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The practical and theoretical importance of the MKP has led to a large body of literature on 
both exact and approximate solution approaches. Freville [5] provides an excellent 
overview of the literature on the MKP and Freville and Hanafi [4] provide a survey of 
recently developed methods. Subsequently, Hanfi and Glover [6] offered an exploitation of 
nested inequalities and surrogate constraints on the MKP better than that proposed by 
Osorio et al. [9], but did not offer 
computational results. Also, Akcay et al. [1] proposed a greedy heuristic ordering item by 
their value multiplied by the maximum number of copies of an item that could be 
accommodated with available resources. 
Many real applications lead to very large scale multiple choice multidimensional knapsack 
problemsthat can hardly be addressed using approximate algorithms. In here, we proposed 
a method to solve MKP by using MCDM. This method finds an approximate solution for 
MKP. Proposed method uses an old idea in this field that in following explain it.  

2. The Multi-Dimensional Knapsack Problem 

A set of n items are packed in m knapsacks with capacities ܿ௜. Each item j has a profit pj 
and weight ݓ௜௝associated with placing that item into knapsack ݅. The objective of the 
problem is to maximize the total profit of the selected items. The MKP is formulated as:  
 

∑ ݔܽ݉ ௝ݔ௝݌
௡
௝ୀଵ                                         (1) 

.ݏ                                                          .ݐ
∑ ௝ݔ௜௝ݓ ൑ ܿ௜,      ݅ ൌ 1,௡

௝ୀଵ … , ݉           (2) 

௝ݔ א ሼ0,1ሽ݆ ൌ 1, … , ݊         (3) 

Equation (1) calculates the total profit of selecting item j and equation (2) ensures 
eachknapsackConstraint is satisfied. Equation (3) is the binary selection requirement.  
According to (1), the goal is to choose a subset of items with maximum total profit. 
Selected items must, however, not exceed resource capacities; this is expressed by the 
knapsack constraints (2). 

 

3. Using MCDM for MKP 

The one-dimensional 0/1-knapsack problem (KP) considers items j = 1, . . . , n, associated 
profits pj , and weights wj . A subset of these items has to be selected and packed into a 
knapsack having a capacity c. The total profit of the items in the knapsack has to be 
maximized, while the total weight is not allowed to exceed c. Obviously, KP is the special 
case of MKP with m = 1. 
The classical greedy heuristic for KP packs the items into the knapsack in decreasing order 
of their efficiencies ௝݁ ൌ   .௝as long as the knapsack constraint is not violatedݓ/௝݌
We use this approach to solve MKP. However, because there are multi constraint for MKP, 
calculating items efficiency is difficult in this status. Therefore, in order to solve this 
problem use MCDM. Initially, efficiency corresponding to each constraint for items is 
compute. The efficiency of item j in constant i have a value of ܧ௜௝ ൌ  ௜௝. The belowݓ/௝݌
MCDM model is used to rank items[7]:  

௞ܧ ൌ ෍  ݔܽ݉ ௜௞ܧ௜ݓ

௠

௜ୀଵ

 

.ݏ              ∑     .ݐ ௜௝ܧ௜ݓ
௠
௜ୀଵ ൑ 1,         ݆ ൌ 1, … , ݊                           (4) 

௜ݓ    ൒ ݅    ,ߝ ൌ 1, … , ݉       
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 The item with bigger ܧ௞ has better rank. Now, items are selected according to their rank 
and constraints by following algorithm: 
 
Algorithm  

1. j=0 
2. j=j+1 
3. Select the j’th item according to MCDM model  
4. i=1 
5. While i<m+1 do 
௝ݔ .6 ൌ 1 in i th constraint   
7. If i'th constraint satisfy  

a. i=i+1 
8. else 
9. Go to line 2 
10. end while 
11. if i=m then 
12. Put j'th item in S and xj=1 
13. Ck=Ck-wkj  k=1,…,m 
14. Go to line 2 

 

4. Numerical Example 

We have tested our algorithms with problems available at the OR-library [2,3] maintained 
by Beasley.  
We solved these problems on a Pentium IV PC (2.10 GHz and 4GB of main memory) 
using the proposed algorithms (coded in MATLAB 7.9). 
 
Table 1.Results on knapsack instances. For each instance, the table reports the best solutions found by Chu and 
Beasley as  reported in [2,3](C. & B.) 

n m Approximate method C&B 
60 30 7627 7772 
28 2 140477 141278 
34 4 2953 3186 

100 5 22763 24381 
100 5 23252 24274 
100 5 22962 23551 
100 10 20205 23064 
100 10 19477 22801 
100 10 20126 22131 
500 5 114244 120134 
500 5 113500 117864 

 
The results are shown in Table 1. The first two columns indicate the sizes (n and m). The 
next column reports results for the proposed approximate algorithm, whereas the last 
columns report the known best solutions found.  

5. Conclusion 

The multi-dimensional knapsack problem (MKP) is an eminently difficult combinatorial 
optimization problem. In this paper, we present a new approximate algorithm to solve 
MKP based on MCDM. The proposed method is very easy to implementation. An 
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interesting aspect of the current work is that it shows how the MCDM can be used to solve 
MKP. This approach may very well prove to be useful in developing fast, effective 
heuristics for other combinatorial optimization problems. 
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