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Abstract. A simple mathematical model of steady state oxygen distribution subject to dif-
fusive transport and non- linear uptake in a retinal cylinder has been developed. The ap-
proximate analytical solution to a reaction-diffusion equation are obtained by using series
expansions. The computational results for the scaled variables are presented through graphs.
The effect of the important parameters (1) diffusion coefficient (2) metabolic rate constant (3)
retinal capillary concentration are examined and discussed
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1. Introduction

The determination of oxygen concentration profiles in a single capillary and in a
surrounding coaxial cylinder of tissue is a fundamental problem in the mathemat-
ical study of oxygen transport to tissue. Although the basic model was originally
introduced by Krogh for the study of oxygen distribution in the highly regular
capillary beds of skeletal muscle, it has also been applied to retinal capillaries into
the retinal tissue.
Thus, retinal circulation [2] is responsible for the delivery of oxygen and nutri-

ents to different structures of the retina without interfering with visual function.
To achieve this complex task in mammals, human and other primates, two sepa-
rate vascular systems: the retinal vascularization and the choroidal vascularization
,partake in the process. The former one supplies the inner two-thirds of the retina
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through three layers of capillary networks including the radial peripapillary capil-
laries and a superficial and deep layer of capillaries. The retinal circulation shows
progressive slowing of linear flow rate in arterioles and capillaries [1, 7]. There-
fore, retinal circulation is characterized by a low blood flow and a high level of
oxygen extraction; arteriovenous difference in PO2 is about 40%. To ensure se-
lective exchanges of substances between the blood and the surrounding tissuses,
retinal vascular endothelial cells are non-fenestrated, tightly joined and form an
inner blood retinal barrier between the retinal capillaries and the retinal tissues.
Gases such as O2 and CO2 can transport across the capillary walls. The transport

of oxygen from the lungs to the systematic capillaries is accomplished by a process
of bulk flow as oxygenated blood is carried to the tissues. Once blood reaches the
systematic capillaries [3], oxygen dissociates from hemoglobin which holds 97% of
its maximum amount of O2 from normal air or holds 100% when breathing pure
O2 diffuses through the red cell membranes into the plasma and from there into
the tissue.
Many different local and systematic factors can exert an influence, local and

systematic factors can exert an influence, local physical (variations in perfusion
pressure) and metabolic factors(e.g variations in PO2 and pH) attempt to adapt
to local needs, while systematic factors regulate the distribution of the cardiac
output different beds. Since the retinal tissue lacks vascular innervations, retinal
arterial tone is largely regulated by local factors. The low through avascular bed is
determined by both perfusion pressure and vascular resistance [10]. In the adult,
retinal blood is maintained constant over a wide range of perfusion pressure from
45 Hg to 145 mm Hg.
In addition to a large number of experimental studies [5, 9] numerous mathemat-

ical models [4, 6, 8] for the oxygen transport in the systematic capillaries tissue in
different organs of the body have been developed and analyzed. The first simple
mathematical model for oxygen transport across the capillaries was formulated by
Krogh. In Kroghs initial work only a highly simplified and rather elementary math-
ematical analysis of the model was presented. Middleman and the proceeding of
a recent symposium on oxygen transport to tissue contains numerous accounts of
mathematical studies of the Krogh cylinder, as this model is now called. The very
complex nature of the governing equations has always resulted in significant sim-
plifications being made at the outset, so that the mathematics becomes tractable.
Therefore, the analytical treatment is still far from complete.Friedland developed a
mathematical model of transmural transport of oxygen to the retina of the human
eye. He included not only the tissue metabolism and time varying concentrations
but also included hydrostatic transmural pressure gradients. The present work is
concerned with the formulation of a simple mathematical model for the transport
of oxygen from the surrounding retinal tissue.

2. Mathematical Formulation

The retinal tissue is represented as an array of uniformly cylinders along the axes.
Each tissue cylinder is assumed to be supplied with oxygen exclusively within it
where < c > area averaged oxygen concentration in the retinal capillary; cT , the
oxygen concentration in the tissue, < v >, the measured average blood speed in
the capillary, R1, the radius of the retinal capillary, R2, the radius of the tissue and
L, the length of the capillary. Blood enters the retinal capillary at its arteriole end
z = 0 and exits its venule end z = L. As blood flows along the capillary ,oxygen
is extracted from the capillary wall. The transport of oxygen in the tissue occurs
by molecular diffusion and the consumption of oxygen occurs in the surrounding
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retinal tissue only. Within the retinal capillary, we assume that its size is so small,
and the flow condition is such that the radial concentration and velocity gradients
can be neglected and that we can instead use their area averaged value of < c >
and < v > respectively. The equations governing the transport of intravascular
oxygen in the retinal capillary and the transport of extravavscular oxygen in the
retinal tissue are written in simplified form by taking into account the convection
of oxygen in axial direction in the capillary and the radial diffusion in the tissue
and non-linear metabolic consumption rate in the retinal tissue.

Figure 1. Systematic diagram of oxygen transport into the retinal tissue

3. Assumptions

1. Intravascularly flow in capillary may be far from poiseuille flow due to
turbulence, non Newtonian viscosity effects and limiting of red blood cell.

2. We assume the each capillary only feeds its surrounding mantle of capillary
tissue.

3. The capillary is assumed to be assumed to be surrounded by a mantle of
retinal tissue which is metabolized by retinal cells.

4. Within the capillary, we assume that its size is so small, and the flow
condition is such that the radial concentration and velocity gradient can be
neglected.

5. In the retinal tissue, the longitudinal diffusion is neglible, hence we ne-
glected the longitudinal diffusion term.

4. Governing Equations

Using a differential macroscopic mass balance over a length dz and rearranging the
resulting expression, we obtain the following steady state equation governing the
transport of oxygen in the retinal capillary:

dc

dz
=

−2β

R1 < v >
(c− cT1) (1)

The above equation mentioned states that the change of the moving intravascu-
lar concentration gradient in the retinal capillary. Where , retinal capillary oxygen
permeability constant and cT1, the concentration of oxygen in the tissue at r = R1.
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The transport of oxygen in the retinal tissue depends upon the molecular diffu-
sion and oxygen consumption during the metabolic process. Oxygen diffusion in
the axial direction in the tissue is neglected as evidenced by the fact that oxy-
gen concentration gradients are much stepper in the radial direction than axial
direction Ficks law of diffusion and conservation of mass lead to the corresponding
nondimensional governing equation which can be written as,

Dr

r

∂

∂r
(r
∂cT
∂r

) =
AcT

B + cT
(2)

Dr

r
[ r

∂2cT
∂r2

+
∂cT
∂r

] =
AcT

B + cT
(3)

Dr
∂2cT
∂r2

+
Dr

r

∂cT
∂r

− AcT
B + cT

= 0 (4)

The governing equation is a steady state reaction diffusion equation represent-
ing oxygen transport by linear diffusion in a cylinder with cylindrical symmetry.
The oxygen uptake is described by the non linear Michaelis-Menten model with a
maximum reaction rate A and the half-saturation concentration rate B .

4.1 Boundary Conditions

The physichologically relevant and mathematically consistent boundary and inter-
face conditions are prescribed below:

(c)z=0 = 0 (5)

(
dcT
dr

)
r=R2

= 0 (6)

−Dr(
dcT
dr

)
r=R2

= β(c− cT1) (7)

Boundary condition (5) states that there will be no concentration at the arteriole
end. The boundary condition (6) depicts that, at the capillary end there will no
flux. The boundary condition (7) represents that the diffusive flux at the tissue
region will be proportional to the diffusive concentration gradient.

5. SOLUTION TO THE PROBLEM

The solution of the Equation (1) corresponding to boundary condition (5) is given
by:

c(z) = cT1(1− eαz) 0 ≤ z ≤ L (8)

We generalize the Equation (3) as follows:

Dr
d2cT
dr2

+
Dra

r

dcT
dr

− f(c) = 0 (9)
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subject to

(
dcT
dr

)
r=R2

= 0 (10)

−Dr(
dcT
dr

)
r=R2

= β(c− cT1) (11)

Equation (9) is written in terms of a constant a, which can be selected to reflect
Cartesian (a = 0), cylindrical (a = 1) or spherical (a = 2) geometry.
Equation (9) is relevant for any uptake model f(c) selecting a = 1 and

f(cT ) = AcT
B+cT

we recover the original non- dimensional model. Let us select that
solution of Equations (9-11) is sufficiently smooth so that it can be explained in
Taylor series given by

cT (r) =

∞∑
i=0

ri

i!

dicT
dri

= cT (r = r1)+r(
dcT
dr

)
r=r1

+
r2

2
(
d2cT
dr2

)
r=r1

+
r3

6
(
d3cT
dr3

)
r=r1

+ · · ·

(12)
To determine the values of the derivative at r = r1, we rewrite the Equation (9) as

Dr
d2cT
dr2

= −Dra

r

dcT
dr

+ f(cT ) (13)

Let us assume that f(cT ) is sufficiently differentiable, we evaluate derivatives of
cT (r) by recursively differentiating Equation (12) to gives

d2cT
dr2

= −a

r

dcT
dr

+
f(cT )

Dr
(14)

d3cT
dr3

=
a

r2
dcT
dr

− a

r
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dr2

+
1

Dr

df(cT )
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dr

(15)
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r
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1

Dr
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dcT
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(16)

We now evaluate the derivative expressions in Equation (16) at the r = R1 by
substituting r = R1 in Equation (16) and impose the boundary condition that
(dcTdr )r=R2

= 0 at r = R1 we have,

(
dcT
dr

)
r=R1

= 0 (17)
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Dr
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1
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where cT0 = (cT )r=R1
these derivatives terms evaluated at R = R1 allow us to

express the taylor series solutions as,

cT (r) = (cT )r=R1
+
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2
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Dr
− ar3
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Dr
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24
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1Dr
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The ith term in Taylor series is:

Ri

i
(
∂i−2

∂Ri−2
[− a

R

dcT
dr

+ f(c)])
R=R1

i ⩾ 2 (23)

The derivative expansions in Equation (23) can be evaluated at R = R1. The
resulting expressions are combinations of derivatives of the functions cT (r) and f(c)
evaluated at R = r1 and cT0 = cT (r = R1) respectively. Since we have assumed that
cT (r) and f(c) are everywhere sufficiently differentiable applying the ratio test of
this series shows that the radius of convergence is infinite. This means that the series
will converge for all values of R and this will be true for all standard form of the
uptake function f(c) (polynomial functions and certain rational functions such as
the Michaelis-Menten model). Therefore, the taylor series is an exact solution that
always converges for all practical choices of f(c).Furthermore, we can implement
the series solution by truncating the series after a finite number of terms.

6. Boundary Condition at R=1

To implement the series solution for a particular we must determine c0 by applying
the remaining boundary condition at r = R2 given by −Dr(

dcT
dr )r=R2

= β(c −
cT1)To satisfy this condition, we differentiate the general series with respect to r
to obtaindcT

dr .After truncating the series expression for dcT
dr . and expression for c(z)

we obtain an relationship of the form cT0 = Dr(
dcT
dr )e

−αz 0 ≤ z ≤ 2.5 × 10−2.
This process gives an approximate value of cT0.However,since the series solution
is convergent we can arbitrarily increase the accuracy of this approximation by
simply retaining more terms in the truncated series and examine the convergence
behavior of c0 as further terms are retained in the series.

7. Results and Discussion:

The values of most of model parameters are not known to the best of our knowledge.
We have used appropriately estimated values of the physiological parameters in the
computational model results. The computational results of the present model have
been obtained from the above approximate solutions by using appropriate values
of the physiological parameters listed in Table1.
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Table 1.

Parameter Value

Arterial blood oxygen concentration CA(cm3O2/cm3blood ) 3.2× 10−3

Oxygen diffusivity 2× 10−5

Oxygen capacity of the blood at 100% saturation 6× 10−5

−
N(cm3O2/cm3blood ) oxygen consumption rate 0.204
M (cm3O2/cm3 tissue sec) 8.5× 10−4

Capillary length L 200
Capillary radius Rc (µm) 3
Tissue radius Rt (µm) 30

The effect of diffusion coefficient on the oxygen concentration distribution for
different value of radial co-ordinate have been shown in Figure 2 curves .As is
evident from the graphs in Figure 2 an increase in the diffusion coefficient increases
oxygen concentration in the retinal tissue.

Figure 2. The effect of diffusion coefficient on the tissue oxygen concentration .

It is obvious from the graphs in Figure 2 that the retinal layer/cells near the
retinal capillary receive more oxygen and the layers/cells far from the capillary
receive less oxygen.The maximum concentration of oxygen occurs at the entry
point of the tissue on the arterial Side. Thus, owing to excessive accumulation of
oxygen in the tissue, the toxic effects, (if any) will be first felt in the region close
to arterial end of the tissue.
The curve in Figure 3 represents the effect of change in metabolic rate relative to

data shown in Table 1. These curves illustrate when the metabolic rate is increased,
the value of oxygen concentration will decreased. Thus, oxygen is delivered to the
retinal tissue in excess of that necessary to meet its metabolic needs.

Figure 3. The effect of metabolic rate constant on the tissue oxygen concentration .

The various curves in Figure 4 depicts the effect of arterial oxygen concentration
on the tissue concentration. It is observed that when the arterial concentration in-
creases the tissue concentration will increase. Thus when the arterial concentration
increases a more amount of oxygen will move from artery end to tissue end.
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Figure 4. Effect of arterial oxygen concentration on the retinal tissue.

It is therefore, concluded that, the rate of capillary blood flow affects the oxygen
transport significantly.

8. Conclusion

The computational results of the model presented here predict that the oxygen
concentration in the retinal tissue decreases along the capillary axis from the ar-
teriolar end to venular end. It also decreases along the depth (radial distance) of
retinal tissue. The sites in the retinal tissue at the greatest depth in the tissue
from the venous end of the capillary would be most vulnerable to oxygen lack un-
der the conditions of normal capillary oxygen levels. Thus it has been suggested
that manipulation of the retinal oxygen environment may be therapeutic tool in
the management of retinal diseases.
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