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Plane Wave Propagation Through a Planer Slab
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Abstract. An approximation technique is considered for computing transmission and reflection coefficients for plane
waves propagating through stratified slabs.The propagation of elastic pulse through a planar slab is derived from first
principles using straightforward time-dependent method. The paper ends with calculations of enhancement factor for
the elastic plane wave and it is shown that it depends on the velocity ratio of the wave in two different media but not the
incident wave form.The result, valid for quite arbitrary incident pulses and quite arbitrary slab inhomogeneities, agrees
with that obtained by time-independent methods, but uses more elementary methods.
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1. Introduction

Wave propagation in inhomogeneous medium is a challenge for both theoretical research
and engineering practice. With the rapid development of science and technology, wave
motionstudy of the heterogeneous medium (atmosphere, ocean, earth-crust, functionally
graded materials and cycle grid structure, etc.) seems much more
important[26].Mathematically, the problem is treated by solving Helmholtz equation with
variable coefficient [2], which is explored by a few scholars to try to find a generalized
method applied in all cases. Meanwhile, all of parameters changed in uniaxial coordinate.
In astrophysics, Gans [5] discussed phenomenon of light wave under normal incidence and

*Corresponding author. Email: rkakar 163@rediffmail.com

©2013 IAUCTB
http://www.ijjm2c.ir



Rajneesh Kakar/ IJM?C, 03 -04 (2013) 259-273.

oblique incidence conditions in continuously variable medium. It is found that there is no
reflection but total reflection in geometrical optics in inhomogeneous medium and the total
reflection condition is given. Epstien [4] investigated reflection wave in an
inhomogeneous absorbing medium by solving wave equation with variable coefficient
based on hypergeometric function. The procedure represented that the reflection is always
very insignificant, except the case when conductivity is small and where we have
conditions very near to total reflection, which is the same as mechanism of transmission of
acoustic or electromagnetic wave in earth atmosphere. When refraction index varied with
the form as parabola, the asymptotic expansions of Weber’s function [25] was developed
bythe method of the steepest descent. The solution of the radio wave propagation in
inhomogeneous electromagnetic field was expressed in the form of the residue series. In
terms of uniform of seawater, Potter and Murphy [17] employed variables separation and
elliptic coordinates conversion to investigate wave equation in a medium with a particular
velocity variation. The result corresponded in part to actual underwater measurements and
it yielded a shadow zone as well as propagation of acoustic wave in atmosphere without
acoustic wave propagation. In elastic solid medium, Caviglia and Morro [3] studied an
elastic wave propagation in case that a uniaxially-inhomogeneous layer with certain
thickness,sandwiched between two homogeneous half infinite spaces. Then existence and
uniqueness for the solution were proved. The similar physical model has been established
by Mieczyslaw C. [15]. The couple systems of ordinary differential equation for amplitudes of
forward and backward waves were derived to obtain the analytical solution and explicit
expressions for reflection and transition coefficient.Robins [18] discussed the Helmholtz
equation for the case of horizontal stratification, both sound speed and density varying
continuously with depth.

The analytical solutions to forms of sound-speed and density were outlined in terms of
well-known special functions such as Bessel and Airy functions, which were capable of
giving good agreement with real density and speed profiles in marine sediments. Watanabe
and Payton [23] derived impulsive and time-harmonic Green’s functions for SH waves in
an inhomogeneous elastic solid. A critical frequency that distinguishes the wave nature of
the response was found in the case of a linear velocityvariation.Rovithiset al. [19]
investigated a vertical seismic wave response of inhomogeneous soil deposits over a
homogeneous layer on a rigid base. The problem is treated analytically leading to a closed
form analytical solution for the base-to-surface transform function. Peng and Liu [16]
introduced WKBJ approximate theory to investigate dispersion relations of Love surface
wave, when a vertical heterogeneous half-space with medium parameters that varied
continuously was covered with a certain thickness of homogeneous and isotropic elastic
medium.

Researchers had discussed the theory of plane waves such as; Sinha [20] studied the
transmission of elastic waves through a homogenous layer sandwiched in homogenous
media. Tooly et al., [22] discussed reflection and transmission of plane compressional
waves. Gupta [8] solved the problem of Reflection of elastic waves from a linear transition
layer. Agemi [1] studied the problem on the global existence of nonlinear elastic waves.
Gedroit et al., [6] solved the problem of finite-amplitude elastic wave amplitude in solids.
Gol'dberg [7] had taken interaction of plane longitudinal and transverse elastic waves,
Johnson et al., [10] discussed the nonlinear generation of elastic waves in crystalline rock.
Hughes [9] had taken the case of second-order elastic deformations in solids. Jones and
Kobett [11] studied the interaction of plane elastic waves in an isotropic solid. John [12]
discussed the interaction of elastic waves in an isotropic medium. Kakar and Kakar [13]
studied propagation of Love waves in a non-homogeneous elastic media. Kakar and
Gupta [14] also discussed propagation of Love waves in a non-homogeneous orthotropic
layer under ‘P’ overlying semi-infinite non-homogeneous medium.
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Many scientists had solved the problems of reflections and transmissions of elastic waves
from interface by using typical methods [21,24], but in the present paper, we drive the
solution of Navier’s equations by using time-dependent methods (which describes the
propagation of an elastic pulse through a planar slab of finite width). These methods are
much easier than the earlier methods used. We consider first the case of homogeneous
slab then inhomogeneous slab. The velocity is constant for homogeneous case but it is
continuously varying for non-homogeneous case. The time-dependent methods are
applied to solve the transmitted and reflected pulses.

2. Basic Concept

Consider an infinite absolutely rigid plane plate (screen/surface, which is well wielded
contact with the surrounding elastic medium. Let x-y-plane coincide with the plate (where
central part of the plane is shown). The z-axis is taken normal to the plate in the upward
direction. As horizontal section of the interface is shown and the media are taken in the
x-y-plane (-co<x<oo, -c0o<y<co). If we disturb the plate sufficiently rapidly in such a
manner that it remains parallel to itself (plane parallel moment; horizontal plane), then at
any instant of time the displacement of any point of the interface will be same. The

displacement vector u; is taken to be independent of x and y. the medium in front of the

interface will of course be compressed, while behind it, on the negative z-axis will be
stretched. The state will be transmitted in the medium in directions parallel to z-axis. The
problem is formulated by assuming the following assumptions.

e Media are taken to be continuous at the interface due to perfect welded contact,
with surrounding elastic medium, during the transmission of motion through the
interface. The media do not slip relative to each other, so that at the
interfaceresultant horizontal motions above and below are equal in pairs.

e The condition of the interaterrestrial contacts for the vertical motions are
analogous, there can be neither exploitation nor formation if intermediately

cavities at the interface during motion, then wi —w> =0, where Wi and w» are
the resultant vertical motions in the lower and upper media respectively.

3. Governing Equations and Used Method

The equations of motion of three-dimensional elasticity

oy, + P = P, M
The stress-strain relations (Hooke’s law)

o, = Aey 0, +2ue,, ()

The strain-displacement relations (Cauchy’s relations)
1
& _E(ui’j +u;,) (3)

Where, X, pu are Lamb’s Constant and p is the density of the medium, u, are the

displacement components, 517 are elastic constants, o are the stress tensor components,
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&, are the deformation tensor components, &, is the trace of deformation tensor, fl are

the volume force components.
Substituting Equation (3) in Equation (1), we get

o, =Au, 0, + pu, ; +u;,), “4)

i,i 0

Substituting Equation (4) and Equation (1) and simplifying, the Navier’s equation of
motion in terms of displacements can be obtained in the form:

(A+pu; ;+u, ;. + pf, = pi;, (%)
In vector form:
(A+)VV u+Nu+pf = pii,, (6)

In terms of rectangular Cartesian coordinates (6) can be written as

o’u 0v Ow o’u
A+ + + +NVu+pf. =p—s,
(A+4) [ x> oxdy Oxoz a pl=p or’
ou 0v 0w o’
A+ + + + VvV pf = p—o-, 7
( ﬂ)(ﬁxz axay awaz )TV U TPL =P @
ou  o'v  Ow ) o*w
A+ + + +uVw+ = .
(e p )[&cz aray T awaz ) THY TP =P
2 2 2
where, V? = 88 >+ 68 >+ 66 5 1s a Laplacian operator.
X y 4
In the absence of body forces the equation of motion in vector form reduces to
A+ )VV -u+ 1NVu = pii., (8)

The solutions of Equation (8) are given by

{ z z )
w=a, fl(t——j+f2(t+—ﬂ
a a

or

w=a,| f,(z-at)+ f,(z+at)]
(u,v)=(ax,ay)[fl(t—§j+f2(¢+§ﬂ (10)
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or

(u,v)= (ax,ay)[fl (z—bt)+ f, (Z+bt):|

The first term f, (Z—al),fl (Z—bl‘),f1 (t—ij,fl (t—%j in the above expressions
a

represents the transmission of waves in the positive z-direction i.e. outgoing wave or

advance wave and the second tennf2(2+at),f2(z+bl),fz(t+£j ’fz(t"'%j
a

represents the transmission in the negative z-direction i.e. incoming wave or retarding
wave. Here u,Vv,w are the components of . and they vary with time but they differ

only in the cosine of angles made by u, with the axis of co-ordinates @, @, &, . For sake

of convenience, the coefficient of a’s(ax,ay,az) are taken to be unity as they do not

affect the general behavior of the field variables. Since the terms of the above solution
functions are arbitrary therefore they have bounded derivatives up to second order.
In case of the present problem, the displacements are assumed as:

1. Incident Wave ; (Z = 5) in the medium M, (—OO <z<a,~0<x,y< OO):
W, =w, (Z C )
Where, cy is the velocity of propagation in medium M,

2. Reflected Wave; (Z = a) in the medium M,

Wy =Wy (z+¢t)
3. Transmitted Wave into the slab § (a <z<bh,—o<x,y< oo) :
W, =W (z-ct)
Where, cy is the velocity of propagation in M,
4. Wave reflected from the upper boundary (Z = E) of slab into the slab:
W =W (z + clt)
5. Wave transmitted into the medium M, from slab:

w,=Ww, (Z C )1.e. medium M| is similar to M,

4. Case of Single-Layer Slab

We shall assume that the slab lies perpendicular throughout to the z-axis in R’ , with
faces atz=a >0 and z=b>a, and is isotropic in the horizontal x and y directions

for slab 'S (a <z<bh,—o<x,y< OO). The incident wave has finite energy and

propagates in the positive z-direction, normal to the slab and incident from below.Under
the above assumptions the problem essentially becomes one directional. The propagation

velocity is ¢, outside the slab and ¢, inside the slab, where ¢,and ¢, are constants

withO < ¢, <c, (see Fig-1). The general form of the solution is taken as:
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Nz =t )+W o (z +ct)  if (~o<z <a) for(M))

W(z,t)= +(z —clt)+W7(z +clt) if(aéz Sb) for(S) (11)
W, =W, (z —cyt) if (b<z <) for(M,)
W:
ﬁ b Mz Co

W_G @W. g G
ﬁ 4 @ M, G

Figure 1. Single layer slab

4.1 Solution of the problem

The field variables W,, W _, W_and W, for the given value of W/, can be found from
the displacement and stress-boundary conditions at the interfaces. But in this case, we
have taken the coefficient of a’s(ax,ay,az) equal to unity. Therefore, we apply the

displacement boundary conditions coupled with travel-time of wave and using the lag in
time for the waves travelling in the same direction with different velocities of propagation.

At the interfacesz=a andz =b we assume that is W(Z, t ) continuous at all times £.

Therefore, at z =a this leads to

iW (z cot )+LWR (z+c0t):iW+ (z—clt)+LVK(z+clt) (12)

Co Co Co S

1 1 1 1
gW[(z—CO )_EW w(z+et)= c—lW+(z—cl )_C_IW (z+¢p) (13)

Adding Equation (12) and Equation (13), we get

2 () =W (2 et) =AW (zret) 14

Co €6 CoC
or
o) _
W (z—ct)= s i‘lq W, (z—cyt) + zz +2 W (z+c) (15)

Subtracting Equation (12) and Equation (13), we get
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2 - +
C_OW w(z+ct)= CICOCICO W;(z—clt)+q%—:°W(z+clt) (16)

or

We(z+cpt) = G _CCO W, (z—ct)+ 012";60 W (z+¢p) (17
1 1

Combining Equation (15) and Equation (17), we get

¢, —¢C 2¢
Wel(z+¢t)= CZ +Ci W, (z—c,t)+ . +06‘1 W (z+ct) (18)

Now Equation (15) and Equation (18) must hold at all times t. therefore put u = a —cf,

then ¢ = (a —Uu ) / ¢, and Equation (15) becomes

W () =—25 W,( 0 (a- ut)} STy Qa—u) (19
¢, +¢ ¢ ¢, +¢

Since this holds for all u, we can put u =z —¢,f and get

W (z—ct)= VI/IECI-FC—O(Z—G—Clt)j-FCO_ClVV_(CI-Z+CJ).

¢ + (& (& ¢ + (& (20)

Similarly if we put v=a+c¢yt, then = (V - a) / C, and Equation (18) becomes

W, (v) = 0= (20— vy +— W_[a—i(a—v)J
¢, +¢ ¢, +¢ < @1

Whenv =z + ¢, we get

- 2
% =4 W,(2a—z—cyt)+ S _w (a%——(z a- cot)J
¢, +¢ ¢, +¢ C, (22)

Equation (20) and Equation (22) give W, andW, intermsof W, and W_It must be
noted that all the above relations are hold for values of z and t.

Wi(z+cit)=

Similarly, at the other interface z = b, we get

_cl

W (z+et)=2"Cw (2b-z-cy),
¢, +¢ (23)
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Wo(z—cyt)= 26 W+(b+z—l(z—b—cot)j
0

¢, t¢ 24)
giving W_and Wrin terms of W for all z and t.
Now if we combine Equation (20) and Equation (23) we get
2
W (z—ct)=Wy(z— clt)+( j W.(2b-2a+z—ct),
0 + 1 (25)
where,
Wy(z—ct)= w, (a +—(z a— clt)j
0 TG G (26)
Equation (25) can be solved for W, by iteration, we get
. 2n
C,—C
= Z[ 0 lj W,(2n(b—a)+z—c,t)
o\ G ¢ @7
2 - 2n
c C,—C
= Z( 0 lj W,(a+2n (b-a)+ 2 (z—a- clt)j
[N R A N e ¢ & 28)
Also, Equation (23) can be solved for W_ by iteration, we get
S ~6
W(z+cgt)= W .(2b—z—ct)
¢, +¢
2n+1
c,—C
—Z 70 w2n(b-a)+2b—z—cp). (29)
o\ Gy ¢

Using, Equation (27) and Equation (28) to find W, from Equation (19) and W, from
Equation (17).

Discussion
1. If the incident wave is Wi bounded, then W) in the Equation (26) is also bounded, and

hence series in Equation (27) and in Equation (28) are convergent.
2. If the incident wave W, is a periodic having time period (2b—2a)/c, then W,

will also be periodic with time period (2b —2a) / ¢, . Hence, Equation (27) reduces to
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2n
W+<z—clt)=Z[C°‘Cl] Wy(z—ci)
n=0

TG
2
c,+c
=, (z—et) =2y ()
CoC
or
30)
c,+¢ c (
W (z—ct)=""—"W,| a+2(z—a—qt)
G G
(c+e) . . : ,
The factor ————in Equation (29) is called an amplitude enhancement factor. The

4cyc,
enhancement factor depends on the ratio of ¢, /¢, but not the incident wave form. Hence,

enhancement factor can be written as

&= (Co +Cl)2 _ (1+77)2
4c,c, 4n

cl
Where, 7 =—
o

(& . . .
As,m = —L  increases, the amplitude enhancement factor decreases and vice-versa.
C
0

Using Equation (29) and Equation (24), the transmitted wave is

2¢, (c,+ ‘31)2

W.(z—cyt) = WO(Z—clt):W,(a+c—°(b—a)+z—cot)J
(3D

¢, te 4 ¢

Using Equation (29) and Equation (22), the reflected wave is

deye, (¢t cl)2
(¢ + 61)2 4cc

¢, —c
We(z+c,t) =2

(W,(2a—z—cot)— W,(2a—z—c0t)j=0

Co 16

(32)

We observe that the transmitted wave has the same amplitude as that of the incident wave
but it lags in time due to the width of the slab. The amplitude of the reflected wave is zero.

This means that the slab is transparent to any pulse train with resonant time period.

5. Case of Multiple-Layer Slab
We now consider a multiple-layer slab having » layers with interfaces a, ,
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. . . .th
O<a,<a; <-oveveeeeees <a, and propagation velocity ¢, in the j" layer.

The general form of the solution is taken as:

W,(Z—c0 )+W (Z-I—CO) if(—oo<z£a0)
W(z,t)z w/ (Z—cjt)+Wf (Z+Cjt> if(aH SzSa}) for(Mz)
W, =W, (z—c,,t) if (a, <z <) (33)

5.1. Solution of the problem
The solution has been found in the same way as it is done in the previous case for single

layer; here we just piece together the solutions of previous section. Now from Equation
(20) we have

2 _ —
WO (z-c,t) = —S% ) [ S (g ckt)] + ST O —(z—a,, +c,t)).
Cp T ¢y Cr [

(34)

M: ﬁ Wr dn M:
w. ) as {} W-
w. ) a: {4 W-
w. I ar |} W-

M, {+ Wi w= {12 M,

Figure2.Multiple layers slab

A similar expression gives Wfk_l) in terms of Mk_z) and W_(k_l) if we combine the

expressions obtained for W+(j ) (1<j<m)and sethO) =W, , we get

(Z c,t)= ﬁ( ] [aO+Z—Aa+ (z—a, +cmt)]

m m AC ‘—i m— l
_z[l—[ c,+1 +C j[c/ _jc/'iJ ( Z i Aa ; (Z a’" 1 +cmt)]‘

Here we have Aa; =a;, —a;and Ac, =c,,, —c;and for simplicity we put Z;":;; =0,

+¢;

t+1

268



Rajneesh Kakar/ []M?C, 03 -04 (2013) 259-273.

In the same way we have

2 _
W_(k)(z-l-ckt) =% e [ak +m(z—ak +ckt)j
c

Cr T &
(36)

Coy —C
—Se Sy (g —(z—a, + ¢b)).
Con TC;

Similar expression gives W'Y in terms of WU and W+ forW (k< j<nm)and
(n+1)

combining these expressions and setting W

n AcA
Me-an= Z,;(Hc +c]( +c]

/+1

U (a +Z Aa, ——’(z ak+ckt)j (37

% G C
Put Equation (36) and Equation (29), we get

=0 , we get

w"(z—c t)=C, W, [a +Z—Aa + (z—a, , +cmt)j
c

i=0 Ci+1 m

» Ac,
_ZZ( "= I/Ck DD I/Dk 1)( o j[c ; J

k=1 j=k

m— 1c
W( (a + Z 5 Aa. +z Aa; +—’(z a, +cmt)j.
i=k+1 c i m (38)

Where,
I~ 2c Vi 2¢,

i=0 Ciy1 TG ‘ 0 Cin

+¢ (39)

Equation (38) can be solved by iteration, as we did for Equation (25), the solution is very
complicated therefore for sake of convenience, we developed, as for Equation (27), the

series solution is

W (z—c,t)=> W (z—c,1)
p=0 (40)
Where,

(z c,t)=C, [aO+Z—Aa —(z-a, +cmt)j

(41)

there is no reflection at the interface, and
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3

Wz(:)(z—cmt)=_z ” (Cot/Ce)D,, | Dy l)(CACk | ](C - ]

k=1 j=k kT Chi J\ Cjn TE
(m) — 2c
xWy' | a, + Z % pa, +Z Aa, +—(z a, +c,t) |.D_ =[]—=
i=k+1 C i=k cj cm i=0 cl+1 +cl (42)

involves 2p reflections at interfaces within the slab (see fig. 2)

W, and W, are calculated as done in Equation (22) and Equation (24)

A 2
We(z+cyt)= % W,(2a—z—cyt)+ S _w (a +—(z a-— cot)]
¢, +¢ ¢, +¢ C, 43)

Wi (z—c,,t)= —W [b"‘ n_:_lc (z—b- Cn+1t)j

(44)
Discussion
If the incident wave W, is a periodic having time period (2Aa;)/ ¢, then ™ layer is

resonant, and will appear transparent to the waveforms Wf “and w/ 1 The delay in

each pulse time is

a0+2(2Aaj)/cj (45)

6. Case of Continuous Slab
Finally, we take the case of continuous slab in which the wave velocity varies continuously

and differentially across the slab.

c(a) if(—oo<z£a)
c=c(z)|c(z) if(aSsz)

c(b) if (h<z <) )

6.1. Solution of the Problem

This case be treated as the limiting case of multiple slab of preceding section and it can be

dc(z
solved by replacing a; by z, and let n — 0, Aa,dz, Ac, / Aa; —> # but a =a,and
Z
b = a, remain constant. Therefore for limiting case,
m—1 Z
C, cla
D —*Aa, > I de
i=0 cj a C(Z) (47)
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Ac, /Aa, !

¢, tc 2¢(z) (48)
Also,
-1
2ci+1 — (1_ ch j
cHl + cl 2ci+1 (49)
Hence,
-1
nl D¢ ml 1 Ac
C )'= il = 1- —LAa
( mil) [H ci+1 + Cz J H( 2Ci+1 Aal IJ
m-1 m-1 i-1 Ac. AC
“1-5 L ag s ( L Ay J L2 g,
i=0 2cl+l i=0 j=0 2ct+l Aai 2Ci+l Aaj (50)

=

For n — oo Equation (50) reduces to

<, —>1—J-Z c_/(u)du+r Cw _c/(v) dvdu —---
m-1 a 2c(u) ada 2c(u) 2¢(v)

/ P
1 zc(u) 1 c(a)
= exp[—EL _ch(u) uJ = exp(—g(log c(z)—log c(a))] = (E) -

Similarly we can find that

-1
2ci+1 :(l_i_ AC]. J
Ci+1 + ci 2Ci+1

(52)
From Equation (51), it follows that
b
(Dm—l )_1 - [La)}
c(z) (53)
Therefore, Equation (34) becomes by using Equation (52) and Equation (53)
(@) ctw),
W (z—c(2)t) = @ W, a +L % u—c(a)t
VA, (54)
@ | <W) e
L (C(y)j 2c(y)du /8 (y L c(u)du + c(y)tj dy

And Equation (36) becomes by using Equation (52) and Equation (53)

Wf(y—c(y)t)=+_|. <) ﬂduW+ X+ ﬂa’u—c(x)t dx
yLe(x) ) 2e(x) v c(u) (55)
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Comparing Equation (54) and Equation (55)

5
W (z—c(2)t)= (ZEZ;] w, (a + J.: %a’u - c(a)t]

s(e(z)Y? '(p) e (x) o(x)
”(cm] 2(7) 2¢(x) ( T c(u) chd” C<X>fjdxdy

(56)
Equation (56) can be solved for W by iteration. Hence, we have
o0 /
W, (z=c(2)0) = Y Wy, (= c(z)t)[c(")j
p=0 ( ) (57)
Where,
W,(z—c(2)t) = (c(“)j ( +f O c(a)tJ
(2) “c(u) (58)
involves no reflections, and
i W,,(z—c(2)t) = J. .[h (z) te ) € ()
70 c(x)) 2e(y) 2e(x)
W, ( ) g (€ g, c(x)tj dxdy (59)
v e(u) 7 e(v)
involves 2p reflections.
Equation (43) and Equation (44) gives
Wi(z+c(a)t)=W (z+c(a)t) if z<a (60)
W.(z—c(a)t)=W _(z—c(a)t) if z>b (61)

7. Conclusion

We observe that the transmitted wave has the same amplitude as that of the incident wave
but it lags in time due to the width of the slab. The amplitude of the reflected wave is zero.
This means that the slab is transparent to any pulse train with resonant time period. The

time dependent method is much easier than other methods.

The incident wave W, is a periodic having time period (2Aa j) /¢, for multiple slab.
The jth layer is resonant in the multiple slab, and will appear transparent to the waveforms
W/ and W’*' . The delay in each pulse time is @, + z (2Aa;)/c;.

+
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