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Abstract. By using the trigonometric uniform splines of order 3 with a real tension factor,
a numerical method is developed for solving a linear second order boundary value prob-
lems (2VBP) with Dirichlet, Neumann and Cauchy types boundary conditions. The moment
at the knots is approximated by central finite-difference method. The order of convergence
of the method and the theory is illustrated by solving test examples. Experimental results
demonstrate that our method is more effective for the problems where the exact solution is
trigonometric or hyperbolic.
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1. Introduction

In this paper, where the second derivative is approximated by the three-point
central difference scheme, and where we need to build an approximate equation for
each type of boundary condition, we study a method based on the trigonometric
B-splines of order 3 (lower order) with a tension factor ρ for constructing numerical
solutions to second-order boundary value problems (2BVPs) of the form:

y(2)(θ) + f(θ)y′(θ) + g(θ)y(θ) = p(θ), (1)
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subject to the three boundary conditions:

Dirichlet : y(a) = a0, y(b) = b0, (2)

Neumann : y′(a) = a1, y′(b) = b1, (3)

Cauchy : y(a) = a0, y′(b) = b1, (4)

where f(θ), g(θ) and p(θ)) are given continuous functions defined in the bounded
interval [a, b], ai and bi, i = 0, 1 are real constants.
In many engineering applications including the study of beam deflections, heat
flow, and various dynamic systems, we need solving the second order two-point
boundary value problems. Much attention have been given to solve the second-
order boundary value problems (2VBP) with Dirichlet, Neumann and Cauchy
types boundary conditions, which have application in various branches of applied
sciences. These problems are generally arise in the mathematical modeling of
viscoelastic flows [10]. A spline has been widely applied for the numerical solutions
of some ordinary and partial differential equations in the numerical analysis
[5, 7, 16]. Many authors have used numerical and approximate methods to solve
second and third BVPs. Recently in [19] M.M. Rahman et al. solved linear
differential equation numerically by Galerkin method with Hermite polynomial
as trial functions. Lima and Carpentier in [18] obtained a Numerical solution of
a singular boundary value problem in non-Newtonien fluid mechanics. Feng and
Li in [13] solved a second order Neumann boundary value problem with singular
nonlinearity for exact three positive solutions. In a series of paper by Dabounou
et al. [8, 9] BVPs of order fourth and sixth were solved using third, and fourth
order hyperbolic splines. The numerical solution of the boundary value problem
by splines interpolation and quasi-interpolation has been considered by many
authors; see, [14–17] for example, and the references given in these papers. Despite
the importance of the trigonometric and hyperbolic B-splines, little attention has
been paid to developing efficient numerical methods based on these B-splines for
solving the boundary value problem, except those of Refs. [8, 9, 12] for special
cases. This motivates us to use trigonometric B-splines(tension) of order 3 (lower
order) to solve these problems. We apply tension trigonometric B-splines of order
3 to develop a new numerical method for obtaining efficient approximations to the
solution of boundary value problem. The new method is of order first for arbitrary
a real tension factor ρ > 0.

The paper has been arranged in the following way. In Section 2, we give a ex-
plicit representation of trigonometric B-splines(tension) of order 3. The interpola-
tion trigonometric B-splines is developed in Section 3. Solutions of (2VBP) with
Dirichlet, Neumann and Cauchy types boundary conditions are presented in Sec-
tion 4. To illustrate our algorithm, numerical examples with various values of a
real tension factor ρ are presented in Section 5.

2. Explicit Representation of Trigonometric B-Splines (Tension) of Order 3

To develop the numerical solutions based on trigonometric B-splines (tension) of
order 3 for the solution of second order linear Dirichlet, Neumann and Cauchy
boundary value problem equations, let k one intergre such that k ⩾ 1. Let nk =
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3.2k + 2 and hk = b−a
nk−2 . We consider a general uniform mesh θk−2 = θk−1 = θk0 = a,

θki = a+ ihk, i = 1...nk − 3,
θknk−2 = θknk−1 = θnk

= b,
(5)

We introduce the trigonometric (tension) splines space of order 3 is defined as
follows

Vk = {s ∈ C1(I) : s[θk
i ,θ

k
i+1]

∈ Γ3} where Γ3 = span{1, cos(ρθ), sin(ρθ)}.

where ρ is a positif real tension factor (ρ > 0).
The dimension of Vk is nk and we denote by ϕi,k, i = 0, 1, ..., nk−5, the third-order
trigonometric (tension) B-splines:

ϕi,k(θ) = Ck


−1 + cos(ρ(θ − θki )), θ ∈ [θki , θ

k
i+1[;

2(cos(ρhk)− cos(ρhk

2 ) cos(ρ(θki+1 +
hk

2 − θ)), θ ∈ [θki+1, θ
k
i+2[;

−1 + cos(ρ(θ − θki+3)), θ ∈ [θki+2, θ
k
i+3[;

0, otherwise.

The respective left and right hand side boundary trigonometric B-splines are

ϕ−2,k(θ) = Ck

{
2(−1 + cos(ρ(hk − θ + a))), θ ∈ [θk0 , θ

k
1 [;

0, otherwise.

ϕ−1,k(θ) = Ck

1 + 2 cos(ρhk)− 2 cos(ρ(a+ hk − θ))− cos(ρ(−a+ θ)), θ ∈ [θk0 , θ
k
1 [;

−1 + cos(ρ(a+ 2hk − θ)), θ ∈ [θk1 , θ
k
2 [;

0, otherwise.

ϕnk−4,k(θ) = Ck

−1 + cos(ρ(b− 2hk − θ)), θ ∈ [θknk−4, θ
k
nk−3[;

1 + 2 cos(ρhk)− cos(ρ(b− θ))− 2 cos(ρ(b− hk − θ)), θ ∈ [θknk−3, θ
k
nk−2[;

0, otherwise.

ϕnk−3,k(θ) = Ck

{
2(−1 + cos(ρ(b− hk − θ))), θ ∈ [θknk−3, θ

k
nk−2[;

0, otherwise.

where Ck = 1
2(−1+cos(ρhk))

.

The trigonometric B-splines(tension) of order 3 possess all the desirable proper-
ties of classical polynomial B-splines, see [20]. In this paper, we limit ourselves to
list some of them

• ϕi,k(θ) is supported on the interval [θki , θ
k
i+1];

• Positivity : ϕi,k(θ) ⩾ 0, ∀θ ∈ [θki , θ
k
i+1];

• Partition of unity:

nk−3∑
i=−2

ϕi,k(θ) = 1.

Table 1. The values of ϕi,k(θ) and ϕ
′
i,k(θ) at the knots

θki θki+1 θki+2 θki+3 else

ϕi,k(θ) 0 1
2

1
2

0 0

ϕ
′
i,k(θ) 0 ρ

2 tan(ρ
hk
2

)

−ρ

2 tan(ρ
hk
2

)
0 0
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3. Trigonometric Interpolation Method

The key point of the discretization of our scheme is how to get an approximate
formula of y(2)(θkj ) and y′(θkj ) by using Taylor series expansion.
According to Schoenberg-Whitney theorem (see [11]), for a given function y(θ)

sufficiently smooth there exists a unique trigonometric spline

s(θ) =

nk−3∑
i=−2

µiϕi,k(θ) ∈ Vk

satisfying the interpolation conditions:

s(θkj ) = y(θkj ), j = 0, 1, · · · , nk − 3; (6)

s′(a) = y′(a), s′(b) = y′(b). (7)

For j = 0, 1, · · · , nk − 3, let mj = s′(θkj ) and for j = 0, 1, · · · , nk − 3, let Mj the

approximate moment at the knot θkj , setting :

Mj =
s(θkj + hk)− 2s(θkj ) + s(θkj − hk)

h2k
.

By using the Taylor series expansion we have:

mj = s
′
(θkj ) = y

′
(θkj )−

1

180
h4ky

(5)(θkj ) +O(h6k); (8)

Mj = y
′′
(θkj ) +

1

12
h2ky

(4)(θkj ) +
1

360
h4ky

(6)(θkj ) +O(h6k); (9)

By Table 1 and this equations, we get:

Table 2. The approximation values of y(θk
j ), y

′
(θk

j ) and y
′′
(θk

j ).

y(θkj ) y
′
(θkj ) y

′′
(θkj )

Approximate value s(θkj ) mj Mj

Representation in µj
µj−1+µj−2

2

ρ(µj−1−µj−2)

2 tan(ρ
hk
2

)

µj−3−µj−2−µj−1+µj

2h2
k

Error order O(h4
k) O(h4

k) O(h2
k)

4. Formulation of 2 BVP in Matrix form

In this section, we study a method based on trigonometric (tension) B-splines of order 3
for constructing numerical solutions to linear Dirichlet, Neumann and Cauchy boundary
value problem 2 BVP of the form (1).
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4.1 Trigonometric (Tension) Solution with Dirichlet Boundary Condition

We define a trigonometric (tension) spline interpolant s(θ) =

nk−3∑
i=−2

µiϕi,k(θ) satisfying

boundary conditions (2.2) and s̃(θ) =

nk−3∑
i=−2

µ̃iϕi,k(θ) be the approximate spline of s(θ). To

do this we discretize (1) at θkj for j = 1, 2, · · · , nk − 3, we get the spline approximation as :

y(2)(θkj ) + f(θkj )y
′(θkj ) + g(θkj )y(θ

k
j ) = p(θkj ), j = 1, 2, · · · , nk − 3. (10)

Substituting y(2)(θkj ), y
′(θkj ) and y(θkj ) in equation (10) and using the following notations:

fj = f(θkj ), gj = g(θkj ) and pj = p(θkj ),

we arrive at the following linear system :

µj−3 − µj−2 − µj−1 + µj

2h2
k

+ fj
ρ(µj−1 − µj−2)

2 tan(ρhk

2 )
+ gj

µj−1 + µj−2

2
= pj +O(h2

k) (11)

Consequently,

(µj−3 − µj−2 − µj−1 + µj) + αj,k(µj−1 − µj−2) + βj,k(µj−1 + µj−2) = γj,k + ξk. (12)

Where αj,k = fj
ρh2

k

tan(ρ
hk
2 )

, βj,k = gjh
2
k, γj,k = 2h2

kpj , and ξk = O(2h4
k).

By dropping ξk from (12), we yield a linear system with nk − 3 linear equations in nk

unknowns µj , j = −2,−1, · · · , nk − 3. So three more equations are needed.
On the other hand, by using the Dirichlet boundary conditions (2), we get{

y(a) = a0;
y(b) = b0.

Thus,

{
µ−2 = a0;
µnk−3 = b0.

(13)

To obtain unique solution we propose the following formula

y
′

j−1 + 4y
′

j + y
′

j+1 =
3

hk
(yj+1 − yj−1) +O(h4

k) (14)

which can be easily demonstrated using a Taylor series expansion.
Combining the scheme (14) with Table 2, we can construct an approximate formulae for
y(2)(a), as follows

y(2)(a) = −4M1 −M2 +
3

hk
(m2 −m0) +O(h4

k). (15)

For smaller hk, we have tan(
hk

2 ) ∼ hk

2 and by turning (15) the coefficients are determined
as follows

(2µ−2 − 3µ−1 − µ0 + 3µ1 − µ2) + 2hkf0(µ−1 − µ−2) = 2h2
k(p0 − g0a0) +O(h4

k) (16)

Take (12) and (16), we get nk − 2 linear equations with µi, i = −1, 0, · · · , nk − 5, nk − 4,
as unknowns since µ−2, and µnk−3 have been yielded from (13).

Let C = [µ−1, µ0, · · · , µnk−5, µnk−4]
T , C̃ = [µ̃−1, µ̃0, · · · , µ̃nk−5, µ̃nk−4]

T , D =
[d1, d2, · · · , dnk−2]

T , E = [e1, e2, · · · , enk−2]
T . We can write our method in matrix form

as :

(A1 + λkA2F + h2
kBG)C = D + E; (17)

(A1 + λkA2F + h2
kBG)C̃ = D, (18)

with

λk =
ρh2

k

tan(ρhk

2 )
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and where A1 and A2 are the following (nk − 2)× (nk − 2) matrix:

A1 =



-3 -1 3 -1
-1 -1 1 0
1 -1 -1 1
· · · · · · · · · · · ·

· · · · · · · · · · · ·
1 -1 -1 1

1 -1 -1 1
1 -1 -1


, A2 =



1 0
-1 1

-1 1
· · · · · · · · · · · ·

· · · · · · · · · · · ·
-1 1

-1 1
-1 1


and where F ,G, B and D are the following matrix

F =


f0

f1
f2

. . .
fnk−3

, G =


0
g1

g2
. . .

gnk−3

, B =



0 0
1 1
1 1

. . .
1 1
1 1

 ,

D =



γ0,k − 2β0,ka0 + 2hkf0µ−2 − 2µ−2

γ1,k − µ−2

γ2,k
...

γnk−4,k

γnk−3,k − µnk−3


and ei = O(2h4

k), i = 1, 2, · · · , nk − 2.
After solving the linear system (28), µ̃i, i = −1, 0, · · · , , nk − 5, , nk − 4, µ̃−2 = µ−2,

and µ̃nk−3 = µnk−3 will be used together to get the approximation spline solution s̃(θ) =
nk−3∑
i=−2

µ̃iϕi,k(θ).

4.2 Trigonometric (Tension) Solution with Neumann Boundary Condition

Proceeding as above and by using Neumann boundary condition (3) we get:

{
y′(a) = a1;
y′(b) = b1.

Thus,

µ−1 − µ−2 =
2a1 tan(ρ

hk
2 )

ρ ;

µnk−3 − µnk−4 =
2b1 tan(ρ

hk
2 )

ρ .
(19)

We have also by using (14)

y(2)(a) =
1

hk
(m1 + 2a1)−

3

2h2
k

(s(a+ hk)− s(a)) +O(h4
k) (20)

For smaller hk, we have tan(hk

2 ) ∼ hk

2 and by turning (20) the coefficients are determined
as follows

(3µ−2 − 4µ−1 + µ0 + 8hka1) + 2h2
kg0(µ−1 + µ−2) = 4h2

k(p0 − f0a1) +O(h4
k) (21)

Take (12),(16) and (24), we yield:

(A1 + λkA2F + h2
kBG)C = D + E; (22)

(A1 + λkA2F + h2
kBG)C̃ = D, (23)

where A1 and A2 are the following nk × nk matrix:
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A1 =



-1 1
3 -4 1
1 -1 -1 1
· · · · · · · · · · · ·

· · · · · · · · · · · ·
1 -1 -1 1

-1 1

 , A2 =



0 0
0 0
0 -1 1
· · · · · · · · · · · ·

· · · · · · · · · · · ·
-1 1 0

0 0


and where F , G ,B ,C̃ and D are the following matrix

F =



0
0
f1

. . .
fnk−3

0

, G =



0
g0

g1
. . .

gnk−3

0

, B =



0 0
2 2
1 1
1 1
. . .

1 1
1 1
0 0


,

C̃ = [µ̃−2, µ̃−1, · · · , µ̃nk−5, µ̃nk−4, µ̃nk−3]
T ,

D =



2a1 tan(ρ
hk
2 )

ρ

2γ0,k − 4h2
kf0a1 − 8a1hk

γ1,k
...

γnk−3,k

2b1 tan(ρ
hk
2 )

ρ



4.3 Trigonometric (Tension) Solution with Cauchy Boundary Condition

Using similar techniques as in above section and by transforming the Cauchy boundary
condition (4). One can obtain the following results.{

y(a) = a0;
y′(b) = b1.

Thus,

{
µ−2 = a0;

µnk−3 − µnk−4 =
2b1 tan(ρ

hk
2 )

ρ .
(24)

We have also by using (14)

y(2)(a) =
1

hk
(m1 + 2m0)−

3

2h2
k

(s(a+ hk)− a0) +O(h4
k) (25)

For smaller hk, we have tan(hk

2 ) ∼ hk

2 and by turning (25) the coefficients can be deter-
mined by using the relation

(−2µ−2 + µ−1 + µ0) + 2λkf0(µ−1 − µ−2) = 4h2
k(p0 − g0a0) +O(h4

k) (26)

Take (12),(24) and (26), we yield :

(A1 + λkA2F + h2
kBG)C = D + E; (27)

(A1 + λkA2F + h2
kBG)C̃ = D, (28)

where A1 and A2 are the following (nk − 1)× (nk − 1) matrix:

A1 =



1 1
-1 -1 1
1 -1 -1 1
· · · · · · · · · · · ·

· · · · · · · · · · · ·
1 -1 -1 1

-1 1

 , A2 =



2 0
-1 1
0 -1 1
· · · · · · · · · · · ·

· · · · · · · · · · · ·
-1 1 0

0 0


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and where F , G ,B ,C̃ and D are the following matrix

F =


f0

f1
. . .

fnk−3

0

, G =


0
g1

. . .
gnk−3

0

, B =



0 0
1 1
1 1
. . .

1 1
1 1
0 0


,

C̃ = [µ̃−1, µ̃0, · · · , µ̃nk−5, µ̃nk−4, µ̃nk−3]
T ,

D =


2γ0,k − 4h2

kg0a0 + 2λkf0a0 + 2a0
γ1,k
...

γnk−3,k

2b1 tan(ρ
hk
2 )

ρ



5. Numerical Examples

To justify the accuracy and efficiency of our presented method and compare our computed
results we consider the following examples. The solution of the given examples is obtained
for different values of k and ρ. The error solution E = |y−s|∞ where y is the exact solution
and s is the approximated solution spline of boundary value problem equation which is
given by the suggested method.

Example 5.1 We consider the following Dirichlet boundary-value problem{
d2y/dx2 − y(x) = 0, x ∈ [0, 1];
y(0) = 0, y(1) = sinh(x).

(29)

The exact solution is y(x) = sinh(x).
The numerical results for different values of k and ρ are presented in the Table 3.

Table 3. Maximum absolute error for Problem (29).

k Error for ρ = 10−2 Error for ρ = 1

3 4.958e-003 4.958e-003

4 2.494e-003 2.494e-003

5 1.250e-003 1.250e-003

6 6.262e-004 6.262e-004
7 3.131e-004 3.133e-004

8 1.547e-004 1.567e-004

9 7.620e-005 7.837e-005

Example 5.2 We consider the following Dirichlet boundary-value problem{
y(2)(x)− y(x) = −2exp(x), x ∈ [0, 1];
y(0) = 1, y(1) = 0.

(30)

The exact solution is y(x) = (1− x) exp(x).
We found the following results for different values of k and ρ (Table 4).
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Table 4. Maximum absolute error and Order of convergence for Problem (30).

k Error for ρ = 10−3 Error for ρ = 1 Order of convergence for ρ = 1

3 2.475e-002 2.475e-002 1.1087

4 1.246e-002 1.246e-002 1.0536

5 6.256e-002 6.256e-003 1.0276

6 3.133e-003 3.133e-003 1.0136

7 1.595e-003 1.568e-003 1.0070

8 7.303e-004 7.843e-004 1.0036

9 6.082e-004 3.922e-004

Example 5.3 We consider the following Dirichlet boundary-value problem{
d2y/dx2 − dy/dx = − exp(x− 1)− 1, x ∈ [0, 1];
y(0) = y(1) = 0.

(31)

The exact solution is y(x) = x(1− exp(x− 1)).
Result has been shown for different values of k and with various values of tension factor ρ
in Table 5.

Table 5. Maximum absolute error for Problem (31).

k Error for ρ = 10−4 Error for ρ = 1

3 1.018e-002 1.018e-002

4 5.185e-003 5.190e-003

5 2.599e-003 2.620e-003

6 1.477e-003 1.316e-003

7 7.828e-004 6.597e-004

8 3.302e-004 3.302e-004

9 1.605e-004 1.652e-004

Example 5.4 Consider the following Neumann boundary-value problem discussed in [19].{
y(2)(x) + y(x) = cos(x), x ∈ [0, 5];
y′(0) = 0, y′(5) = 0.

(32)

for which the exact solution is

y(x) =
(−6 cos2(5) + 2 + 10 cot(5) sin(10) + 2 cos(10)) cos(x)

4
+

2 cos3(x) + 2x sin(x) + sin(x) sin(2x)

4
.

The observed maximum errors in absolute values computed at various points of the
interval [0, 5], for problem (32), and the convergence order are summarized in Table 6.

Example 5.5 We consider the following Neumann boundary-value problem discussed in
[19]. {

y(2)(x) + y(x) = x2 exp(−x), x ∈ [0, 10];
y′(0) = 0, y′(10) = 0.

(33)

The exact solution is y(x) = − cos(10)+99 exp(−10)
2 sin(10) cos(x)− sin(x)

2 + exp(−x)(1−x)2

2 .

Result has been shown for different values of k and with various values of ρ in Table 8.
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Table 6. Maximum absolute error and Order of convergence for Problem (32).

k Error for ρ = 10−4 Error for ρ = 1 Order of convergence for ρ = 1

3 2.531e-001 2.531e-001 0.9725

4 1.340e-001 1.340e-001 0.9768

5 6.944e-002 6.944e-002 0.9862

6 3.541e-002 3.541e-002 0.9924

7 1.805e-002 1.789e-002 0.9960

8 9.072e-003 8.993e-003 0.9978

9 8.553e-003 4.509e-003

Table 7. Error in Galerkin method developed in [19] for Problem (32).

x Maximum absolute error for n = 12

0.1 6.7277e-001

0.2 2.1316e+000

0.3 1.3334e+001

0.4 4.8501e+000

0.5 2.5722e+000

Table 8. Maximum absolute error for Problem (33).

k Error for ρ = 10−3 Error for ρ = 1

3 2.062e-001 2.062e-001

4 1.478e-001 1.478e-001

5 9.614e-002 9.614e-002

6 5.700e-002 5.700e-002

7 3.149e-002 3.149e-002

8 1.663e-002 1.663e-002

9 8.557e-003 8.558e-003

Table 9. Error in Galerkin method developed in [19] for Problem (33).

x Maximum absolute error for n = 12

0.1 1.5213e+000

0.2 8.9251e-002

0.3 2.8328e-001

0.4 3.8058e-001

0.5 3.0792e-001

Example 5.6 We consider the following Cauchy boundary-value problem{
y(2)(x) + xy(x) = −(x3 + 3x) exp(x), x ∈ [0, 1];
y(0) = 0, y′(1) = −exp(1).

(34)

The exact solution is y(x) = (−x2 + x) exp(x).
In Table 10, we give the corresponding errors for different values of k and ρ and the
computed convergence orders.

Example 5.7 We consider the following Cauchy boundary-value problem{
y(2)(x)− 2y(x) = 2(1 + tan2(x)), x ∈ [0, 1];
y(0) = 0, y′(1) = tan(1).

(35)
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Table 10. Maximum absolute error and Order of convergence for Problem (34).

k Error for ρ = 10−2 Error for ρ = 1 Order of convergence for ρ = 1

3 2.714e-002 2.715e-002 1.0311

4 1.434e-002 1.434e-002 0.9966

5 7.473e-003 7.473e-003 0.9940

6 3.828e-003 3.828e-003 0.9960

7 1.939e-003 1.939e-003 0.9973

8 9.757e-004 9.763e-004 0.9988

9 4.909e-004 4.898e-004

The exact solution is y(x) = (x− 1) tan(x).
The results for different values of k and with various values of ρ are summarized in Table
11.

Table 11. Maximum absolute error for Problem (35).

k Error for ρ = 10−3 Error for ρ = 1

3 6.328e-002 6.328e-002

4 3.481e-002 3.481e-002

5 2.157e-002 2.157e-002

6 1.515e-002 1.515e-002

7 1.198e-002 1.999e-002

8 1.043e-002 1.041e-002

9 9.566e-003 9.635e-003

The norms of the approximated solutions were compared with those of finite difference
(FDM) and cubic B-spline interpolation methods (CBIM). The results from these methods
were generated by solving Examples (29) and (31) by using the methods explained in [4]
and [6]. The results are shown in Table 12 and Table 13.

Table 12. Max-Norm and L2-Norm for Problem (29).

Method Max-Norm L2-Norm

FDM(Burden-Faires [4]) 5.1880e-005 1.1764e-004

CBIM(Caglar et al. [6]) 5.2011e-005 1.1794e-004

Our method(for ρ = 1 and k = 10) 3.9190e-005 1.0670e-004

Table 13. Max-Norm and L2-Norm for Problem (31).

Method Max-Norm L2-Norm

FDM(Burden-Faires [4]) 1.6265e-004 3.6971e-004

CBIM(Caglar et al. [6]) 2.8996e-004 6.6089e-004

Our method(for ρ = 1 and k = 9) 1.6524e-004 5.1775e-004

Our method(for ρ = 1 and k = 10) 8.2645e-005 2.5885e-004

6. Conclusion

Despite a lower order of used splines, our method produced better with Neumann bound-
ary conditions (see examples 4 and 5), in comparison with the largest value of n degree of
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Hermite polynomials in Galerkin method developed in [19], also the Galerkin method is
not applied to any example with Dirichlet boundary condition , for more details see [19].
The purpose of this paper is to present a new simple numerical method, suitable and
accurate to solve (2VBP) boundary value problem with Dirichlet, Neumann and Cauchy
conditions by using trigonometric splines of order 3 with a tension factor ρ.
Experimental results confirm the first order of convergence. We notice also that the influ-
ence of the value of tension factor ρ is remarkable when the value of k exceeds the value
8. The results in this paper can be easily extended to other classes of systems of boundary
value problems of higher order and a multi-dimensional boundary problems.
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