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Abstract. In this study, we introduce the classes of ϕ-strongly pseudocontractive mappings
in the intermediate sense and generalized Φ-pseudocontractive mappings in the intermediate
sense and prove the existence of fixed points for those maps. The results generalise the results
of several authors in literature including Xiang [Chang He Xiang, Fixed point theorem for
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1. Introduction

Let E be an arbitrary real normed linear space with dual space E∗ and C be a
nonempty subset of E. We denote by J the normalized duality mapping from E
to 2E

∗
defined by

J(x) =
{
x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2

}
, ∀x ∈ E, (1.1)

where ⟨., .⟩ denotes the generalized duality pairing.
The following definitions will be needed in this study.

∗Corresponding author. Email: gaokeke1@yahoo.co.uk.

c⃝ 2014 IAUCTB
http://www.ijm2c.ir



358 G. A. Okeke & J. O. Olaleru/ IJM2C, 04 - 04 (2014) 357-364.

Definition 1.1. [17]. A mapping T : C → E is called strongly pseudocon-
tractive if there exists a constant k ∈ (0, 1) such that, for all x, y ∈ C, there exists
j(x− y) ∈ J(x− y) satisfying

⟨Tx− Ty, j(x− y)⟩ ⩽ (1− k)∥x− y∥2. (1.2)

T is called ϕ-strongly pseudocontractive if there exists a strictly increasing function
ϕ : [0,∞) → [0,∞) with ϕ(0) = 0 such that, for all x, y ∈ C, there exists j(x−y) ∈
J(x− y) satisfying

⟨Tx− Ty, j(x− y)⟩ ⩽ ∥x− y∥2 − ϕ(∥x− y∥)∥x− y∥. (1.3)

T is called generalized Φ-pseudocontractive [2] if there exists a strictly increasing
function Φ : [0,∞) → [0,∞) with Φ(0) = 0 such that

⟨Tx− Ty, j(x− y)⟩ ⩽ ∥x− y∥2 − Φ(∥x− y∥). (1.4)

The class of generalized Φ-pseudocontractive mappings is also called uniformly
pseudocontractive mappings (see [10]). It is well known that those classes of
mappings play crucial roles in nonlinear functional analysis.

T is called asymptotically generalized Φ-pseudocontractive [7] with sequence
{kn} if for each n ∈ N and x, y ∈ C, there exist constant kn ⩾ 1 with
limn→∞ kn = 1, strictly increasing function Φ : [0,∞) → [0,∞) with Φ(0) = 0 and
j(x− y) ∈ J(x− y) satisfying

⟨Tnx− Tny, j(x− y)⟩ ⩽ kn∥x− y∥2 − Φ(∥x− y∥), (1.5)

The class of asymptotically generalized Φ-pseudocontractive was introduced by
Kim et al. [7] as a generalization of the class of generalized Φ-pseudocontractive
mappings.
It has been proved (see [14]) that the class of ϕ-strongly pseudocontractive map-

pings properly contains the class of strongly pseudocontractive mappings. By tak-
ing Φ(s) = sϕ(s), where ϕ : [0,∞) → [0,∞) is a strictly increasing function with
ϕ(0) = 0, clearly, the class of generalized Φ-pseudocontractive mappings properly
contains the class of ϕ-strongly pseudocontractive mappings.
Bruck et al. [1] in 1993 introduced the class of asymptotically nonexpansive map-

pings in the intermediate sense as follows.
The mapping T : C → C is said to be asymptotically nonexpansive in the interme-
diate sense provided T is uniformly continuous and

lim sup
n→∞

sup
x,y∈C

(∥Tnx− Tny∥ − ∥x− y∥) ⩽ 0. (1.6)

Recently, Qin et al. [15] introduced the following class of nonlinear mappings.
Definition 1.2. [15]. A mapping T : C → C is said to be asymptotically pseudo-
contractive mapping in the intermediate sense if

lim sup
n→∞

sup
x,y∈C

(
⟨Tnx− Tny, x− y⟩ − kn∥x− y∥2

)
⩽ 0, (1.7)

where {kn} is a sequence in [1,∞) such that kn → 1 as n→ ∞. This is equivalent
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to

⟨Tnx− Tny, x− y⟩ ⩽ kn∥x− y∥2 + νn, ∀n ⩾ 1, x, y ∈ C, (1.8)

where

νn = max

{
0, sup

x,y∈C

(
⟨Tnx− Tny, x− y⟩ − kn∥x− y∥2

)}
. (1.9)

Qin et al. [15] proved some weak convergence theorems for the class of asymptot-
ically pseudocontractive mappings in the intermediate sense. They also established
some strong convergence results without any compact assumption by considering
the hybrid projection methods. Olaleru and Okeke [12] in 2012 proved a strong
convergence of Noor type scheme for a uniformly L-Lipschitzian and asymptot-
ically pseudocontractive mappings in the intermediate sense. Olaleru et al. [13]
established some coupled fixed points results in cone metric spaces.
Inspired by the above facts, we now introduce the following two classes of

nonlinear mappings.

Definition 1.3. A mapping T : C → C is called ϕ-strongly pseudocontrac-
tive mapping in the intermediate sense if there exists a strictly increasing function
ϕ : [0,∞) → [0,∞) with ϕ(0) = 0 such that, for all x, y ∈ C, there exists
j(x− y) ∈ J(x− y) satisfying

lim sup
n→∞

sup
x,y∈C

(
⟨Tx− Ty, j(x− y)⟩ − ∥x− y∥2 + ϕ(∥x− y∥)∥x− y∥ ⩽ 0

)
. (1.10)

for all x, y ∈ C and for some j(x− y) ∈ J(x− y). Put

τn = max

{
0, sup

x,y∈C

(
⟨Tx− Ty, j(x− y)⟩ − ∥x− y∥2 + ϕ(∥x− y∥)∥x− y∥

)}
.

(1.11)
Observe that τn −→ 0 as n→ ∞. Hence, (1.10) reduces to

⟨Tx− Ty, j(x− y)⟩ ⩽ ∥x− y∥2 + τn − ϕ(∥x− y∥)∥x− y∥. (1.12)

If τn = 0 for all n ∈ N, then (1.12) reduces to the class of ϕ-strongly pseudocon-
tractive mappings. Clearly, the class of ϕ-strongly pseudocontractive mappings in
the intermediate sense contains the class of asymptotically ϕ-strongly pseudocon-
tractive mappings and the class of ϕ-strongly pseudocontractive mappings studied
by several authors (see, e.g. Deimling [3], Khan et al. [6], Ding [4], Liu and Kang
[8], Tan and Xu [16], Xu [18]).

Definition 1.4. A mapping T : C → C is called generalized Φ-pseudocontractive
mapping in the intermediate sense if there exists a strictly increasing function
Φ : [0,∞) → [0,∞) with Φ(0) = 0 satisfying

lim sup
n→∞

sup
x,y∈C

(
⟨Tx− Ty, j(x− y)⟩ − ∥x− y∥2 +Φ(∥x− y∥)

)
⩽ 0, (1.13)
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for all x, y ∈ C and for some j(x− y) ∈ J(x− y). Put

ξn = max

{
0, sup

x,y∈C

(
⟨Tx− Ty, j(x− y)⟩ − ∥x− y∥2 +Φ(∥x− y∥)

)}
, (1.14)

we observe that ξn → 0 as n→ ∞. Hence (1.13) reduces to

⟨Tx− Ty, j(x− y)⟩ ⩽ ∥x− y∥2 + ξn − Φ(∥x− y∥). (1.15)

Clearly, the class of asymptotically generalized Φ-pseudocontractive mappings in
the intermediate sense is a generalization of the class of asymptotically ϕ-strongly
pseudocontractive mapping in the intermediate sense, and consequently generalises
the classes of asymptotically ϕ-strongly pseudocontractive mappings and asymp-
totically generalized Φ-pseudocontractive maps studied by several authors (see, e.g
Khan et al. [6], Ding [4], Kim et al. [7], Liu and Kang [8], Mogbademu and Olaleru
[9], Osilike [14], Tan and Xu [16], Xu [18]).
Accretive maps are firmly connected with pseudocontractive maps. In fact, T is

accretive (strongly accretive) if and only if (I − T ) is pseudocontractive (strongly
pseudocontractive) (see, e.g. Deimling [3], Chidume and Chidume [2]). The study
of accretive maps is enhanced as a result of its application since many physically
significant problems can be modelled in terms of an initial value problem of the
form

du

dt
= −Tu, u(0) = u0 (1.16)

where T is accretive or strongly accretive in an appropriate Banach space (see,
Khan et al. [6], Mogbademu and Olaleru [9]). Thus we have the following definitions:

Definition 1.5. A mapping A : C → C is said to be (Φ, ξn)-strongly ac-
cretive if there exists a strictly increasing function Φ : [0,∞) → [0,∞) with
Φ(0) = 0 satisfying

⟨Ax−Ay, j(x− y)⟩ ⩾ ∥x− y∥2 + ξn − Φ(∥x− y∥), (1.17)

where ξn is as defined in (1.14).
A mapping T : C → C is called generalized Φ-pseudocontractive mapping in the

intermediate sense if and only if (I − T ) is (Φ, ξn)-strongly accretive.
Xiang [17] in 2009 obtained the following existence results for the class of

generalized Φ-pseudocontractive mappings.

Theorem 1.6. (Xiang [17]). Let E be a real Banach space, C be a nonempty
closed convex subset of E, and T : C → C be a continuous generalized Φ-
pseudocontractive mapping. Then T has a unique fixed point in C.

It is our purpose in this study to prove the existence of fixed points for our newly
introduced class of asymptotically generalized Φ-pseudocontractive mappings in
the intermediate sense, thus generalizing the results of Xiang [17] and several other
authors in literature.
The following lemmas will be needed in this study.

Lemma 1.7. [2]. Let E be a real normed linear space. Then for all x, y ∈ E, we
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have

∥x+ y∥2 ⩽ ∥x∥2 + 2⟨y, j(x+ y)⟩, ∀ j(x+ y) ∈ J(x+ y).

Lemma 1.8. [10]. Let ψ : [0,∞) → [0,∞) be a strictly increasing function with
ψ(0) = 0 and let {θn}, {σn} and {νn} be nonnegative real sequences such that
σn = o(νn),

∑
n⩾0 νn = ∞, limn→∞ νn = 0. Suppose that

θ2n+1 ⩽ θ2n − νnψ(θn+1) + σn, n ⩾ 0.

Then θn −→ 0 as n→ ∞.

2. Main Results

Theorem 2.1. Let C ⊂ E be closed and convex, A : C → E continuous and
(Φ, ξn)-strongly accretive and the following boundary conditions are satisfied
(i) ∥x− λAx− C∥ = o(λ) as λ→ 0 holds for each x ∈ C.
(ii) If x ∈ C, x∗ ∈ E∗\{0} and ∥x∗∥∥x∥ = supy∈C ∥x∗∥∥y∥ then
∥x∗∥∥ −Ax∥ ⩽ 0,

If either ⟨Ax, x⟩ ⩾ 0 for ∥x∥ ⩾ R or ∥Ax∥ → ∞ as ∥x∥ → ∞, then 0 ∈ A(C).
Proof. Since C is translation invariant, except ⟨Ax, x⟩ ⩾ 0, we assume that 0 ∈ C,
but we have to change ⟨Ax, x⟩ ⩾ 0 into ⟨Ax, x + x0⟩ ⩾ 0 for ∥x + x0∥ ⩾ R
(for some x0 ∈ C fixed). Let An = A + 1

nI. Suppose x ∈ ∂C, x∗ ∈ E∗\{0} and
∥x∗∥∥x∥ = supy∈C ∥x∗∥∥y∥ then

∥x∗∥∥ −Anx∥ = ∥x∗∥∥ −Ax∥ − 1

n
∥x∗∥∥x∥ ⩽ 0, (2.1)

since ∥x∗∥∥ − Ax∥ ⩽ 0 by conditions (i) and (ii) and ∥x∗∥∥x∥ ⩾ 0 (since 0 ∈ C).
Hence, condition (i) is also true for An. In addition, An is (Φ, ξn)-strongly accretive
with Φn(r) =

1
n . Let f(u) = −Au for u ∈ C. Since C is convex,

⟨−(Anu−Anv), u− v⟩ = −⟨Anu−Anv, u− v⟩ ⩽ 0 (2.2)

is sufficient for (1.16) to have a unique global solution. Hence, An has a zero xn ∈ C,
i.e. Axn = − 1

nxn for every n. Now, suppose that ∥Ax∥ → ∞ as ∥x∥ → ∞ holds.

Since A is accretive, we have ∥Axn∥ = ∥ 1
nxn∥ ⩽ ∥A(0)∥. Hence, ∥xn∥ must be

bounded.
However, if ⟨Ax, x + x0⟩ ⩾ 0 for ∥x + x0∥ ⩾ R, then ∥xn + x0∥ ⩾ R implies

⟨xn, xn + x0⟩ ⩽ 0. Let x∗ ∈ F (xn + x0). Then ∥x∗∥ = ∥xn + x0∥ and

∥xn + x0∥ = ∥x∗∥∥xn∥+ ∥x∗∥∥x0∥ ⩽ ∥x∗∥∥xn∥+ ∥xn + x0∥∥x0∥. (2.3)

This implies

∥xn + x0∥2 ⩽ ⟨xn, xn + x0⟩+ ∥xn + x0∥∥x0∥. (2.4)

Therefore, ∥xn∥ ⩽ max{R+ ∥x0∥, 2∥x0∥} for every n.
Since in both cases, ∥xn∥ ⩽ c for some c > 0 and every n, we obtain

Φ(∥xn − xm∥)∥xn − xm∥ ⩽ ⟨Axn −Axm, xn − xm⟩ ⩽ c(
1

n
+

1

m
)∥xn − xm∥, (2.5)
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hence Φ(∥xn − xm∥) → 0 as n,m→ ∞. Therefore, {xn} is a Cauchy sequence and
thus convergent to some x ∈ C. Since A is continuous and Axn = − 1

nxn → 0 as
n→ ∞, Ax = 0. □
We now obtain the following corollary as a consequence of Theorem 2.1.

Corollary 2.2. Let C ⊂ E be closed and convex, T : C → E continuous
and generalized Φ-pseudocontractive mapping in the intermediate sense. Suppose
that the condition ⟨(1 − λ)x + λTx,D⟩ = o(λ) as λ → 0, for each x ∈ C. If C
is unbounded, assume either ∥x − Tx∥ → ∞ as ∥x∥ → ∞ or ⟨Tx, x⟩ ⩽ ∥x∥2 for
∥x∥ ⩾ R. Then T has exactly one fixed point.

Theorem 2.3. Let E be a real Banach space, C be a nonempty closed convex
subset of E, and T : C → C be a continuous generalized Φ-pseudocontractive
mapping in the intermediate sense. Then T has a unique fixed point in C.
Proof. For each u ∈ C, the mapping S : C → C defined by Sx = 1

2u + 1
2Tx

for each x ∈ C is a continuous generalized Φ-pseudocontractive mapping in the
intermediate sense. By Corollary 2.2, we see that S has a unique fixed point in C.
Hence, given x0 ∈ C, the sequence {xn} defined by xn+1 =

1
2xn+

1
2Txn+1 (∀n ⩾ 0)

is well defined.
For each n ⩾ 1, we have

xn+1 = xn − xn+1 + Txn+1, xn = xn−1 − xn + Txn. (2.6)

Using Lemma 1.7 and (1.15), it follows that there exists j(xn+1−xn) ∈ J(xn+1−xn)
such that

∥xn+1 − xn∥2 = ∥(xn − xn−1)− (xn+1 − xn) + (Txn+1 − Txn)∥2
⩽ ∥xn − xn−1∥2 − 2⟨xn+1 − xn, j(xn+1 − xn)⟩

+2⟨Txn+1 − Txn, j(xn+1 − xn)⟩
⩽ ∥xn − xn−1∥2 − 2∥xn+1 − xn∥2

+2
{
∥xn+1 − xn∥2 + ξn − Φ(∥xn+1 − xn∥)

}
= ∥xn − xn−1∥2 − 2∥xn+1 − xn∥2 + 2∥xn+1 − xn∥2

+2ξn − 2Φ(∥xn+1 − xn∥). (2.7)

From (2.7), we obtain

∥xn+1 − xn∥2 ⩽ ∥xn − xn−1∥2 − 2Φ(∥xn+1 − xn∥) + 2ξn
⩽ ∥xn − xn−1∥2 − 2ξnΦ(∥xn+1 − xn∥) + 2ξn

(2.8)

where Φ : [0,∞) → [0,∞) is a strictly increasing function with Φ(0) = 0. Let
θn = ∥xn − xn−1∥ (∀ n ⩾ 1), σn = 2ξn, νn = 2ξn and ψ(s) = Φ(

√
s). Then

θ2n+1 ⩽ θ2n− νnψ(θn+1)+σn for all n ⩾ 1. By Lemma 1.8, we obtain limn→∞ ∥xn−
xn−1∥2 = limn→∞ θ2n = 0. Hence,

lim
n→∞

∥xn − xn−1∥ = 0. (2.9)

Observe that xn − xn−1 = Txn − xn for each n ⩾ 1. We obtain

lim
n→∞

∥Txn − xn∥ = 0. (2.10)

For each ϵ > 0, we take δ = Φ(ϵ)
2ϵ > 0, it follows from (2.9) and (2.10) that there

exists a natural number N such that ∥xn+1 − xn∥ < ϵ for every n ⩾ N and
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∥(Txm−xm)− (Txn−xn)∥ < δ for each m > n. Next, we prove by induction that

∥xm − xn∥ < ϵ, ∀ m > n ⩾ N. (2.11)

For each natural number n ⩾ N, if we take m = n+1, then we observe that (2.11)
holds for some m ⩾ n+ 1. Then

∥xm+1 − xn∥ ⩽ ∥xm+1 − xm∥+ ∥xm − xn∥ < 2ϵ. (2.12)

Using (1.15), we obtain

⟨Txm+1 − Txn, j(xm+1 − xn)⟩ ⩽ ∥xm+1 − xn∥2 + ξn − Φ(∥xm+1 − xn∥). (2.13)

From (2.13), we obtain

Φ(∥xm+1 − xn∥) ⩽ ∥xm+1 − xn∥2 + ξn − ⟨Txm+1 − Txn, j(xm+1 − xn)⟩
⩽ ⟨(xm+1 − Txm+1)− (xn − Txn), j(xm+1 − xn)⟩+ ξn
⩽ ∥(xm+1 − Txm+1)− (xn − Txn)∥∥xm+1 − xn∥+ ξn
⩽ δ.2ϵ+ ξn
⩽ δ2ϵ as n→ ∞
= Φ(ϵ). (2.14)

Since Φ is a strictly increasing function, we have that ∥xm+1 − xn∥ < ϵ, meaning
that (2.11) holds for m + 1. By induction, (2.11) holds for all m > n ⩾ N, which
implies that {xn} ⊂ C is a Cauchy sequence. But E is a Banach space and C is
closed, hence {xn} converges to some p ∈ C. Since T : C → C is continuous, we
conclude that Tp = p using (2.10). From (1.15), we see that the fixed point of T
is unique. The proof of Theorem 2.3 is completed. □

Remark 2.4. Theorem 2.3 is a generalization of Theorem 2.1 of Xiang [17]
and the references therein since the class of generalized Φ-pseudocontractive
mappings in the intermediate sense is more general than those defined by these
authors.

3. Conclusion

The existence of fixed points established for the class of generalized Φ-
pseudocontractive mappings in the intermediate sense in this study generalizes
and extends several known results in literature.
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