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Abstract. In this paper, a fault diagnosis system based on discrete wavelet transform (DWT)
and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears
and bearings. DWT is an advanced signal-processing technique for fault detection and iden-
tification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation
and skewness of discrete wavelet coefficients of normalized vibration signals has been selected.
These features are considered as the feature vector for training purpose of the ANN. A wavelet
selection criteria, Maximum Energy to Shannon Entropy ratio, is used to select an appropriate
mother wavelet and discrete level, for feature extraction. To ameliorate the algorithm, various
ANNs were exploited to optimize the algorithm so as to determine the best values for ”num-
ber of neurons in hidden layer” resulted in a high-speed, meticulous three-layer ANN with a
small-sized structure. The diagnosis success rate of this ANN was 100% for experimental data
set. Some experimental set of data has been used to verify the effectiveness and accuracy of
the proposed method. To develop this method in general fault diagnosis application, three
different examples were investigated in cement industry. In first example a MLP network with
well-formed and optimized structure (20 : 15 : 7) and remarkable accuracy was presented pro-
viding the capability to identify different faults of gears and bearings. In second example a
neural network with optimized structure (20 : 15 : 4) was presented to identify different faults
of bearings and in third example an optimized network (20:15:3) was presented to diagnose
different faults of gears. The performance of the neural networks in learning, classifying and
general fault diagnosis were found encouraging and can be concluded that neural networks
have high potential in condition monitoring of the gears and bearings with various faults.
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7 Conclusions

1. Introduction

Condition monitoring of machines is gaining importance in industry because of the
need to increase reliability and to decrease possible loss of production due to ma-
chine breakdown. The use of vibration and acoustic emission (AE) signals is quite
common in the field of condition monitoring of rotating machinery. The vibration
monitoring of bearings and gearboxes due to their importance in industry and
their vibration signal characteristics has been an interesting topic for researchers
in this field. Therefore fault diagnostics and monitoring techniques for bearing and
gearboxes have been improved in a short time frame.
Interests in automating the fault detection and diagnosis of machinery and re-

ducing human errors have encouraged researchers to use soft computing methods.
Artificial neural networks (ANNs) and fuzzy logic are used for identifying the ma-
chinery condition, while the genetic algorithm is used to optimize the monitoring
system parameters. Fuzzy logic-based condition monitoring systems require ex-
pert’s information of machinery faults and their symptoms. Wu and Hsu [21] de-
signed a fuzzy logic- based fault diagnosis system for a gearbox system. However,
these systems are fast and close to human inference rules and qualitative measure-
ment techniques. On the other hand, monitoring systems based on ANNs do not
require any background on the machinery characteristics and can be trained using
a data set of machinery vibrations in different fault conditions.
Rafiee et al. [15] used a multiple- layer perceptron ANN to classify three different

fault conditions and one no-fault condition of a gearbox. Also the genetic algorithm
has been used as an effective tool for evolving monitoring systems and boosting
their accuracy and speed of fault diagnosis process.
One of the most significant issues in intelligent monitoring is related to feature

extraction. For this purpose different techniques of vibration analysis such as time,
frequency and time-frequency domain are extensively used.
Samantha and Balushi [16] have presented a procedure for fault diagnosis of

rolling element bearings through artificial neural network (ANN). The character-
istic features of time-domain vibration signals of the rotating machinery with nor-
mal and defective bearings have used as inputs to the ANN. Yang et al. [24] have
proposed a method of fault feature extraction for roller bearings based on intrin-
sic mode function (IMF) envelope spectrum. Fault diagnosis of turbo-pump rotor
based on support vector machines with parameter optimization by artificial immu-
nization algorithm has been done by Yuan and Chu [25]. Traditional techniques
like Fast Fourier Transform (FFT) which are used for analysis of the vibration
signals are not appropriate to analyze signals that have a transitory characteristic.
Moreover, the analysis is greatly dependent on the machine load and correct identi-
fication of much closed fault frequency components requires a very high resolution
data [4]. Wavelet transform (WT), a very powerful signal-processing tool can be
used to analyze transients signal and thus eliminating load dependency and is ca-
pable of processing stationary and non-stationary signals in time and frequency
domains simultaneously and can be used for feature extraction (Daubechies,1991).
WT can be mainly divided into discrete (DWT) and continuous (CWT) forms.
The discrete forms are faster with lower CPU time, but continuous forms gen-
erate an awful lot of data, so CWT has not been widely applied in the field of
condition monitoring. Lei et al. [11] have proposed a method for intelligent fault
diagnosis of rotating machinery based on wavelet packet transform (WPT), empir-
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ical mode decomposition (EMD), dimensionless parameters, a distance evaluation
technique and radial basis function (RBF) network. The effectiveness of wavelet
based features for fault diagnosis of gears using support vector machines (SVM)
and proximal support vector machines (PSVM) has been revealed by Saravanan
et al. [17]. Various artificial intelligence techniques have been used with wavelet
transforms for fault detection in rotating machines [1, 5, 12, 14, 19, 22, 23].
Above researches focused on fault diagnosis only for a specific device. In the

present study general fault diagnosis of gears and bearings has been investigated,
therefore a multiple layer perceptron ANN was designed to classify seven different
conditions of gears and bearings. The vibration signals acquired from the test-
rig were first preprocessed using discrete wavelet transform and then ANNs were
designed to classify different faults. Then the designed ANN was developed for
general fault diagnosis of gears and bearings. Three different case studies were
investigated in cement industry. The performance of designed ANNs in general
fault diagnosis was found encouraging.

2. Theory of Artificial Neural Networks (ANNs)

An artificial neural network is a nonlinear mapping tool that relates a set of inputs
to a set of outputs. It can learn this mapping using a set of training data and
then generalize the obtained knowledge to a new set of data [7]. Today, ANNs have
a variety of applications. As a classifier, one of the most commonly used ANNs
is the Multi-Layer Perceptron (MLP) network. There are three types of layers in
any MLP: the output layer, the input layer and the hidden layer. Each layer is
comprised of n nodes (n ⩾ 1) and each node in any layer is connected to all the
nodes in the neighboring layers. Each node can also be connected to a constant
number which is called bias. These connections have their individual weights which
are called synaptic weights and are multiplied to the node values of the previous
layer. Input and output data dimensions of the ANN determine the number of
nodes in the input and output layers, respectively, but the number of hidden layers
and their nodes is determined heuristically. The number of hidden layers and nodes
in an MLP is proportional to its classification power. However, there is an opti-
mum number of hidden layers and nodes for each case and considering more than
those amounts leads to over fitting of the classifier and made the computations
substantially increased. The value of any node can be computed through Eq. (1):

al+1 = f l+1(W l+1al + bl+1) (1)

Where al, blandl are output vector, bias vector and layer number, respectively. W
is the synaptic weights matrix of the MLP. f l is the activation function of the lth
layer and can be used to create nonlinear boundaries for the classifier. For example
”sigmoid” is an activation function which can be used to bound the node values
between 0 and 1. After setting the structure of the MLP ANN, it should be trained.
Training an ANN means adjusting the synaptic weights in a way that any particular
input leads to the desired output. It can be conducted by different algorithms. One
of the most commonly used learning algorithms is resilient back propagation, which
is used in this paper. For any learning algorithm, a limit should be defined to stop
the learning process, which is called Stopping Criterion and usually consists of the
following rules, or all of them simultaneously:
(a) The error root mean square in an epoch becomes less than a predefined value.
(b) Error gradient becomes less than a predefined value.
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(c) The number of epochs reaches a predefined number.
The error vector for an MLP is defined as the difference between the network

output vector and the desired output vector. Selecting an appropriate structure,
initial weights, training algorithm for an MLP and supplying it with enough train-
ing datasets, enables the MLP to operate as a powerful classifier. In this study, it
classifies the gears and bearings conditions into five faulty (two types of fault will
be created on a gear and three types of fault will be created on a bearing) and
two healthy conditions, according to the symptoms extracted from the measured
vibration signals.

3. Data Acquisition Experiments

The experimental setup to collect dataset consists of a one-stage gearbox with spur
gears, a fly wheel and an electrical motor with a constant nominal rotation speed
of 1400 RPM. The fly wheel is supported through two roller bearings. Electrical
motor, gearbox and fly wheel are attached together through flexible couplings as
shown in figure 1.
Tables 1 and 2 depict gears and bearings specifications. Vibration signals were ob-

tained in radial direction by mounting the accelerometer on the top of the gearbox
and bearing housing. ”Easy viber” data collector and its software, ”SpectraPro”,
were used for data acquisition. Table 3 shows accelerometer probe specifications.
The signals were sampled at 16000 Hz lasting 2 s.
In the present study, three pinion wheels whose details are as mentioned in Table

1 were used. One wheel was new one and was assumed to be free from defects. In the
other two pinion wheels, defects were created. The raw vibration signals acquired
from the gearbox when it is loaded with various pinion wheels discussed above.
The vibration signal from the piezoelectric transducer (accelerometer) is captured
for the following conditions: Good Spur Gear, Spur Gear with tooth breakage, and
Spur Gear with face wear of the teeth.
For bearing vibration signal acquisition four Self-aligning ball bearings whose

details are as mentioned in Table 2 were used. One new bearing was considered as
good bearing. In the other three bearings, some defects were created and then var-
ious bearings were installed and the raw vibration signals acquired on the bearing
housing. So the vibration signals were captured for the following conditions: Good
Bearing, Bearing with spall on inner race, bearing with spall on outer race, bearing
with spall on ball. Fig. 2 depicts some of the acquisition signals in time domain for
various gears conditions.
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Table 1: Gear wheel and pinion details.

Parameters Pinion wheel Gear wheel

Outer diameter 63 93
No. of teeth 40 60
Module 1.5 1.5
Normal pressure angle 20◦ 20◦

Top clearance 0.3 mm 0.3 mm
Material C.K.45 C.K.45

Table 2: Bearing details.

Description Self-aligning ball bearing

Designations Bearings with tapered bore 1209K
Outer diameter 85
Inner diameter 45(taper1:12 on diameter)

Table 3: Accelerometer probe characteristics.

Description Multi-Purpose Accelerometer,
Top Exit Connector / Cable, 100 mV/g

Sensitivity 100 mV/g
Frequency Response (±3dB) 30-900,000 CPM
Dynamic Range ±50 g, peak
Max Temp 121◦C

4. Feature Selection

The process of computing some measures which represent a signal is called feature
extraction. Wavelet based analysis is an exciting new problem solving tool for the
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mathematicians, scientists and engineers. It fits naturally with the digital computer
with its bias functions defined by summations not integrals or derivatives. Unlike
most traditional expansion systems, the basis functions of the wavelet analysis are
not solutions of differential equations. In some areas, it is the first truly new tool
we have had in many years. Indeed, use of wavelet transforms requires a new point
of view and a new method of interpreting representations that we are still learning
how to exploit.
In the early studies, Fourier analysis has been the dominating signal analysis tool

for fault detection. But, there are some crucial restrictions of the Fourier transform.
The signal to be analyzed must be strictly periodic or stationary; otherwise, the
resulting Fourier spectrum will make little physical sense [13]. Unfortunately, gears
and bearings vibration signals are often non-stationary and represent non-linear
processes, and their frequency components will change with time. Therefore, the
Fourier transform often can not full fill the gears and bearings fault diagnosis task
pretty well. On the other hand, the time-frequency analysis methods can generate
both time and frequency information of a signal simultaneously through mapping
the one-dimensional signal to a two dimensional time-frequency plane. Among all
available time-frequency analysis methods, the wavelet transforms may be the best
one and have been widely used for gears and bearings fault detection [20].

4.1 Theoretical Background of Wavelet Transform

The wavelet transform (WT) is a time-frequency decomposition of a signal into a
set of ’wavelet’ basis functions. In this section, we review the continuous wavelet
transform (CWT) and the discrete wavelet transform (DWT). Figure 2 shows sam-
ple signals in time domain for various gears conditions.
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4.1.1 Continuous wavelet transform (CWT)

The continuous wavelet transform of a time function f(t) is given by the equation:

T (a, b) =

∫ +∞

−∞
f(t)ψ∗

(a,b)(t)dt (2)

where * denotes complex conjugation and

ψ(a,b)(t) =
1√
a
ψ(
t− b

a
)(a, b ∈ R, a ̸= 0) (3)

is a member of the wavelet basis, derived from the basic analysis wavelet ψ(t)
through translation and dilation. As seen in Eq. (3), the transformed signal T(a,b)
is defined on the a-b plane, where a and b are used to adjust the frequency and
the time location of the wavelet in Eq. (3). A small a produces a high-frequency
(contracted) wavelet when high-frequency resolution is needed. The WT’s superior
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time- localization properties stem form the finite support of the analysis wavelet:
as b increases, the analysis wavelet transverses the length of the input signal,
and an increases or decreases in response to changes in the signal’s local time
and frequency content. Finite support implies that the effect of each term in the
wavelet representation is purely localized. This sets the WT apart from the Fourier
Transform, where the effects of adding higher frequency sine waves are spread
throughout the frequency axis.

4.1.2 Discrete wavelet transform (DWT)

Discrete methods are required for computerized implementation of the WT. The
DWT is derived from the CWT through discretization of the wavelet ψ(a,b)(t). The
most common discretization of the wavelet is the dyadic discretization, given by:

ψ(j,k)(t) =
1√
2j
ψ(
t− 2jk

2j
) (4)

Where a has been replaced by 2j and b by 2jk[19-20]. Under suitable conditions Eq.
(4) is an orthonormal basis of L2R, and the original time function can be expressed
as:

f(t) =
∞∑

j=−∞

∞∑
k=−∞

C(j, k)ψ(j,k)(t) (5)

c(j, k) =

∫ +∞

−∞
f(t)ψ∗

(j,k)(t)dt (6)

Where cj,k are referred to as wavelet coefficients. A second set of basis function
ϕ(t) called scaling function is then obtained by applying multi-resolution approxi-
mations to obtain the orthonormal basis of ψ(t):

ϕ(j,k)(t) =
1√
2j
ϕ(
t− 2jk

2j
) (7)

The original time function can now be written as:

d(j, k) =

∫ +∞

−∞
f(t)ϕ∗(j,k)(t)dt (8)

Here, the dj,k, which are called the scaling coefficients, d0,kis the sampled version of
f(t), represent a jth order resolution discretization of f(t). The scaling coefficients
and the wavelet coefficients for resolutions of order greater than j can be obtained
iteratively by

dj+1,k =

∞∑
i=−∞

h(i− 2k)dj,k (9)

cj+1,k =
∞∑

i=−∞
g(i− 2k)cj,k (10)
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The sequences h and g are low-pass and high-pass filters derived from the original
analyzing wavelet ψ(t). The scaling coefficients dj,k represent the lower frequency
approximations of the original signal, and the wavelet coefficients cj,k represent the
distribution of successively higher frequencies. The inverse DWT yields a difference
series representation for the input signal d0,k in terms of the filters h and g and
the wavelet coefficients cj,k:

dj,k =

∞∑
i=−∞

h(k − 2)dj+1,i +

∞∑
i=−∞

g(k − 2i)cj+1,i (11)

The wavelet filters adopted determine the quality of the wavelet analysis. For ex-
ample the for Daubechies wavelets of length 2:

h(0) =
1
n
√
2
, h(1) =

1
n
√
2
, g(0) = h(1) , g(1) = −h(0) (12)

Since the input signal f(t) is discretized into N samples, Eqs. (9) and (10) can be
written in the form of matrix:

d1,1
c1,1
d1,2
c1,2
...

d1,N/2

d1,N/2


= TN



d0,1
c0,2
d0,3
c0,4
...

d0,N−1

d0,N


Where

TN =



h(0) h(1) 0 . . . □
g(0) g(1) 0 . . . □
0 h(0) h(1) 0 □
0 g(0) g(1) 0 □
□ □ 0

... □
...

... 0 h(0) h(1)
□ □ 0 g(0) g(1)

h(1) 0
... 0 h(0)

g(1) 0 □ 0 g(0)


(13)

The scaling coefficientsdj+1,k(k = 1 ∼ N/2j+1)and the wavelet coefficientsCj+1,k of
the (j+1)th order resolution can be obtained by applying theN/2j ×N/2j matrix
TN/2j to the scaling coefficients of the jth order dj,k(k = 1 ∼ N/2j). When the

number of data points is N = 2i, all of the wavelet coefficients are obtained after
(i − 1) iterations of Eq. (13). The inverse DWT is performed in a similar manner
by straight forward inversion of the orthogonal matrix TN .
The wavelet analysis has the advantage of better performance for non-stationary
signals, representing a time signal in terms of a set of wavelets. They are constituted
for a family of functions which are derived from a single generating function called
mother wavelet, although dilation and translation processes. Dilation is related
with size, and it is also known as scale parameter while translation is the position
variation of the selected wavelet along the time axis. This process is illustrated in
figure 3.
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For gears and bearings fault detection, the frequency ranges of the vibration signals
that are to be analyzed are often rather wide; and according to the Shannon sam-
pling theorem, a high sampling speed is needed, and sequentially, large size samples
are needed for the gears and bearings fault detection. Therefore, it is expected that
the desired method should have good computing efficiency. Unfortunately, the com-
puting of continuous wavelet transform (CWT) is somewhat time consuming and
is not suitable for large size data analysis and on-line fault diagnosis. The discrete
wavelet transform (DWT), which is based on sub-band coding, is found to yield a
fast computation of Wavelet Transforms. It is easy to implement and reduces the
computation time and resources required. Hence, it is taken up for this study.

4.2 Mother WaveletSelection

One of the most significant issues in wavelet transform is related to mother wavelet
selection. For this purpose researchers have used various methods, such as the
genetic algorithm [15], decision tree [18], etc. Entropy is a common concept in
many fields, mainly in signal processing [26]. In the present study, the ”shannon
entropy” will be used in various fault conditions after data preprocessing of wavelet
transform and a wavelet selection criteria are used to select an appropriate mother
wavelet for feature extraction.

4.2.1 Maximum Energy to Shannon Entropy ratio criterion

An appropriate wavelet is selected as the base wavelet, which can extract the
maximum amount of energy while minimizing the shannon entropy of the corre-
sponding wavelet coefficients. A combination of the energy and shannon entropy
content of a signal’s wavelet coefficients is denoted by energy to shannon entropy
ratio [3, 8] and is given as

ξ(n) =
E(n)

Sentropy(n)
(14)

Where the energy at each resolution level n is given by

E(n) =
m∑
i=1

|Cn,i|2 (15)
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The total energy can be obtained by

Etotal = −
∑
n

□∑
i

|Cn,i|2 =
□∑
n

E(n) (16)

Where ′m′ is the number of wavelet coefficients and Cn,i is the ith wavelet coefficient
of nth scale. Entropy of signal wavelet coefficients is given by

Sentropy(n) = −
m∑
i=1

pilogzpi (17)

Where pi is the energy probability distribution of the wavelet coefficients, defined
as:

pi =
|Cn,i|2

E(n)
(18)

With
∑m

i=1 pi = 1, and in the case of pi = 0 for some i, the value of pilogzpi is
taken as zero. The following steps explain the methodology for selecting a base
wavelet for the vibration signals under study:
1. In this study, Good Spur Gear, Spur Gear with tooth breakage, Spur Gear

with face wear of the teeth, good bearings, bearings with spall in outer race, inner
race and ball defects are considered. Total 98 vibration signals in time domain are
obtained in vertical directions for each gear and bearing conditions.
2. For healthy and faulty bearings, discrete wavelet coefficients (DWT) of vibra-

tion signals are calculated using 36 different mother wavelets. Haar, Daubechies
(db2 ∼ db10), Symlet (sym2 ∼ sym11), Coiflet (coif1 ∼ coif5), Bi-orthogonal
(bior1.1, bior1.2, bior3.3, bior3.1, bior2.8, bior2.6, bior2.4, bior2.2, bior1.5, bior1.3,
bior3.5), where discrete approximation of Meyer was selected.
3. Wavelet selection criterion was used to select an appropriate mother wavelet

using Energy to shannon entropy ratio as:
The total energy and total shannon entropy of DWT in third and fourth decompo-
sition levels are calculated for vibration signals at different conditions using healthy
and faulty gears and bearings. The total energy to total shannon entropy ratio for
each wavelet is calculated as shown in figure 4.
Compare of total energy to total shannon entropy ratio for different mother
wavelets shows little change from third to fourth levels as shown in figure 5 for
Daubechies mother wavelets. Therefore, third decomposition level was determined
to be the most appropriate level for this case study.
4. The wavelet having maximum energy to shannon entropy ratio is considered

for fault diagnosis of gears and bearings.
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5. Features Extraction and Faults Classification

Based on wavelet selection criteria, Bi-orthogonal (bior3.1) wavelet is selected as
the best base wavelet among the other wavelets considered. The vibration signal
associated with various conditions of gears and bearings with different gears and
bearings explained in Section 3 have been decomposed using ”bior3.1” wavelet.
The approximated and detailed coefficients for various conditions of gears with
various fault gears are shown in figure 6. From figures 6a-c, the signal ’s’ represents
the actual vibration signal where as ’a3’ represents the approximation at level 3
of bior3.1 wavelet and ’d1’ to ’d3’ represents the coefficients details at level 1 3,
respectively. The wavelet tree representation of the vibration signals gives a clear
idea about how the original signal is reconstructed using the approximations and
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details at various levels. The wavelet tree representation of the good pinion wheel
is shown in figure 6e. The coefficients obtained using this wavelet transforms are
further subjected to statistical analysis and the statistical features are extracted for
all the approximation and details coefficients of DWT. Root mean square (RMS)
value, crest factor, kurtosis, skewness, standard deviation, mean, shape factor,
etc., are most commonly used statistical measures used for fault diagnosis of gears
and bearings [6, 8, 18]. Statistical moments like kurtosis, skewness and standard
deviation are descriptors of the shape of the amplitude distribution of vibration
data collected from a bearing or gear. Therefore in present paper, author’s use
RMS, crest factor and statistical moments like kurtosis, skewness and standard
deviation as features to effectively indicate early faults occurring in gears and
bearings. These features are briefly described as follows:
RMS: is a statistical measure of the magnitude of a varying quantity.

RMS =

√√√√ 1

n

n∑
1

x2i (19)

Crest Factor: The crest factor or peak-to-average ratio (PAR) is a measurement of
a waveform, calculated from the peak amplitude of the waveform divided by the
RMS value of the waveform.

CrestFactor =
Peaklevel

RMS
(20)

Standard deviation: Standard deviation is measure of energy content in the vibra-
tion signal.

s =

√
n
∑n

1 x
2
i − (

∑n
1 xi)

2

n(n− 1)
(21)

Kurtosis: A statistical measure used to describe the distribution of observed data
around the mean. Kurtosis is defined as the degree to which a statistical frequency
curve is peaked.

Kurtosis = { n(n+ 1)

(n− 1)(n− 2)(n− 3)

n∑
i

(
xi − x

s
)4 − 3(n− 1)2

(n− 2)(n− 3)
} (22)

Skewness: Skewness characterizes the degree of asymmetry of distribution around
its mean. Skewness can be negative or positive.

Skewness =
n

(n− 1)(n− 2)

n∑
i

(
xi − x

s
)3 (23)

In the above equations xi is vibration signal data, x is mean of vibration signal
data and n is the number of vibration signal data. These statistical features are
fed as input to ANN, for faults classification.
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6. General Diagnosis of Bearings and Gears

To develop this method in the general diagnosis of bearings and gears a computer
program called ”fault detector” was provided. An image of this program depicted
in figure 7. Some of the program menus are briefly described as follow:
”Identify new machine” and ”Select existent machine” menus are used to define a
machine and train its corresponding network.
”Load signal” menu is used to upload a signal in time domain
”DWT” menu is used to apply discrete wavelet transform on the signal and extract
feature vector
”Analyze” menu depicts result of fault diagnosis by applying feature vector to
ANN.
In gears and bearings industrial applications three categories of machines are used:
machines with gears, machines with bearings and machines with both of gears and
bearings. For fault diagnosis of each category ANN should only cover corresponding
faults. For example ANN of machine with gear only covers Good Gear, Gear with
tooth breakage, and Gear with face wear of the teeth. The performance of the
proposed method for each of these categories is evaluated using three practical
examples in cement industry.
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6.1 Fault Diagnosis of Test-Rig Set

In first step we consider the fault diagnosis of test rig set that we have used for
data acquisition and ANN training.

6.1.1 Application of ANN for problem at hand and results

For each faults namely, Good Spur Gear, Spur Gear with tooth breakage, Spur
Gear with face wear of the teeth Good Bearing, Bearing with spall on inner race,
bearing with spall on outer race and bearing with spall on ball, 10 feature vectors
consisting of 20 feature values as mentioned before were calculated from the exper-
imental vibration signals (Sec. 3). Five samples in each class were used for training
and five samples are reserved for testing ANN. Training was done by selecting three
layers neural network, of that one is input layer, one hidden layer and one output
layer.

6.1.2 Results of ANN

The architecture of the artificial neural network is as follows:
Network type: Forward neural network trained with feedback
propagation
No of neurons in input layer: 20
No of neurons in hidden layer: Varied from 6 to 21
No of neurons in output layer: 7
Transfer function: Tangent-sigmoid transfer function in hidden
layer and sigmoid in output layer
Training rule: Back propagation

For hidden layer the necessary and sufficient number of neurons must be
selected. One of the problems that occur during neural network training is over
fitting. The error on the training set is driven to a very small value, but when new
data is presented to the network the error is large. The network has memorized
the training examples, but it has not learned to generalize to new situations. One
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method for improving network generalization is to use a network that is just large
enough to provide an adequate fit. In this study the numbers of neurons in the
hidden layer were selected by trial and error. A total of six networks with different
number of hidden layers with characteristics mentioned above were created for
classifying the faults. The training was done with 35 data set attributes and the
cross validation was done using 35 data sets. The efficiency of classification of
gears and bearings faults using above networks has been reported in tables 4
and 5. At first, as shown in these tables, increase of neurons in the hidden layer
improves the efficiency of classification. Number of neurons in the hidden layer is
optimized in 15 neurons and greater number of hidden layer neurons (18 or 21)
will not affect on efficiency. Therefore an artificial neural network with 20:15:7
layers was utilized for fault diagnosis. The overall average efficiency of entire
classification using ANN was found to be 100%.

6.2 Fault Diagnosis of a Gearbox

In this example vibration signal of a three axes gearbox is surveyed. This gearbox
is used to rotate a ball mill in cement industry. A section of the gearbox depicted
in figure 8. Six vibration signals were collected in 6 points (1, 2, 3, 4, 5 and 6 in
figure 8).

In the next step, the neural network which designed for test rig set was used for ball
mill gearbox trouble shooting. For this purpose six feature vectors were extracted
from six vibration signals. As mentioned above these signals were collected in 6
points of ball mill gearbox. The feature vectors were applied to the neural network,
respectively. Results of fault diagnosis were as follow:
Point 1: face wear of the teeth
Point 2: face wear of the teeth
Point 3: safe gear
Point 4: safe gear
Point 5: safe gear
Point 6: safe gear
These findings indicate the teeth wear on the first axis of gearbox. The accuracy
of the results was confirmed after gearbox inspection.
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6.3 Fault Diagnosis on Bearings

In this example vibration signal of a fan is surveyed. This fan is used as ID FAN in
cement industry. Figure 9 shows a schematic diagram of the fan. Vibration signal
was collected in point 1 because of temperature rise in this point.

6.3.1 Application of ANN for this problem

For each faults namely, Good Bearing, Bearing with spall on inner race, bearing
with spall on outer race and bearing with spall on ball, 10 feature vectors consisting
of 20 feature values were calculated from the experimental vibration signals (Sec.3).
5 samples in each class were used for training and 5 samples are reserved for testing
ANN. Training was done by selecting three layers neural network, of that one is
input layer, one hidden layer and one output layer.

6.3.2 Results of ANN for bearing fault diagnosis

The architecture of the artificial neural network is as follows:
Network type: Forward neural network trained with feedback
propagation
No of neurons in input layer: 20
No of neurons in hidden layer: 15
No of neurons in output layer: 4
Transfer function: Tangent-sigmoid transfer function in hidden layer
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Table 6: Girth gear and pinion characteristics.

Speed(RPM) Teeth no. Module Outer diameter

Girth gear 15 238 30 7200mm
Pinion 115 31 30 990mm

and sigmoid in output layer
Training rule: Back propagation

An optimization was done like first example. Eventually an artificial neural
network with 20:15:4 layers was utilized for fault diagnosis. Then the neural
network was used for ID FAN bearing trouble shooting. For this purpose the
feature vector was extracted from vibration signal and applied to the neural
network. Result of fault diagnosis was as follow:
Point 1: spall on ball of the bearing
The accuracy of the result was confirmed after bearing inspection.

6.4 Fault Diagnosis on Girth Gear

In this example vibration signal of a girth gear is checked. This girth gear is used
to rotate a ball mill in cement industry. Table 6 shows characteristics of this large
gear. A vibration signal was collected on journal bearing of its pinion.

6.4.1 Application of ANN

For each faults namely, Good Spur Gear, Spur Gear with tooth breakage, Spur
Gear with face wear of the teeth,10 feature vectors consisting of 20 feature values
were calculated from the experimental vibration signals (Sec.3). five samples in
each class were used for training and 5 samples are reserved for testing ANN.
Training was done by selecting three layers neural network, of that one is input
layer, one hidden layer and one output layer.

6.4.2 Results of ANN for fault diagnosis

The architecture of the artificial neural network is the same as first and second
examples; only number of neurons in output layer was selected 3.ANN optimization
was done like first example. Eventually an artificial neural network with 20:15:3
layers was utilized for fault diagnosis. Then this neural network was used for girth
gear trouble shooting. For this purpose the feature vector was extracted from vibra-
tion signal and applied to the neural network. Diagnostic results indicated breakage
and wear of the teeth. The accuracy of the result was confirmed after girth gear
inspection.

7. Conclusions

This paper has outlined the definition of the discrete wavelets transform and then
demonstrated how it can be applied to the analysis of the vibration signals pro-
duced by gears and bearings in various conditions and faults. A wavelet selection
criterion ”Maximum Energy to Shannon Entropy ratio” was used to select an
appropriate wavelet and Bi-orthogonal wavelet (bior3.1) was selected for feature
extraction. Five statistical features (Root mean square (RMS) value, crest factor,
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kurtosis, skewness, standard deviation) are extracted for all the approximation and
details coefficients of DWT. These features were fed as input to neural network for
classification of various faults of the gears and bearings. Three different examples
were investigated in cement industry. In first example a MLP network with well-
formed and optimized structure (20:15:7) and remarkable accuracy was presented
providing the capability to identify different faults of gears and bearings.
In second example a neural network with optimized structure (20:15:4) was pre-
sented providing the capability to identify different faults of bearings and in third
example an optimized network (20:15:3) was presented to identify different faults
of gears. The performance of the neural network in learning, classifying and general
fault diagnosis was found encouraging and can be concluded that neural networks
and wavelet transform have high potential in condition monitoring of the gears and
bearings with various faults.
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