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Abstract. Nonlinear problems are more challenging and almost complex to be solved. A recently
developed Homotopy Perturbation Method (HPM) is introduced. This method is used to represent
the system as a less complicated (almost linear) model. To verify the effectiveness, HPM based
model is compared with the original nonlinear dynamic in both open and closed loop Pl controller.
The simulation results reveal the ability of the proposed method.

Received: 11 May 2013; Revised: 28 July 2013; Accepted: 24 August 2013.

Keywords: Heat transfer, Nonlinear equations, Homotopy-Perturbation Method (HPM),
Modeling, System dynamic, Estimation.

Index to information contained in this paper

Introduction

Basic Idea of Homotopy Perturbation Method
HPM Based Nonlinear Temperature Control
Control Problem A Simulation Approach
Results and Discussion

Conclusion

R wWNE

1. Introduction

In the two last decades with the rapid development of nonlinear systems, there has been
appeared ever- increasing interest of scientists and engineers in the analytical techniques
for nonlinear problems. The widely applied techniques i.e. perturbation method is of
interest to be used in control systems [13,23]. Just recently, in order to develop this

method and to eliminate the limitation of “small parameter” assumption i.e. the
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perturbation method has been proposed as a new technique, based on Homotopy in
terminology. This method does not require small parameters in equations, using the
interesting property of Homotopy. According to the method, a nonlinear problem is
transformed into an infinite number of linear problems without using the perturbation
techniques. Effectively, letting the small parameter float and converge to the unity, the
problem is converted into a special perturbation problem with the small embedding
parameter so the method is caught the name of the Homotopy Perturbation Method (HPM).
The effectiveness of the new technique presented by HE [4-6, 9, 12]. This method can take
full advantage of the traditional perturbation methods and Homotopy analysis method. It
has successfully been applied to linear and nonlinear ordinary and partial differential
equations, which almost describing a system dynamic incorporating the perturbation value
(called Homotopy Perturbation Method, i.e. HPM). Duffing equation in [6], in the area of
numerical and algebraic methods [1, 14, 22, 24], autonomous systems [23], system
dynamic [3, 4, 9, 15], heat transfer [4, 9, 15], are such area, the method is applied. The idea,
here, is how to apply this method in control engineering area. This paper is organized as
follows:

Basic idea of HPM is studied Section 2. In Section 3, the heat transfer dynamics is
considered as a case study and HPM solution of this equation is presented. The HPM based
linearization is proposed in Section 4. In Section 5 a PID controller is applied on HPM
based model and the results is discussed. Finally, the paper will be concluded in Section 6.

2. Basic Idea of Homotopy Perturbation Method

To illustrate the basic idea of the method briefly, the following nonlinear equation is
considered:

A(X) + f(u) = 0,u eR" 1)
Subject to boundary conditions:

B(x,0x/ot) = 0, x € R" )
whereAis a general differential operator,Bis a boundary operator, X is a known analytic,

ndimensional function (here, state) and uis an mdimensional input (independent variable).
The differential part A(X) can be generally divided into two linear L(X) and nonlinear

N(X) parts. Eq.(1) can therefore, be rewritten as:

L(x) + N(x) -f(u) =0 3)
A(X)

A Homotopy function H(v, p) using an auxiliary variable v(u, p) with pe[0,1]can be

defined as:
Hv,p) = L - p)[L(K) - L(%)] +P[AW) - f(W)] = 0, pe[0.]] 4)
P is called Homotopy parameter (inspired from “small parameter” in perturbation
terminology). The idea behind using small parameter pis smart. By p equals 0.0,
Equation(4) is being completely linear whereas p equal to 1.0 the linear part in Equation(4)
completely vanishes and (4) will be the same as (1). With a simple manipulation Equation
(4) is reduced to the following Eq.(5):
H(v, p) = L(»)- L(X) + PL(X) + PIN(v) - f(u)]=0, pe[0]] (5)
The initial guess X, needs to be a good initial approximation for equation (1) and satisfies
the boundary conditions [17-19]. However, it is a property of the system and can be
meaningfully found. A solution of (4) may be expressed [5, 18, 25] as:
(6)
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v=p% + plvy + pPvy +...
By substituting (6) in (5) and rearranging based on powers of p-terms, an infinite number
of differential equations in terms of v , is achieved. So such an attention should be made to
avoid the secular terms to produce bounded-ness [23]. These sets of simple differential
equation with proper initial conditions are then solved. Finally an approximate solution of
Equation (1) can therefore be written by:
x=1lim, ,,v=vy+v+v,+.. (7

The convergence the above method i.e. HPM, is discussed in [2, 5, 8, 10, 20, 21].

3. HPM Based Nonlinear Temperature Control

The main idea is to propose HPM as an alternative method to handle a nonlinear system
dynamic in the closed loop, under different control scheme. Since this method presents
rather an approximation solution, a probable amount of uncertainties may be occurred.
Hence, the robust analysis and control design may be needed to overcome the possible lack
of the dedicated method. To show the significance of this scheme, a nonlinear heat transfer
equation [3, 4, 9, 11,15] as a case study, is chosen and effectively tested.

3.1. Cooling of a lumped system with variable specific heat differential equation

Consider the cooling of a lumped system[3, 4, 9, 11,15] for a spherical ball (specification
in table 1.) have volume V, surface area A, density p , specific heat C and initial
temperature T; (here1200°K ). At time t = 0, the system is exposed to a convective
environment at T, temperature (here 300°K ) with convective heat transfer coefficient h.
The specific heat C is described by:
C=C,[1+A(T-T,)] (8)
Where C, isthe specific heatat T, temperatureand A is constant. The cooling equation
is described [3, 4, 9,15] as:
PVC Z—I+ hA(T -T,) =0, T(0) =T, =1200°K 9)

An alternative approach based on dimensionless parameters (small parameter) leads us to a
perturbation type nonlinear differential equation [15]. Various solving methods are then
suggested [13]. Whereas, due to need for applying an independent input, that type of
representation has not much of interest. Therefore Homotopy technique is directly applied
to Equation (8) fort>0. Substituting Equation (8) into Equation (9), transform the
equation to:

PVC, BTT +(pVC, — pVC,AT)T + hAT —hAT, =0, T(0)=T, =1200°K  (10)
Where T :Z—I. By using the value of parameters in Table (1), Equation (9) in terms of

coefficientsC; ’s, can be rewritten by:

CTT+C,T+C,T-C,T, =0, where T(0)=T, =1200°K (11)
Where:
C, = pVC, /3 =0.1036

C, = pVC, - pVC, AT = 78.6895
C, =hA=1.7593

323



J. Ghasemi & A. Ranjbar Noei/ I/M?C, 03 -04 (2013) 321-333.

To make the equation as simple as, Equation (11) is divided to C;.

TT +C,T +C.T-C;T, =0, with T(0) =T, =1200°K (12)
with:
C, = C2 75032
Cl
C
Cs = —2=16.98
C

1
With respect to Equation (3) the nonlinear, linear parts and the input term i.e. f (u), can

respectively, be written as:

N(x)=TT, L(x)=C,T +CsT, f(u)=CqT, (13)
Now Equation (10) is solved by Homotopy Perturbation Method. Substituting Equation
(10) in Equation (3), is deduced to:

Cyv +Csv —[CyTy + CsTo]+ PIC4To + CsTol+ pl vy, -CsT,]1=0,
%\/——/ — — — N— —

— —_— = 14
L) L(x,) L(x,) NG () (14)
Again using vfrom (6) asv = v, + pv, + pv, +... in (14) results:
Cy(Vo + PVy+ P2vy +..) +Cs(vy + Py + P2V, +...)
—[C, x1200x (=0.0224) x e %9224 | C x (-0.0224) x e 20%24]
0.0224t 0.0224t (15)
+p[C, x1200x (—0.0224) x e +Cg x(—0.0224) xe 7]
+p{(vo + Pvy + PPy +..) X (vy + pvy + PPy +..) —CsT,}=0
The above equation is rearranged in ascending powers of pas:
p®:  Cu +Covy —[C, x1200% (—0.0224) x ¢ 0024 16)
+C; x(-0.0224)xe*®*]1=0,  with v,(0)=1200
pt: Cyvp +Cyyy —[C, x1200(—-0.0224¢ 00224y an

+C; x(-0.0224e %M"Y 4+ (vo1, —C:T,) =0, with 14(0)=0
Appropriate initial conditions must be chosen such that satisfy the initial and boundary

conditions [12, 17- 19]. Equations (16), (17) and (18) with the initial conditions are then
respectively solved as follows:

vo (t) = 1200e 700224 (19)
v () =T, +(1893.23- T, )e %0224 _1893.23¢ 004% (20)
Assuming T, =300°K ,
v, (t) =300 +1503. 238 0224 _ 1503 p3a 004! (21)
and finally
v, (t) = 543.07e 00224 _ 5027 37¢ 0048 | 4484 3¢ 00072 (22)

In order not to be exhaustive, T, is replaced withT, =300, where it is needed. From the

point of view of the convergence, higher term of v is preferred. However, as it will be
shown shortly, this case is not very crucial. So, the 2™ and 3" order of v is here chosen
and the properties are investigated.
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3.2. Implementation of HPM 2" order approximation
In order to solve Equation (12), considering two terms for v in Equation(6) by
T(t) = LiLnl(Vo + pvy) (23)

similar to the case which is done by [4, 9, 15]. The results of solving Equation(16) and (17)
are as follows:

T@t)= |iml{1200e*°-°224t + p(300+1593.23¢ 00224 _1893 23e 00448ty (24)
P

When the limit is applied, we have:
T (t) =1200e %9224t 4 300 +1593.23e 0224t _1893 2300448

(25)
=300+2793.23¢ %9724 1 —1893.23¢ 004!

3.3. Implementation of HPM 3" order approximation

Truncating Equation (6) until 3 terms to solving the differential Equation (12) yields, the
differential Equations (16)-(18).

T(t) = IpiLnl(Vo + pvy+ pivy) (26)
This leads us to:
T(t) = Iiml{1200e‘°'°224‘ + p(300+1593.23e 09?4 —1893.23¢ 0048y
p—>.

27
+ p®(543.07e 00224 _5027.37¢ 0948 1 4484.3¢70097)} 27)
When the limit takes effect, Equation (27) transforms to:
T (t) =1200e %%%* +300+1593.23¢ 294 —1893.23¢ %04 8)
+543.07¢709724 _5027.37e 004" 1+ 4484.3¢ 007
and therefore:
T (t) = 300 +3363.3e 202 —6920.66 004" 1 4484 3¢~ 007 (29)

4. Control Problem, A simulation Approach

Equation (3) is of the control form, considering f(u) =T, as an independent variable, i.e.
input. So, the control problem is to design a control strategy such that the ball (object)
temperature can be adjusted via an independent input e.g. constantT, . The rate of
temperature variation and changes cannot be tuned, unless either a controller (such as a
PID) is used to shape the dynamical behavior, or change of the physical situation. To
signify the possibility of using HPM in control problem, equation (9) (and of course (10))
is numerically simulated according to Figure 1.
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Figure 1: Simulation block diagram of the heat transfer dynamic under simulink

In Figure (1) PI controller in not activated yet. It is kept for the next controlling stage.
The Procedure is as follows:

Equation (29) is a time domain function and implicitly be affected by input, so it
describes an open loop time response of the dynamic. In other word, it is a linear time
dependent series, representing a nonlinear system behavior. Hence, the linear system
theory and of course, the design procedure can be applied with a possible amount of
uncertainties and discrepancies. Primarily the Laplace Transform equivalent is achieved
as:

300  3336.3 6920.6 4484.3
T(S)=—+ +

- (30)
s $+0.0224 $+0.0448 s+0.0672

A division to input Laplace transform i.e. —2 releases the implicit dependency of the
s

above function from the input and derives the system function M (s) which is equal to:

T(s)  4s®+0.317s? +0.0193s +.000067

T,(s) s°+0.1344s% +0.00555 +0.000067

Since a closed loop control is of interest, an inner (open) loop transfer function i.e.
M (s)

M(s) = (31)

G(s) =———— is derived as follows:
1-M(s)
453 + 0.317552 + 0.01927s+ 0.000067
G(s) = 5 (32)
—s(3s“ +0.183s+0.01375)

Similarly, acting the same procedure described for 2" order HPM, leads us to have the
following open loop transfer function:

4s? + 0.343s+ 0.001

G(s) =
©) -5(3s® +0.276)

(33)
5. Results and Discussion

The same input i.e. T, =300°K is applied into two parallel systems shown in Fig.2,
simultaneously.
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Figure 2 The heat transfer dynamic together with the HPM based model

5.1. A 2" order approximation of v

The approximated model is considered as equation (33). It is used inside a temperature
control loop according to Figure (2). The responses and the relevant open loop error (The

controller is not working yet) are shown in Fig (3) and (4) respectively.
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Figure 3: The ball temperature and the estimated behavior according to HPM,
considering a 2™ order approximation of 1
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Figure 4:The error between the ball temperature and HPM estimated

To be able to compare the outcome, a normalized cost function, as an error index, in terms
of the squared error with respect the actual squared value in a certain time (350 seconds) is
defined. The normalized cost function is a few more than 2 %, i.e. 2.4191 %. To verify the
significance of the HPM linearization method, the model is located inside the loop and
controlled via a simple and classic PI controller. Due to unavoidable approximation, the
index increases and reaches to 18.04 %. The results can be seen in Fig (5), (6).

me—— HPM Linesrized Model, 2 Terms
The Dall Ternperature

Temperature (= K}

Timne (zech

Figure 5: The closed loop ball temperature and the HPM estimated
when a 2" order approximation v is considered
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Figure 6: The error between the ball temperature and the HPM estimated

5.2. A 3" order approximation of v

The model is described by equation (32) and used as a plant in Figure (2).The output
temperature i.e. step responses are then plotted in Figure 7.

30 T

M Lingarized Model
| Temperature

Temperature (= K)

T {zec)

Figure 7: The ball and the HPM linearized model temperature,
considering a 3" order approximation of V

In spite of the difference especially at the beginning which estimates a rapid change of
the temperature, it chases the actual temperature behavior soon after. The relevant error
can also be seen in the Figure 8.

329



J. Ghasemi & A. Ranjbar Noei/ I/M?C, 03 -04 (2013) 321-333.

8

Tomperaturs  K)

Tirrst {6}

Figure 8:The temperature error between the HPM linearized model and the nonlinear model

The appropriate cost is less than 2 percent which seems improvement over the similar case
i.e. the 2" order approximation. The responses error between two systems when the
controller is used is plotted in Figure 9 and Figure 10.
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Figure 9:The temperature error between the linearized model by homotopy
perturbation method and the nonlinear model in a closed loop
PI controlled (a 3 order approximation of V' is considered).

Although, with respect to the Figure 8, the error shows a bit growing, the index is small (18
%). Still the overall performance in terms the dynamic specifications, i.e. transient
behavior and the steady state error is satisfactory. The unestimated dynamic may have
been appeared in this situation. One may use different scheme to compare according to the
other indices such that chosen in [16].

Meanwhile, the error index is helpful to have an overall estimation of uncertainties. This
can be used to overcome the discrepancy by designing a robust controller. Another
possible way of treatment the error and/or decreasing the difference may be achieved by
letting two controllers are designed separately. This is a normal situation, especially when
the dynamic is not known. Hence the controller will be designed only by itself, acquiring
the information via an estimated dynamic. However the controller will be showing its
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effectiveness by increasing the simulation times to 700 seconds. Therefore the result is
showing the effectiveness of the algorithm (shown in Figures10 and 11).
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Figure 10:The ball and the HPM linearized model temperature in the closed loop control
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Figure 11: The error between the closed loop ball temperature
and the estimated one in 700 seconds

More promising with the last case, the normalized cost is getting better and is reaching to
13.2%.

6. Conclusion

The Homotopy Perturbation Method (HPM) is introduced as a linearizing technique as a
novel idea. This method is used to approximate the nonlinear dynamic with a linearized
model providing high level of accuracy. The significance of the proposed method is shown
by applying the HPM estimated model inside the closed loop considering a conventional
controller. Since a nonlinear dynamic is inherently modeled by an infinite number of time
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series functions, it must be practically truncated. Indeed a robust controller may cope with
the occurreduncertainties. However it is numerically shown that the HPM and especially
with a 3" order v, provides a satisfactory outcome.
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Appendix:
Table 1: The specification of the Ball [11]
The Abbreviation Showing Unit Value
m mass of the ball kg 0.26138
C Specific heat of the ball JI(kg-°K )
Cy initial Specific heat of the ball JI(kg-°K ) 420
A surface area if the ball mn2 5.02654x1073
& Emitance (Max) 0.85
P density of the ball 7800
h the convective cooling coefficient WI(s-m"2-°K ) 350
B 9.44x107%
Table 2: The PI Controller Coefficients when it is needed
The Controller Location Proportional Gain, K, Integrator Gain, K;
P1 Controller in Nonlinear system 1 0.01
P1 Controller in HPM Linearized system 1 0.01
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