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perturbation method has been proposed as a new technique, based on Homotopy in 
terminology. This method does not require small parameters in equations, using the 
interesting property of Homotopy. According to the method, a nonlinear problem is 
transformed into an infinite number of linear problems without using the perturbation 
techniques. Effectively, letting the small parameter float and converge to the unity, the 
problem is converted into a special perturbation problem with the small embedding 
parameter so the method is caught the name of the Homotopy Perturbation Method (HPM). 
The effectiveness of the new technique presented by HE [4-6, 9, 12]. This method can take 
full advantage of the traditional perturbation methods and Homotopy analysis method. It 
has successfully been applied to linear and nonlinear ordinary and partial differential 
equations, which almost describing a system dynamic incorporating the perturbation value 
(called Homotopy Perturbation Method, i.e. HPM). Duffing equation in [6], in the area of 
numerical and algebraic methods [1, 14, 22, 24], autonomous systems [23], system 
dynamic [3, 4, 9, 15], heat transfer [4, 9, 15], are such area, the method is applied. The idea, 
here, is how to apply this method in control engineering area. This paper is organized as 
follows: 
Basic idea of HPM is studied Section 2. In Section 3, the heat transfer dynamics is 
considered as a case study and HPM solution of this equation is presented. The HPM based 
linearization is proposed in Section 4. In Section 5 a PID controller is applied on HPM 
based model and the results is discussed. Finally, the paper will be concluded in Section 6. 
 

2. Basic Idea of Homotopy Perturbation Method 

To illustrate the basic idea of the method briefly, the following nonlinear equation is 
considered: 
 ( )  ( )  0,   mA x f u u+ = ∈ℜ  (1) 
Subject to boundary conditions:  
 ( , / )  0,    nx x t xΒ ∂ ∂ = ∈ ℜ  (2) 
whereAis a general differential operator,Bis a boundary operator, x is a known analytic, 
ndimensional function (here, state) and uis an mdimensional input (independent variable). 
The differential part ( )A X can be generally divided into two linear ( )L X  and nonlinear

( )N X  parts. Eq.(1) can therefore, be rewritten as: 

 
( )

( )  ( )  -  ( )  0
A x

L x N x f u+ =���	��
  
(3) 

A Homotopy function ( , ) H pν using an auxiliary variable ( , )u pν with [ ]0,1p∈ can be 
defined as: 
 [ ] [ ]0( , )  (1 -  ) ( ) -  ( )  ( ) -  ( )   0,   0,1H p p L L x p A f u pν ν ν= + = ∈⎡ ⎤⎣ ⎦  (4) 
P is called Homotopy parameter (inspired from “small parameter” in perturbation 
terminology). The idea behind using small parameter pis smart. By p equals 0.0, 
Equation(4) is being completely linear whereas p equal to 1.0 the linear part in Equation(4) 
completely vanishes and (4) will be the same as (1). With a simple manipulation Equation 
(4) is reduced to the following Eq.(5): 
 0 0( , ) ( ) - ( ) ( ) [ ( ) - ( )] 0,    [0,1]H p L L x pL x p N f u pν ν ν= + + = ∈  (5) 
The initial guess 0x needs to be a good initial approximation for equation (1) and satisfies 
the boundary conditions [17-19]. However, it is a property of the system and can be 
meaningfully found. A solution of (4) may be expressed [5, 18, 25] as: 
   (6) 
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0 1 2
0 1 2 ...p p pν ν ν ν= + + +  

By substituting (6) in (5) and rearranging based on powers of p-terms, an infinite number 
of differential equations in terms ofν , is achieved. So such an attention should be made to 
avoid the secular terms to produce bounded-ness [23]. These sets of simple differential 
equation with proper initial conditions are then solved. Finally an approximate solution of 
Equation (1) can therefore be written by: 
 1 0 1 2lim ...px ν ν ν ν→= = + + +  (7) 
The convergence the above method i.e. HPM, is discussed in [2, 5, 8, 10, 20, 21]. 

 

3. HPM Based Nonlinear Temperature Control 

The main idea is to propose HPM as an alternative method to handle a nonlinear system 
dynamic in the closed loop, under different control scheme. Since this method presents 
rather an approximation solution, a probable amount of uncertainties may be occurred. 
Hence, the robust analysis and control design may be needed to overcome the possible lack 
of the dedicated method. To show the significance of this scheme, a nonlinear heat transfer 
equation [3, 4, 9, 11,15] as a case study, is chosen and effectively tested. 

 

3.1. Cooling of a lumped system with variable specific heat differential equation 
Consider the cooling of a lumped system[3, 4, 9, 11,15] for a spherical ball (specification 
in table 1.) have volume V, surface area A, density ρ , specific heat C and initial 
temperature iT (here 1200 K° ). At time t = 0, the system is exposed to a convective 
environment at aT  temperature (here 300 K° ) with convective heat transfer coefficient h. 
The specific heat C is described by: 
 [ ]1 ( - )aa T TC C β+=  (8) 
Where aC  is the specific heat at aT  temperature and β is constant. The cooling equation 
is described [3, 4, 9,15] as: 

 ( - ) 0,          (0) 1200O
a i

dTVC hA T T T T K
dt

ρ + = = =  (9) 

An alternative approach based on dimensionless parameters (small parameter) leads us to a 
perturbation type nonlinear differential equation [15]. Various solving methods are then 
suggested [13]. Whereas, due to need for applying an independent input, that type of 
representation has not much of interest. Therefore Homotopy technique is directly applied 
to Equation (8) for 0t ≥ . Substituting Equation (8) into Equation (9), transform the 
equation to: 
 i( ) 0 ,    T(0)=T 1200O

a a a a aVC TT VC VC T T hAT hAT Kρ β ρ ρ β+ − + − = =� �  (10) 

Where dTT
dt

=� . By using the value of parameters in Table (1), Equation (9) in terms of 

coefficients jC ’s, can be rewritten by: 

 1 2 3 3 where- 0,        (0) 1200O
a iC TT C T C T C T T T K+ + = = =� �  (11) 

Where: 
1

2

3

0.1036
- 78.6895

1.7593

a

a a

C VC
C VC VC T
C hA

ρ β
ρ ρ β

= =

= =

= =
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To make the equation as simple as, Equation (11) is divided to ܥଵ. 
 4 5 5- 0,     with (0) 1200O

a iTT C T C T C T T T K+ + = = =� �  (12) 
with: 

2
4

1

3
5

1

759.32

16.98

C
C

C
C

C
C

= =

= =
 

With respect to Equation (3) the nonlinear, linear parts and the input term i.e. ( )f u , can 
respectively, be written as: 
 
 4 5 5( ) ,     ( ) ,     ( ) aN x TT L x C T C T f u C T= = + =� �  (13) 
Now Equation (10) is solved by Homotopy Perturbation Method. Substituting Equation 
(10) in Equation (3), is deduced to: 

 N N
0 0

4 5 4 0 5 0 4 0 5 0 5
( ) ( )( ) ( ) ( )

[ ] [ ] [ ] 0,  a
N f uL L x L x

C C C T C T p C T C T p C T
νν

ν ν νν+ − + + + + − =� �� ���	�
 ���	��
 ��	�
  (14) 

Again using υfrom (6) as 2
0 1 2 ...p pν ν ν ν= + + + in (14) results: 

 

 

2 2
4 0 1 2 5 0 1 2

0.0224 0.0224
4 5

0.0224 0.0224
4 5

2 2
0 1 2 0 1 2 5

( ...) ( ...)

[ 1200 ( 0.0224) ( 0.0224) ]

[ 1200 ( 0.0224) ( 0.0224) ]

{( ...) ( ...) } 0

t t

t t

a

C p p C p p

C e C e

p C e C e

p p p p p C T

ν ν ν ν ν ν

ν ν ν ν ν ν

− −

− −

+ + + + + + +

− × × − × + × − ×

+ × × − × + × − ×

+ + + + × + + + − =

i

i

 (15) 

 
The above equation is rearranged in ascending powers of p as: 

 
0 0.0224

4 0 5 0 4
0.0224

5 0

:    [ 1200 ( 0.0224)

( 0.0224) ] 0,        with   (0)=1200              

t

t

p C C C e

C e

ν ν

ν

−

−

+ − × × − ×

+ × − × =

�
 (16) 

 
1 0.0224

4 1 5 1 4
0.0224

5 0 0 5 1

:  [ 1200( 0.0224 )

( 0.0224 )] ( ) 0,          with    (0)=0         

t

t
a

p C C C e

C e C T

ν ν

ν ν ν

−

−

+ − × −

+ × − + − =

�

�
 (17) 

 2
4 2 5 2 0 1 1 0 2with:  ( ) 0,         (0) 0   p C Cν ν ν ν ν ν ν+ + + = =� � �  (18) 

Appropriate initial conditions must be chosen such that satisfy the initial and boundary 
conditions [12, 17- 19]. Equations (16), (17) and (18) with the initial conditions are then 
respectively solved as follows: 
 0.0224

0 ( ) 1200 tt eν −=  (19) 
 0.0224 0.0448

1( ) (1893.23 ) 1893.23t t
a at T T e eν − −= + − −  (20) 

Assuming 300O
aT K= , 

 1
0.0224 0.0448( ) 300 1593.23 1893.23t tt e eν − −+ −=  (21) 

and finally  
 0.0224 0.0448 0.0672

2 ( ) 543.07 5027.37 4484.3t t tt e e eν − − −= − +  (22) 
In order not to be exhaustive, aT  is replaced with 300aT = , where it is needed. From the 
point of view of the convergence, higher term of ν is preferred. However, as it will be 
shown shortly, this case is not very crucial. So, the 2nd and 3rd order of ν  is here chosen 
and the properties are investigated. 
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3.2. Implementation of HPM 2nd order approximation 
In order to solve Equation (12), considering two terms for ν  in Equation(6) by 
 0 11

( ) lim ( )
p

T t pν ν
→

≅ +  (23) 
similar to the case which is done by [4, 9, 15]. The results of solving Equation(16) and (17) 
are as follows: 

 
0.0224 0.0224 0.0448

1
( ) lim{1200 (300 1593.23 1893.23 )}t t t

p
T t e p e e− − −

→
= + + −  (24) 

When the limit is applied, we have: 

 
0.0224 0.0224 0.0448

0.0224 0.0448

( ) 1200 300 1593.23 1893.23

        =300+2793.23 1893.23

t t t

t t

T t e e e

e e

− − −

− −

= + + −

+ −
 (25) 

 

3.3. Implementation of HPM 3rd order approximation 
Truncating Equation (6) until 3 terms to solving the differential Equation (12) yields,  the 
differential Equations (16)-(18). 

 
2

0 1 21
( ) lim ( )

p
T t p pν ν ν

→
≅ + +  (26) 

This leads us to: 

 
0.0224 0.0224 0.0448

1

2 0.0224 0.0448 0.0672

( ) lim{1200 (300 1593.23 1893.23 )

           (543.07 5027.37 4484.3 )}

t t t

p

t t t

T t e p e e

p e e e

− − −

→

− − −

= + + −

+ − +
 (27) 

When the limit takes effect, Equation (27) transforms to: 

 
0.0224 0.0224 0.0448

0.0224 0.0448 0.0672

( ) 1200 300 1593.23 1893.23

           +543.07 5027.37 4484.3

t t t

t t t

T t e e e

e e e

− − −

− − −

= + + −

− +
 (28) 

and therefore: 
 0.0224 0.0448 0.0672( ) 300 3363.3 6920.6 4484.3t t tT t e e e− − −= + − +  (29) 

4. Control Problem, A simulation Approach 

Equation (3) is of the control form, considering ( ) af u T= as an independent variable, i.e. 
input. So, the control problem is to design a control strategy such that the ball (object) 
temperature can be adjusted via an independent input e.g. constant aT . The rate of 
temperature variation and changes cannot be tuned, unless either a controller (such as a 
PID) is used to shape the dynamical behavior, or change of the physical situation. To 
signify the possibility of using HPM in control problem, equation (9) (and of course (10)) 
is numerically simulated according to Figure 1. 
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Figure 1: Simulation block diagram of the heat transfer dynamic under simulink 

In Figure (1) PI controller in not activated yet. It is kept for the next controlling stage.  
The Procedure is as follows: 
Equation (29) is a time domain function and implicitly be affected by input, so it 
describes an open loop time response of the dynamic. In other word, it is a linear time 
dependent series, representing a nonlinear system behavior. Hence, the linear system 
theory and of course, the design procedure can be applied with a possible amount of 
uncertainties and discrepancies. Primarily the Laplace Transform equivalent is achieved 
as: 

 
300 3336.3 6920.6 4484.3( )

0.0224 0.0448 0.0672
T s

s s s s
= + − +

+ + +
 (30) 

A division to input Laplace transform i.e. aT
s

releases the implicit dependency of the 

above function from the input and derives the system function ( )M s which is equal to: 

 
3 2

3 2

( ) 4 0.317 0.0193 .000067( )
( ) 0.1344 0.0055 0.000067a

T s s s sM s
T s s s s

+ + +
= =

+ + +
 (31) 

Since a closed loop control is of interest, an inner (open) loop transfer function i.e.
( )( )

1 ( )
M sG s

M s
=

−
 is derived as follows: 

 
4s  0.3175s  0.01927s  0.000067( )

(3 0.183 0.01375)

3 2
2

G s
s s s

+ + +
=

− + +
 (32) 

Similarly, acting the same procedure described for 2nd order HPM, leads us to have the 
following open loop transfer function: 

 
2

2
4s  0.343s  0.001( )

-s(3s  0.276)
G s + +

=
+

 (33) 

5. Results and Discussion 

The same input i.e. 300aT K= ° is applied into two parallel systems shown in Fig.2, 
simultaneously. 
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Figure 2: The heat transfer dynamic together with the HPM based model 

 

5.1. A 2nd order approximation of ν  

The approximated model is considered as equation (33). It is used inside a temperature 
control loop according to Figure (2). The responses and the relevant open loop error (The 
controller is not working yet) are shown in Fig (3) and (4) respectively. 
 

 
Figure 3: The ball temperature and the estimated behavior according to HPM, 

 considering a 2nd order approximation of ν  
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Figure 4:The error between the ball temperature and HPM estimated 

 
To be able to compare the outcome, a normalized cost function, as an error index, in terms 
of the squared error with respect the actual squared value in a certain time (350 seconds) is 
defined. The normalized cost function is a few more than 2 %, i.e. 2.4191 %. To verify the 
significance of the HPM linearization method, the model is located inside the loop and 
controlled via a simple and classic PI controller. Due to unavoidable approximation, the 
index increases and reaches to 18.04 %. The results can be seen in Fig (5), (6). 
 

 
Figure 5: The closed loop ball temperature and the HPM estimated 

when a 2nd order approximation ν  is considered 
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Figure 6: The error between the ball temperature and the HPM estimated 

 
 

5.2. A 3rd order approximation of ν  

The model is described by equation (32) and used as a plant in Figure (2).The output 
temperature i.e. step responses are then plotted in Figure 7. 

 
Figure 7: The ball and the HPM linearized model temperature, 

considering a 3rd order approximation of ν  

In spite of the difference especially at the beginning which estimates a rapid change of 
the temperature, it chases the actual temperature behavior soon after. The relevant error 
can also be seen in the Figure 8. 
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Figure 8:The temperature error between the HPM linearized model and the nonlinear model 

 
The appropriate cost is less than 2 percent which seems improvement over the similar case 
i.e. the 2nd order approximation. The responses error between two systems when the 
controller is used is plotted in Figure 9 and Figure 10.   

 
Figure 9:The temperature error between the linearized model by homotopy 

perturbation method and the nonlinear model in a closed loop 
 PI controlled (a 3rd order approximation of ν  is considered). 

 
Although, with respect to the Figure 8, the error shows a bit growing, the index is small (18 
%). Still the overall performance in terms the dynamic specifications, i.e. transient 
behavior and the steady state error is satisfactory. The unestimated dynamic may have 
been appeared in this situation. One may use different scheme to compare according to the 
other indices such that chosen in [16]. 
Meanwhile, the error index is helpful to have an overall estimation of uncertainties. This 
can be used to overcome the discrepancy by designing a robust controller. Another 
possible way of treatment the error and/or decreasing the difference may be achieved by 
letting two controllers are designed separately. This is a normal situation, especially when 
the dynamic is not known. Hence the controller will be designed only by itself, acquiring 
the information via an estimated dynamic. However the controller will be showing its 
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series functions, it must be practically truncated. Indeed a robust controller may cope with 
the occurreduncertainties. However it is numerically shown that the HPM and especially 
with a 3rd orderν , provides a satisfactory outcome. 
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Appendix: 

Table 1: The specification of the Ball [11] 
The Abbreviation Showing Unit Value 

m  mass of the ball kg 0.26138 

C Specific heat of the ball J/(kg- K° )  

aC  initial Specific heat of the ball J/(kg- K° ) 420 

A surface area if the ball m^2 5.02654x 310−  
ε  Emitance (Max)  0.85 

 density of the ball  7800 

h the convective cooling coefficient W/(s-m^2- K° ) 350 
β    9.44x 410−  

 
Table 2: The PI Controller Coefficients when it is needed 

The Controller Location Proportional Gain, pK  Integrator Gain, iK  

PI Controller in Nonlinear system 1 0.01 

PI Controller in HPM Linearized system 1 0.01 

 

ρ


