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Abstract. In this paper, the ambiguity of finite state irreducible Markov chain trajectories
is reminded and is obtained for two state Markov chain. I give an applicable example of this
concept in President election.
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1. Introduction

Information theory is a branch of applied mathematics and electrical engineering
involving the quantification of information. A key measure of information in the
theory is known as entropy, which is usually expressed by the average number of
bits needed for storage or communication. The concept of entropy plays a ma-
jor part in communication theory. Intuitively, entropy quantifies the uncertainty
involved when encountering a random variable. The field is at the intersection
of mathematics, statistics, computer science, physics, neurobiology, and electrical
engineering. For more details see, for example, [1–3, 6].
On one hand, modern probability theory studies chance processes for which the

knowledge of previous outcomes influences predictions for future experiments. In
mathematics, a Markov chain, is a stochastic process with the Markov property, i.e.,
given the present state, future states are independent of the past states. Markov
processes are a central topic in applied probability and statistics. The reason is
that many real problems can be modeled by this kind of stochastic processes in
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continuous or indiscrete time. They form one of the most important classes of
random processes and has many applications in :
Queueing theory, statistics, physics, the world’s mobile telephone systems, speech

recognition, bio informatics, reinforcement learning, internet applications, gener-
ating sequences of random numbers, Finance and Economics, dynamic macroeco-
nomics, biological modelling, simulations of brain function, games of chance mod-
elling, algorithmic music composition, advanced baseball analysis, to generate su-
perficially ”real-looking” text given a sample document and so forth. For more
details I refer to [7].
Laura. Ekroot and Thomas M. Cover[4] have introduced the entropy of Markov

trajectory. T. M. and J.A. Thomas [2] has shown an initial link between informa-
tion theory and some of concepts in Markov chain. Here, I use these concepts to
introduce a connection between information theory and Markov chain.
This paper is organized as follows:
Section 2 reminds some short definitions in information theory and Markov chain.

Section 3, studies the ambiguity of finite state irreducible Markov chain. In Section
4 an application of trajectories ambiguity in two-state Markov chain is introduced.
Finally, Section 5 gives some brief conclusion.

2. Preliminaries

This section introduces the basic definitions that is used in the next sections and
subsections. Here assumes that all random variables are discrete and log is to the
base 2. Hence, entropy is expressed in bits.

2.1 Markov chain

A stochastic process is a system {Xt; t ∈ T} of real random variables with time
parameter t ∈ T . In the following we assume that the stochastic process is a discrete
time and is denoted by {Xn;n ⩾ 0}.

Definition 2.1 ([5, 7]). A discrete stochastic process {Xn;n ⩾ 0} is said to be a
Markov chain with state space S = {x0, x1, . . . , xn, . . .} if for n = 0, 1, 2, . . .

P r{Xn+1 = y|X0 = x0, X1 = x1, . . . , Xn = xn} = Pr{Xn+1 = y|Xn = xn},

for all x0, x1, . . . , xn, y ∈ S. In this case, the probability transition matrix is given
by

P = (pxi,xj
)i,j∈{0,1,...,n,...},

where, pxi,xj
= Pr{Xn+1 = xj |Xn = xi}.

A probability distribution on the S, such that the distribution at time n is the
same as the distribution at the time (n + 1), i.e., π = πP is called a stationary
distribution. Note that if the finite state Markov chain is irreducible and aperiodic,
then the stationary distribution is unique, and from any starting distribution, the
distribution of Xn tends to the stationary distribution as n → ∞.

2.2 Entropy and entropy rate

The entropy of a random variable is defined in terms of its probability distribution
and can be shown to be a good measure of randomness or uncertainty. Let X be a
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random variable with probability mass function

p(x) = Pr(X = x), x ∈ A.

Definition 2.2 ([2, 6]). The Shannon’s entropy H(X) of random variable X is
defined by

H(X) = −
∑
x∈A

p(x) log(p(x)), (1)

for example the binary entropy function is obtained as

H(p) = p log
1

p
+ (1− p) log

1

1− p
. (2)

Suppose that we have a sequence of random variables, X1, X2, ..., Xn, .... The
entropy growth rate of the sequence with n is named entropy rate. i.e.

Definition 2.3 ([2]). The entropy rate H0 of a stochastic process {Xi} is defined
as

H0 = limn→∞
H(X1, X2, ..., Xn)

n
, (3)

when the limit exists.

The limiting conditional entropy H∗
0 of a stochastic process {Xi} is defined [2]

as

H∗
0 = limn→∞H(Xn | Xn−1,Hn−2, ..., X1),

when the limit exists.

Theorem 2.4 ([2]) For a stationary stochastic process, both limits exist and they
are equal, i.e., H0 = H∗

0 .

The entropy rate of Markov chain is obtained as

H0 = −
∑
i

∑
j

πipij log pij . (4)

3. Trajectories ambiguity

The number of bits of randomness in a trajectory of a Markov chain has applications
in backgammon, gambling, population growth, and evolution. In this section the
entropy of trajectories of finite state irreducible Markov chains is recalled from
[4]. Consider a finite state irreducible Markov chain with transition matrix P and
initial state X1 = i.

Definition 3.1 A trajectory tij from state i to state j of a Markov chain is a path
with initial state i, final state j , and no intervening state equal to j.

The probability p(tij) of a trajectory tij = ix2x3 . . . xkj is given by

p(tij) = Pix2
Px2x3

. . . Pxkj
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Irreducibility of P implies that ∑
tij∈τij

p(tij) = 1,

where τij is the set of all trajectories from i to j. So, the entropy Hij of the
trajectories from i to j is defined by

Hij = −
∑

tij∈τij

p(tij) log p(tij).

Theorem 3.2 ([4]) For an irreducible Markov chain, the entropy Hii of the ran-
dom trajectory from state i back to state i is given by

Hii =
H0

πi
, (5)

where πi is the stationary probability for state i and H0 is given in (3).

Suppose that :

• Pi. denote the ith row of the Markov transition matrix P .

• H = [Hij ] denote the matrix of trajectory entropies.

• H∗ =


H(P1.) H(P1.) . . . H(P1.)
H(P2.) H(P2.) . . . H(P2.)

...
...

...
...

H(Pm.) H(Pm.) . . . H(Pm.)

 denote the matrix of first step entropies.

• A =


π1 π2 . . . πm
π1 π2 . . . πm
...

...
...

...
π1 π2 . . . πm

 denote the matrix of stationary distribution.

• H∆ =


H11 0 . . . 0
0 H22 . . . 0
...

...
...

...
0 0 . . . Hmm

 denote the diagonal matrix associated with H.

• K = (I − P +A)−1(H∗ −H∆)

• K̃ =


K11 K22 . . . Kmm

K11 K22 . . . Kmm
...

...
...

...
K11 K22 . . . Kmm

 i.e. K̃ij = Kjj for all i , j .

Then, we have the following general theorem.

Theorem 3.3 ([4] ) The matrix H of trajectory entropies is given by

H = K − K̃ +H∆ (6)

4. Application in President example

Suppose that the President of one country tells person A his intention to run or
not to run in the next election. Then A relays the news to B, who in turn relays
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the message to C, and so forth, always to some new person. We assume that there
is a probability α that a person will change the answer from ”yes” to ”no” when
transmitting it to the next person and a probability β that he will change it from
”no” to ”yes”. We choose as states the message, either yes or no. Obviously, this
process is a homogeneous two-state Markov chain with state space S = { yes , no }
and transition probability matrix

P =

(
Pyes,yes Pyes,no

Pno,yes Pno,no

)
=

(
1− α α
β 1− β

)
, 0 < α < 1, 0 < β < 1.

By π0 = [π0(yes), π0(no)] = [a, b], where 0 ⩽ a ⩽ 1 and 0 ⩽ b ⩽ 1 and a+ b = 1, it
follows that

πn = π0P
n = [a, b]

(
β

α+β + α
α+β (1− α− β)n α

α+β − α
α+β (1− α− β)n

β
α+β − β

α+β (1− α− β)n α
α+β + β

α+β (1− α− β)n

)
.

π0 represents the President’s choice. From irreducibly and finitely state space and
by

π = πP,

we get

π = [π(yes) =
β

α+ β
, π(no) =

α

α+ β
], (7)

as an unique stationary distribution. Via (7) we have

A =

(
β

α+β
α

α+β
β

α+β
α

α+β

)
,

on one hand, the entropy rate is

H0 =
αβ

α+ β
log(

(1− α)1−
1

α (1− β)1−
1

β

αβ
), (8)

and from it the matrix of first step entropies results

H∗ =

(
log( (1−α)α−1

αα ) log (1−α)α−1

αα )

log (1−β)β−1

ββ ) log (1−β)β−1

ββ )

)
.

Specifically, by (7) and (8) the diagonal matrix associated with H is obtained as

H∆ =

α log( (1−α)1−
1
α (1−β)

1− 1
β

αβ ) 0

0 β log( (1−α)1−
1
α (1−β)

1− 1
β

αβ )

 .
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Then, it follows that

K = (I − P +A)−1(H∗ −H∆) =

(
β

α+β + α
(α+β)2

α
α+β − α

(α+β)2
β

α+β − β
(α+β)2

β
α+β + α

(α+β)2

)
×

(
α log β − αβ−α

β log(1− β) log (1−α)α−1

αα

log (1−β)β−1

ββ β logα− αβ−β
α log(1− α)

)
.

Finally, via these relations, we can obtain the matrix H of trajectory entropies by
Theorem 3.3.
For more illustrations, see the below tables and diagrams that shows the matrix

H components for some values of α and β. Here ”0=yes” and ”1=no”.

α = β H00 H01 H10 H11

0.0001 0.0002887 1.443 1.443 0.0002887
0.001 0.002894 1.447 1.447 0.002894
0.01 0.029 1.469 1.469 0.029
0.1 0.307 1.534 1.534 0.307
0.2 0.608 1.52 1.52 0.608
0.3 0.877 1.461 1.461 0.877
0.4 1.096 1.37 1.37 1.096
0.5 1.25 1.25 1.25 1.25
0.6 1.323 1.102 1.102 1.323
0.7 1.294 0.925 0.925 1.294
0.8 1.135 0.709 0.709 1.135
0.9 0.788 0.438 0.438 0.788
0.99 0.147 0.074 0.074 0.147
0.999 0.021 0.011 0.011 0.021
0.9999 0.002802 0.001401 0.001401 0.002802

Table 1. Trajectory entropies ( α = β )

It’s observe that H00 = H11 and H01 = H10.
The most value of randomness is seen in 4th line, whither

P =

(
0.9 0.1
0.1 0.9

)
,

and

H =

(
0.307 1.534
1.534 0.307

)
.

So, the most value of ambiguity are in the (yes → no → . . . → no) and (no →
yes → . . . → yes) trajectories, i.e., when we know that the persons relays the
reality message (no by no and yes by yes ) with high probability, we have least
ambiguity.



M. Khodabin/ IJM2C, 02 - 03 (2012) 221-229. 227

Figure 1. Trajectory entropies for some value ( α = β ): the green (solid) line represent α, the red (dash)
line represent H00 and the blue (dot) line represent H01..

α β H00 H01 H10 H11

0.01 0.99 0.016 1.553 0.016 1.553
0.1 0.9 0.207 1.862 0.207 1.862
0.2 0.8 0.467 1.866 0.467 1.866
0.3 0.7 0.74 1.726 0.74 1.726
0.4 0.6 1.006 1.509 1.006 1.509
0.5 0.5 1.25 1.25 1.25 1.25
0.6 0.4 1.457 0.972 1.457 0.972
0.7 0.3 1.614 0.692 1.614 0.692
0.8 0.2 1.701 0.425 0.425 1.701
0.9 0.1 1.687 0.187 1.687 0.187
0.99 0.01 1.502 0.015 1.502 0.015

Table 2. Trajectory entropies (β = 1− α)

It’s observe that H00 = H10 and H01 = H11.
The most value of randomness is seen in 3th line, whither

P =

(
0.8 0.2
0.8 0.2

)
,

and

H =

(
0.467 1.866
0.467 1.866

)
.

So, the most value of ambiguity are in the (yes → no → . . . → no) and (no →
yes → . . . → no) trajectories, i.e., when we know that the persons relays the reality
message ( yes by yes )or the unreality message ( no by no ) with high probability,
we have least ambiguity.
Finally, In table 3 we consider β ̸= α, that are selected randomly.
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Figure 2. Trajectory entropies for some value (β = 1−α): the green (solid) line represent α, light orange
(dash)represent β, the red (dash-dot) line represent H00 and the blue (dash-dot-dot) line represent H01.

α β H00 H01 H10 H11

0.14 0.93 0.283 1.962 0.061 1.881
0.43 0.58 1.077 1.443 1.062 1.453
0.61 0.26 1.549 0.918 1.622 0.66
0.29 0.72 0.708 1.754 0.688 1.758
0.16 0.04 0.505 2.591 0.566 0.126
0.7 0.1 1.731 0.824 1.648 0.247
0.35 0.73 0.834 1.696 0.687 1.74
0.45 0.23 1.276 1.275 1.56 0.652
0.05 0.22 0.145 0.603 2.29 0.636
0.1 0.61 0.257 1.509 1.06 1.567
0.04 0.95 0.073 1.708 0.118 1.735
0.62 0.24 1.573 0.898 1.639 0.609
0.15 0.34 0.435 1.371 1.531 0.987
0.72 0.74 1.252 0.901 0.838 1.286
0.5 0.75 1.083 1.451 0.716 1.625

Table 3. Trajectory entropies ( α ̸= β )

The most value of randomness is seen in 5th line, whither

P =

(
0.84 0.16
0.04 0.96

)
,

and

H =

(
0.505 2.591
0.566 0.126

)
.

So, the most value of ambiguity are in the (yes → no → . . . → no) trajectory,
i.e., when we know that the persons relays the reality message ( yes by yes and
no by no ) with high probability, we have least ambiguity. Furthermore, when we
know that the persons relays unreality message ( no by yes ) with low probability,
we have least ambiguity.
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Figure 3. Trajectory entropies for some values of α ̸= β : the green (solid) line represent α, light orange
(slim solid)represent β, the red (dashed) line represent H00, the blue (dot) line represent H01, the pink
(dash-dot) line represent H10 and the brown (dash-dot-dot) line represent H11.

5. Conclusion

Investigations were carried out on Markov chain properties and information theory
concepts. These results shed light on the connections between information theory
and Markov chain. An appropriate novel method for recognize of states type in
random walk chain was proposed.
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