + dA+ γB(Sn+1

k ,Sn+1
k )

]
In+1
k+1 + 2γB(Sn+1

k , In+1
k )Sn+1

k+1

= 2γB(Sn+1
k ,Sn+1

k )In+1
k + γb1ϕ +

1

∆t
MIn .

(28b)

We expect the system to reach a spatially inhomogeneous steady state which
suggests a suitable stopping criterion to be

||Sn+1 − Sn||2
∆t

and
||In+1 − In||2

∆t
⩽ ϵ, (29)

for some small number ϵ and where || · || denotes the L2 norm.

Noteworthy: The matrix B is not a sparse matrix, it is a full matrix and it
contributes more to the error of the discrete solution. But with the scheme described
above, we can reduce the error by refining the discrete solution and adapting the
time step and Newton-Raphson to linearize the terms the constitute the matrix
B. If we don’t do the above, the matrix B may cause instability and may cause
convergence problems.

Experimental Order of Convergence

Define

ϕ(x, y, t) =

(
x3

3
− x2

2

)(
y3

3
− y2

2

)(
1 + et

)
. (30)

Then S = I = ϕ does not satisfy the Shnackenberg system, but it is the exact
solution to the modified equation

∂S

∂t
−∇2S − γ(−S + S2I) = ϕt − (ϕxx + ϕyy)− γ(−ϕ+ ϕ3)

∂I

∂t
− d∇2I − γ(b− S2I) = ϕt − d(ϕxx + ϕyy)− γϕ3) ,

Ω , t > t0

(31)
with homogeneous Neumann conditions and initial condition

S0 = I0 = 2

(
x3

3
− x2

2

)(
y3

3
− y2

2

)
. (32)

It is easily seen that the both variables tend to the inhomogeneous steady u0

2 .
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If we now solve (31) using our different time-step methods we can calculate the
error from the exact solution ϕ at each timestep. This was done using five different
timesteps (∆t)i = 2−i, i = 1, 2, 3, 4, 5 for the time interval t ∈ [0, 5].
A measure of the error from the exact solution at the (n+1)-th timestep is given

by

Sn+1
err = ||Sn+1 − ϕ(t = tn+1)||2, (33)

and a measure of the total error committed for a particular timestep is given by

Serr,i =
∑
m

(∆t)i
Sm+1
err + Sm

err

2
, (34)

which is the area under the graph of a t-Serr plot. Similar quantities may be defined
for the I variable.
If we approximate the error as Serr ∼ ce(∆t)i , for some constant c, then we may

approximate the order of convergence by

EOC =
log(Serr,i)− log(Serr,i−1)

log((∆t)i)− log((∆t)i−1)
, i > 1. (35)

Euler’s method:

level h L2-Error L2-EOC L∞-Error L∞-EOC
1.00000 0.50000 2.25086e-01 1.04378 1.12543e-01 0.93338
2.00000 0.25000 1.09179e-01 1.07624 2.72948e-02 0.96584
3.00000 0.12500 5.17796e-02 1.11317 6.47244e-03 1.00277
4.00000 0.06250 2.39366e-02 1.13786 1.49604e-03 1.04746
5.00000 0.03125 1.07278e-02 1.15294 3.35244e-04 1.10554
6.00000 0.01562 4.61824e-03 1.21863 7.21600e-05 1.11823
7.00000 0.00781 1.87737e-03 1.23246 1.46669e-05 1.13220
8.00000 0.00391 6.95563e-04 1.34018 2.71704e-06 1.19142
9.00000 0.00195 2.13815e-04 1.35597 4.17608e-07 1.21557

Table 1. The L2, H1, L∞ errors and their EOCs for γ = 10, a = 0.1, b = 0.9, using backward Euler’s scheme.

Crank Nicolson method:

level h L2-Error L2-EOC L∞-Error L∞-EOC
1.00000 0.02500 1.12543e-02 2.04378 2.81358e-04 2.09333
2.00000 0.01250 5.45896e-03 2.07624 6.82370e-05 2.09658
3.00000 0.00625 2.58898e-03 2.11317 1.61811e-05 2.09977
4.00000 0.00313 1.19683e-03 2.15786 3.74009e-06 2.10446
5.00000 0.00156 5.36391e-04 2.16594 8.38111e-07 2.10554
6.00000 0.00078 2.30912e-04 2.18633 1.80400e-07 2.11823
7.00000 0.00039 9.38684e-05 2.19246 3.66674e-08 2.13220
8.00000 0.00020 3.47781e-05 2.19501 6.79260e-09 2.15914
9.00000 0.00010 5.06908e-06 2.19797 1.04402e-09 2.15255

Table 2. The L2, L∞ errors and their EOCs for γ = 10, a = 0.1, b = 0.9, using Crank-Nicolson scheme.
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Figure 1. Time evolution corresponding to γ = 10, this is the initial solutions of 1 for a = 0.1, b = 0.9.
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Figure 2. Time evolution corresponding to γ = 20, this shows sparse spotted pattern for a = 0.1, b = 0.9.
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Figure 3. Time evolution corresponding to γ = 50, spotted pattern for the system 1 for a = 0.1, b = 0.9.
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Figure 4. Time evolution corresponding to γ = 100, fully matured spot patterns of 1 for a = 0.1, b = 0.9.
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The biological meaning of spot patterns can be varied depending on what is mod-
elled. For instance, pattern formation from epidemic modelling can be described
as follows. First, change in color from blue to red means from low concentrations
(densities) to high concentrations (densities) of the population. Red spots (peaks)
on blue background means the individuals are isolated zones and disconnected with
high densities and the blue area which has low densities is larger to the red spots
area. Therefore, from epidemic point of view this area is safe. In the other hand,
blue spots (troughs) on a red background means the individuals are isolated zones
with low densities and remaining area is of high densities which bigger than the
spots area. This area is not safe.

4. Conclusions and Discusion

In this paper we have considered two numerical schemes for solving the Gray-Scott
model. The non-linearity was handled implicitly using Newton-Raphson method.
We presented the numerical results in tables 1 and 2. We computed the error in L2

and L∞ norms and the experimental order of convergence (EOC) for each scheme
in the corresponding norms. The backward Euler converged with EOC of about
one (order one convergence) and Crank-Nicolson converged with order two (EOC
of about two) and this agreed well with the theory. The most important part of
this paper are the combination of both analytical and numerical results and using
two different numerical methods to solve the model. Both two methods showed
interesting results, see tables 1 and 2 for details.
In the second part of this paper, we studied spatial patterns using the back-

ward Euler’s method. The Gray-Scott model 1 was investigated and was shown to
generate spot patterns using implicit numerical methods and standard bifurcation
analysis. Future work on these equations is directed at understanding the exact
onset of the nonuniform solutions as a function of some bifurcation parameter. It
would also be interesting to understand exactly how certain modes establish overall
patterns and know how stable these are with respect to perturbations. We numer-
ically solved the system using the above derived schemes in matlab. In this paper,
we found spot patterns in the spatial Gray-Scott model driven by the diffusion.
From the analysis of the Turing space and numerical simulations one can see that
the attracting positive equilibrium will produce instability driven by the diffusion
and the instability leads to the spot patterns within the Turing space. This may
explain the prevalence of disease in large-scale geophysics. The positive equilibrium
is stable in the non-spatial models, but it may lose its stability with respect to per-
turbations of certain wavenumbers and converge to heterogeneous distributions of
populations.
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