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Several analytical and numerical models have been developed to predict the 
surface-groundwater interaction in stream-aquifer systems under varying hydrological 
conditions [11-14, 18]. Estimations of water table fluctuations in unconfined aquifer with 
surface infiltration have also been presented by several researchers [15, 17, 19-21].  
The subsurface seepage flow in unconfined aquifers is usually formulated as a parabolic 
nonlinear Boussinesq equation which does not admit analytical solution. Therefore, the 
methodology adopted in most of the aforesaid models is to linearize the Boussinesq 
equation and develop analytical solution of the resulting equation. Although, the 
approximate analytical solution obtained in these studies provide useful insight in the flow 
process; however, the subsurface drainage over hillslope cannot be satisfactorily addressed 
with their results. Another perceived limitation is that they do not account for the gradual 
rise in the stream water.  
The role of sloping bedrock in evolution of the phreatic surface has been underlined in 
numerous studies [8-10]. The results derived for horizontal aquifer may seriously 
underestimate or overestimate the actual results if applied to the sloping bed geometry. 
Approximation of groundwater flow over unconfined sloping beds based on extended 
Dupuit-Forchheimer assumption (streamlines are approximately parallel to the sloping 
impervious bed) can be expressed in the form of an advection-diffusion equation, 
popularly known as Boussinesq equation [1, 7]. Analytical solutions of linearized 
Boussinesq equation under constant or time-varying boundary conditions have been 
presented by a number of researchers [1- 6, 16]. It is worth mentioning that the efficiency 
of the linearization must be examined by validating the model results with either field data 
or by comparing the results with numerical solution of the nonlinear Boussinesq equation.  
The present study is an attempt to quantify the groundwater-surface water interaction with 
more realistic approach. The mathematical model considered here deals with transient 
groundwater flow regime in a homogeneous unconfined aquifer of finite width overlying a 
downward sloping impervious bed owing to seepage from stream of varying water level 
and constant downward recharge. The aquifer is in contact with a constant piezometric 
level at one end and a stream of time varying water level at another end. The stream is 
considered to penetrate full thickness of the aquifer. Furthermore, the aquifer is 
replenished by a constant recharge. Efficiency of the linearization method is examined by 
solving the nonlinear Boussinesq equation by a fully explicit predictor-corrector numerical 
scheme. The effect of bed slope, recharge rate and stream rise rate on the water table 
fluctuation and flow mechanism is analyzed using a numerical example. The solution 
presented here can be applied to asymptotic scenarios of sudden or very slow rise in the 
stream water by assigning an appropriate value to the stream rise rate parameter.  
 
 
2.Problem Formulation and Analytical Solution 
 
As shown in Fig.1, we consider an unconfined aquifer overlaying an impermeable sloping 
bed with downward slopetanߚ. The aquifer is in contact with a constant piezometric 
level݄଴ at its left end and a stream at the right end. The water in the stream is gradually 
rising from its initial level ݄௅  to a final level ݄଴  by a known exponential decaying 
function of timeݐ. Moreover, the aquifer is replenished vertically at a constant rate. If the 
variation in the hydraulic conductivityand specific yield of the aquifer with spatial 
coordinate is neglected, and the streamlines are considered to be nearly parallel to the 
impermeable bed (extended Dupuit-Forchheimer approach) then the groundwater flow in 
the aquifer can be characterized by the following nonlinear Boussinesq equation [10] 

 
߲
ݔ߲

൬݄
߲݄
ݔ߲
൰ െ ݊ܽݐ ߚ

߲݄
ݔ߲

൅
ሻݐሺߝܰ
ܭ ଶݏ݋ܿ ߚ

ൌ
ܵ

ܭ ଶݏ݋ܿ ߚ
߲݄
ݐ߲

 (1) 
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where݄ሺݔ,  ሻis the height of the water table measured above the impermeable slopingbedݐ
in the vertical direction. ܭandܵrespectively are the hydraulic conductivity and specific 
yield of the aquifer. ܰis the constant recharge rate. ߝሺݐሻis a unit step function defined as 
follows: 

 
ሻݐሺߝ ൌ ൜

0 ݂݅ ݐ ൑ 0
1 ݂݅ ݐ ൐ 0 

 
(2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 1.Schematic diagram of an unconfined aquifer 
 

The initial and boundary conditions are: 

 ݄ሺݔ, ݐ ൌ 0ሻ ൌ ݄଴ ൅
݄଴ െ ݄௅

ܮ
 (3) ݔ

   

 ݄ሺݔ ൌ 0, ሻݐ ൌ ݄଴ (4) 
 

 ݄ሺݔ ൌ ,ܮ ሻݐ ൌ ݄଴ െ ሺ݄଴ െ ݄௅ሻ݁ିఒ௧ (5) 

whereܮis length of the aquifer.ߣis a positive constant signifying the rate at which the water 
in the stream rises from its initial value݄௅ to a final level ݄଴. Equation (1) is a second 
order nonlinear parabolic partial differential equation which cannot be solved by analytical 
methods. However, an approximate analytical solution can be obtained by solving the 
corresponding linearized equation. In the present work, we adopt the linearization method 
as suggested by Marino [16]. Firstly, rewrite Equation (1) as 

 
߲ଶ݄
ଶݔ߲

െ
݊ܽݐ ߚ

݄

߲݄
ݔ߲

൅
ሻݐሺߝܰ

ܭ ଶݏ݋݄ܿ ߚ
ൌ

ܵ

݄ܭ ଶݏ݋ܿ ߚ

߲݄
ݐ߲

 (6) 

where݄  is the mean saturated depth in the aquifer. The value of ݄  is successively 
approximated using an iterative formula ݄ ൌ ሺ݄଴ ൅ ݄௜ሻ/2, where ݄଴ is the initial water 
table height, and ݄௜ is the varying water table height at time ݐ at the end of which ݄is 
approximated. Equation (6) is further simplified using the following dimensionless 
variables and substitutions 

hL 

N

Stream 

Initial Level

L

β 

Initial water head

h0 

x
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ܪ  ൌ
݄ െ ݄଴
݄௅ െ ݄଴

, ܺ ൌ
ݔ
ܮ
, ߬ ൌ

ܭ ݄ ଶݏ݋ܿ ߚ
ଶܮܵ

ݐ  
(7) 

Therefore, Equation (6) becomes 

 
߲ଶܪ
߲ܺଶ

െ
ܮ ݊ܽݐ ߚ

݄

ܪ߲
߲ܺ

൅
ሺ߬ሻߝଶܰܮ

ܭ ݄ሺ݄௅ െ ݄଴ሻܿݏ݋ଶ ߚ
ൌ
ܪ߲
߲߬

 (8) 

where 

 
εሺτሻ ൌ ቄ0 if τ ൑ 0

1 if τ ൐ 0
 

 
(9) 

Now, define the following parameters 

 

 

α ൌ
L tanβ

2h
, Nଵ ൌ

LଶN

Khሺh୐ െ h଴ሻ cosଶ β
,

λଵ ൌ
SLଶ

Kh cosଶ β
λ  

(10) 

so that, equation (8) becomes 

 
∂ଶH
∂Xଶ

െ 2α
∂H
∂X

൅ Nଵεሺτሻ ൌ
∂H
∂τ

 (11) 

The initial and boundary conditions reduce to 

 HሺX, τ ൌ 0ሻ ൌ X (12) 
   

 HሺX ൌ 0, τሻ ൌ 0 (13) 
 

 HሺX ൌ 1, τሻ ൌ 1 െ eି஛భத (14) 

Equation (11) along with conditions(12)–(14) is solved by Laplacetransform. Define the 
Laplace transform of HሺX, τሻ as follows: 

 LሼHሺX, τሻ: τ → sሽ ൌ HሺX, sሻ ൌ න HሺX, τሻeିୱதdτ
ஶ

଴

(15) 

The Laplace transform of equation (11) yields  

 ∂ଶH
∂Xଶ

െ 2α
∂H
∂X

൅
Nଵ
s
ൌ
∂H
∂τ

െ X (16) 

The general solution of equation (16) can be found using elementary methods. Moreover, 
the arbitrary constants contained in the general solution are obtained by using the Laplace 
transform of Equations (13)–(14) in it. We get 
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,ሺܺܪ ሻݏ ൌ ݁ఈ௑ ቎൬
ߙ2 െ ଵܰ

ଶݏ
൰
݄݊݅ݏ ቀሺ1 െ ܺሻ√ߙଶ ൅ ቁݏ

ଶߙ√൫݄݊݅ݏ ൅ ൯ݏ

൅ ݁ିఈ ൬
ߙ2 െ ଵܰ

ଶݏ

െ
ଵߣ

ݏሺݏ ൅ ଵሻߣ
൰
ଶߙ√൫݄ܺ݊݅ݏ ൅ ൯ݏ

ଶߙ√൫݄݊݅ݏ ൅ ൯ݏ
൩ ൅

ܺ
ݏ
െ
ߙ2
ଶݏ

൅ ଵܰ

ଶݏ
 

(17) 

Inverse Laplace transform of equation (17) is obtained from calculus of residue. Define 

,ሺܺܪଵ൛ିܮ  ሻൟݏ ൌ ,ሺܺܪ ߬ሻ ൌ
1
݅ߨ2

lim
௪→ஶ

න ,ሺܺܪ ݏሻ݁௦ఛ݀ݏ
௖ା௜௪

௖ି௜௪
(18) 

wherec is an arbitrary positive number. The integration in equation (18) is performed along 
a line s = c in the complex plane where s = x + i y. The real number c is chosen so that s = 
c lies to the right of all singularities, but is otherwise arbitrary. The inverse Laplace 
transform of equation (17) yields 

 

,ሺܺܪ ߬ሻ

ൌ ܺ െ ݁ିఈሺଵି௑ሻ൫1 െ ݁ିఒభఛ൯
ଶߙቀܺඥ݄݊݅ݏ െ ଵቁߣ

ଶߙቀඥ݄݊݅ݏ െ ଵቁߣ

െ ߙሺ2ߨ2 െ ଵܰሻ݁ఈ௑ ൝෍
݊ ሻ൫1ܺߨሺ݊݊݅ݏ െ ݁ିሺఈ

మା௡మగమሻఛ൯
ሺߙଶ ൅ ݊ଶߨଶሻଶ

ஶ

௡ୀଵ

െ ݁ିఈ෍
ሺെ1ሻ௡݊ ሻ൫1ܺߨሺ݊݊݅ݏ െ ݁ିሺఈ

మା௡మగమሻఛ൯
ሺߙଶ ൅ ݊ଶߨଶሻଶ

ஶ

௡ୀଵ

ൡ

െ ଵ݁ିఈሺଵି௑ሻ෍ߣߨ2
ሺെ1ሻ௡݊ ሻ൫1ܺߨሺ݊݊݅ݏ െ ݁ିሺఈ

మା௡మగమሻఛ൯
ሺߙଶ ൅ ݊ଶߨଶሻሺߙଶ ൅ ݊ଶߨଶ െ ଵሻߣ

ஶ

௡ୀଵ

(19) 

 
 
Equation (19) provides analytical expression for the water head distribution in the 
downward sloping aquifer under conditions mentioned in Equations (3)–(5). One can 
obtain the corresponding results for an upward sloping by replacing αby – αand for a 
horizontal bed by setting α	→	0. Furthermore, equation (19) can also be used to predict the 
water head profiles when the rise in the stream is extremely rapid; similar to the case of 
flood like situation, by letting λ →∞. We obtain 



Rajeev K. Bansal /	ܯܬܫଶ200-189 (2014) 03 - 04 ,ܥ. 

 

194 
 

 

,ሺܺܪ ߬ሻ

ൌ ܺ െ ݁ିఈሺଵି௑ሻ
݄݊݅ݏ ܺ
݄݊݅ݏ 1

െ ߙሺ2ߨ2 െ ଵܰሻ݁ఈ௑ ൝෍
݊ ሻ൫1ܺߨሺ݊݊݅ݏ െ ݁ିሺఈ

మା௡మగమሻఛ൯
ሺߙଶ ൅ ݊ଶߨଶሻଶ

ஶ

௡ୀଵ

െ ݁ିఈ෍
ሺെ1ሻ௡݊ ሻ൫1ܺߨሺ݊݊݅ݏ െ ݁ିሺఈ

మା௡మగమሻఛ൯
ሺߙଶ ൅ ݊ଶߨଶሻଶ

ஶ

௡ୀଵ

ൡ

൅ ఈሺଵି௑ሻ෍ି݁ߨ2
ሺെ1ሻ௡݊ ሻ൫1ܺߨሺ݊݊݅ݏ െ ݁ିሺఈ

మା௡మగమሻఛ൯
ሺߙଶ ൅ ݊ଶߨଶሻ

ஶ

௡ୀଵ

(20) 

  
 
 
3.Determination of Flow Rate and Steady State Profile 
 
The flow rateݍሺݔ,  ሻ in the aquifer is defined asݐ

,ݔሺݍ  ሻݐ ൌ െ݄ܭ ൬
߲݄
ݔ߲

െ tanߚ൰ (21) 

andat the stream-aquifer interface, the flow rate is 

௫ୀ௅ݍ  ൌ െܭ൛݄଴ െ ሺ݄଴ െ ݄௅ሻ݁ିఒ௧ൟ ൤൬
∂݄
ݔ∂
൰
௫ୀ௅

െ tanߚ൨ (22) 

Invoking Equation (20) in Equation (22), the expressions for flow rate at the 
stream-aquifer interface are obtained as follows: 

 

௫ୀ௅ݍ ൌ
ܭ
ܮ
൥1 െ ߙଶሺ2ߨ2

െ ଵܰሻ ൝݁ఈ෍
ሺെ1ሻ௡݊ଶ൫1 െ ݁ିሺ஑

మା௡మగమሻத൯
ሺαଶ ൅ ݊ଶߨଶሻଶ

ஶ

௡ୀଵ

െ෍
݊ଶ൫1 െ ݁ିሺ஑

మା௡మగమሻத൯
ሺαଶ ൅ ݊ଶߨଶሻଶ

ஶ

௡ୀଵ

ൡ

െ 2πଶߣଵ෍
݊ଶ൫1 െ ݁ିሺ஑

మା௡మగమሻத൯
ሺαଶ ൅ ݊ଶߨଶሻሺαଶ ൅ ݊ଶߨଶ െ λଵሻ

ஶ

௡ୀଵ

െ ൫1 െ eି஛భத൯ ൝α ൅
ඥαଶ െ λଵ

tanhඥαଶ െ λଵ
ൡ

൅
ܮ tanβ
݄଴ െ ݄௅

൩

ൈ ሺ݄଴ െ ݄௅ሻ൛݄଴ ൅ ሺ݄௅ െ ݄଴ሻ݁ି஛தൟ

(23) 

It is worth noting that despite continuous recharge, the profiles of water head attain a 
steady state value for large value of time. The expressions for steady-state water head and 
flow rate at stream-aquifer interface can be obtained by setting t → ∞ in Equations (20) and 
(23), yielding 
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݄∗

ൌ
ݔ
ܮ
െ ݁ିఈሺଵି௫/௅ሻ

݄݊݅ݏ ൬ቀ
௫

௅
ቁඥߙଶ െ ଵ൰ߣ

ଶߙቀඥ݄݊݅ݏ െ ଵቁߣ

൅ ߙሺ2ߨ2 െ ଵܰሻ݁ఈሺ௫/௅ሻ ൝෍
݊ ሻܮ/ݔߨሺ݊݊݅ݏ
ሺߙଶ ൅ ݊ଶߨଶሻଶ

ஶ

௡ୀଵ

െ ݁ିఈ෍
ሺെ1ሻ௡݊ ሻܮ/ݔߨሺ݊݊݅ݏ

ሺߙଶ ൅ ݊ଶߨଶሻଶ

ஶ

௡ୀଵ

ൡ

െ ଵ݁ିఈሺଵି௫/௅ሻ෍ߣߨ2
ሺെ1ሻ௡݊ ሻܮ/ݔߨሺ݊݊݅ݏ

ሺߙଶ ൅ ݊ଶߨଶሻሺߙଶ ൅ ݊ଶߨଶ െ ଵሻߣ

ஶ

௡ୀଵ
ൈ ሺ݄଴ െ ݄௅ሻ݄଴

(24) 

 

 

∗ݍ

ൌ
ܭ
ܮ
൥1

െ ߙଶሺ2ߨ2 െ ଵܰሻ ൝݁ఈ෍
ሺെ1ሻ௡݊ଶ

ሺߙଶ ൅ ݊ଶߨଶሻଶ

ஶ

௡ୀଵ

െ෍
݊ଶ

ሺߙଶ ൅ ݊ଶߨଶሻଶ

ஶ

௡ୀଵ

ൡ

െ ଵ෍ߣଶߨ2
݊ଶ

ሺߙଶ ൅ ݊ଶߨଶሻሺߙଶ ൅ ݊ଶߨଶ െ ଵሻߣ

ஶ

௡ୀଵ

െ ൝ߙ ൅
ඥߙଶ െ ଵߣ

ଶߙඥ݄݊ܽݐ െ ଵߣ
ൡ ൅

ܮ ݊ܽݐ ߚ
݄଴ െ ݄௅

൩ ൈ ሺ݄଴ െ ݄௅ሻ݄଴

(25) 

 
 
4.Numerical Solution of the Non-linear Equation 
 
To assess the efficiency of linearization technique, the non-linear Boussinesq equation is 
solved numerically by using Mac Cormack scheme. For this, Equation (1) is written as 
 

 
߲݄
ݐ߲

ൌ ଵܥ
߲
ݔ߲

൬݄
߲݄
ݔ߲
൰ െ ଶܥ

߲݄
ݔ߲

൅
ܰ
ܵ

(26) 

 
where, ܥଵ ൌ ሺܭ cosଶ ଵܥሻ/ܵ andߚ ൌ ሺܭ sin  ሻ/2ܵ. Mac Cormack scheme is a predictorߚ2
corrector scheme in which the predicted value of h is obtained by replacing the spatial and 
temporal derivatives by forward difference, i.e. 

 

݄௞,௡ାଵ
∗ ൌ ݄௞,௡ ൅ ଵܥ

ݐ∆
ሺ∆ݔሻଶ

ൣ݄௞ାଵ,௡൫݄௞ାଵ,௡ െ ݄௞,௡൯

െ ݄௞,௡൫݄௞,௡ െ ݄௞ିଵ,௡൯൧

െ ଶܥ
ݐ∆
ݔ∆

൫݄௞ାଵ,௡ െ ݄௞,௡൯ ൅
N
S
∆t

(27) 

The corrector is obtained by replacing the space derivative by backward differences, 
whereas the time derivative is still approximated by forward difference 
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݄௞,௡ାଵ
∗∗ ൌ ݄௞,௡ ൅ ଵܥ

ݐ∆
ሺ∆ݔሻଶ

ൣ݄௞,௡ାଵ
∗ ൫݄௞ାଵ,௡ାଵ

∗ െ ݄௞,௡ାଵ
∗ ൯

െ ݄௞ିଵ,௡ାଵ
∗ ൫݄௞,௡ାଵ

∗ െ ݄௞ିଵ,௡ାଵ
∗ ൯൧

െ ଶܥ
ݐ∆
ݔ∆

൫݄௞,௡ାଵ
∗ െ ݄௞ିଵ,௡ାଵ

∗ ൯ ൅
N
S
∆t

(28) 

 
The final value of ݄௞,௡ାଵ is given as an arithmetic mean of ݄௞,௡ାଵ

∗ and ݄௞,௡ାଵ
∗∗ , i.e. 

 

݄௞,௡ାଵ ൌ
1
2
൤݄௞,௡ ൅ ݄௞,௡ାଵ

∗ െ ଶܥ
ݐ∆
ݔ∆

൫݄௞,௡ାଵ
∗ െ ݄௞ିଵ,௡ାଵ

∗ ൯

൅ ଵܥ
ݐ∆

ሺ∆ݔሻଶ
൛݄௞,௡ାଵ

∗ ൫݄௞ାଵ,௡ାଵ
∗ െ ݄௞,௡ାଵ

∗ ൯

െ ݄௞ିଵ,௡ାଵ
∗ ൫݄௞,௡ାଵ

∗ െ ݄௞ିଵ,௡ାଵ
∗ ൯ൟ൨ ൅

N
S
∆t

(29) 

The initial and boundary conditions are discretized as 

 ݄௞,ଵ ൌ ݄଴ െ
݄଴ െ ݄௅

ܮ
௞ݔ (30) 

   
 ݄ଵ,௡ାଵ ൌ ݄଴ (31) 
 
 ݄௅,௡ାଵ ൌ ݄଴ െ ሺ݄଴ െ ݄௅ሻ݁ఒ௧೙శభ (32) 

Numerical experiments reveal that the method is stable if 
஺భ∆௧

ሺ∆௫ሻమ
൑ 0.06	and 

஺మ∆௧

∆௫
൑ 0.09 

 
 
5. Discussion of Results 
 
To demonstrate the applicability of the closed form solution given by Equations (19) and 
(23), we consider an aquifer with 150 = ࡸ m. Other hydrological parameters are: 3.6 = ࡷ 
m/h, ࢎ ,0.34 = ࡿ૙ = 5 m, 2 = ࡸࢎ m, 4 = ࡺ mm/hr and 0.054 = ࣅ per hr. Numerical 
experiments were carried out, and it is found that the first 50 terms of the summation series 
satisfactorily approximates the final value. The profiles of transient water head ࢎ obtained 
from equation (19) for 3 = ࢼ deg are plotted in Fig. 2 (continuous curves).  
 

 
Fig. 2.Comparison of analytical and numerical solution for β = 3 deg 
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Numerical solution of the non-linear Boussinesq equation (1) using Mac Cormack scheme 
for the same data set is also presented in Fig. 2 (dotted curves). Close agreement between 
the numerical and analytical solutions demonstrates the efficiency of the linearization 
method adopted in this study. Comparison of water head height obtained from numerical 
and analytical solutions is presented in Table 1. It is observed that the analytical solution 
slightly underestimates the actual results. 
 

Table1. Comparison of analytical (anal.) andnumerical (num.) results 
x(m) t=20h 

anal.    num. 
t=40h 

anal.    num. 
t=80h 

anal.    num. 
t=120h 

anal.    num. 
20 4.8216 4.8466 4.9321 4.9492 5.0956 5.0964 5.175 5.1775 
40 4.5558 4.6001 4.7919 4.8213 5.14 5.1403 5.3005 5.3046 
60 4.2301 4.2853 4.6054 4.6380 5.1479 5.1462 5.3791 5.3838 
80 3.879 3.9341 4.4116 4.4387 5.1336 5.1297 5.4103 5.4153 
100 3.5611 3.6002 4.2742 4.2905 5.1081 5.1032 5.3891 5.3942 
120 3.3997 3.4185 4.2817 4.2846 5.0731 5.069 5.3036 5.3079 
140 3.6527 3.6525 4.49 4.4845 5.0119 5.0108 5.1293 5.1312 

 
Relative percentage difference (RPD) between numerical and analytical values of water 
head with the numerical solution is analyzed. It is observed that the RPD is maximum in 
the middle part of the aquifer and negligible near the interfaces ݔ ൌ 0 and ݔ ൌ  In .ܮ
order to obtain a validity range of the analytical results, the range of RPD for different 
values of sloping angle ߚ is presented in Table 2. 
 

Table2. Range of RPD between analytical and numerical solution for λ = 0.054 h-1 

β Range of RPD 
5 – 0.0713 to 0.5232 

3 – 0.1322 to 0.5455 

0 – 0.1822 to 0.5692 

–3 – 0.2014 to 0.6227 

–5 – 0.2511 to 0.6532 

 
Average distance between the analytical and numerical solutions is also calculated using 
 :norm which is defined as follows 2ܮ

 ൬
1

ܮ√
൰‖݄௡ െ ݄௔‖ ൌ ൬

1

ܮ√
൰ ቈන ሼ݄௡௨௠ െ ݄௔௡௔ሽଶ݀ݔ

௅

௫ୀ଴
቉
ଵ/ଶ

(33) 

 
where݄௡௨௠and ݄௔௡௔respectively denote the numerical and analytical solutions. The 2ܮ 
norm for ߚ ൌ 3	deg, ߣ ൌ 0.054hିଵ,ݐ ൌ 20, 40, 80	and	120	hrs	is presented in Table 3. 
 

Table3. Average distance between analytical and numerical solution 

t (h) Average distance using 
L2 Norm 

20 0.01344 

40 0.02107 

80 0.01074 

120 0.00528 

 
Fig. 3 presents the comparison of transient water head profiles for ࢼ ൌ ૜ and 5 deg.  As 
time progresses, the water table grows in the aquifer. Continuous recharge causes 
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groundwater mound which finally stabilizes due to inflow-outflow equilibrium. Since, 
steeper downhill slope allows more water to from the left end; such aquifers exhibit 
relatively higher growth the phreatic surface. This phenomenon is evident from Fig. 3 
wherein the water table profiles in an aquifer with 5 deg bed slope are higher than the 
corresponding profiles of 3 deg bed slope. 
 

 
Fig. 3.Transient profiles of water head for β = 3 and 5 deg 

 
Considering a fixed point x in the domain with distance ratio x/L = 0.75, we plot in Fig. 4 
the water head at this point against time t for various values of. It can be observed from 
this figure that the rise rate of the stream water plays an important role in determining the 
transient profiles of free surface as well as its stabilization level. A fast rising stream 
reduces the outflow at stream-aquifer interface, leading to growth in the water table.  

 
Fig.4.Variation in water head height at x = 75 m 

  
Using equation (23), the flow rates at interface x = L is plotted in Fig. 5. The initial flow 
rate at the interface x = L are given by 
  

௫ୀ௅ݍ  ൌ ௅݄ܭ ൤
ሺ݄଴ െ ݄௅ሻ

ܮ
൅ tanβ൨ (34) 
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Clearly, ௫ୀ௅ݍ varies with bed slope. At initial stages, the stream-aquifer interface 
experiences flow along positive direction of x-axis. As time progresses, the outflow at 
ݔ ൌ  reaches a minimum level and increases thereafter. A reasonably long aquifer with ܮ
small bed slope experiences a temporary inflow at this interface. For large value of time, 
the flow rate attains steady state value given by Equation (25). It is worth noting that 
stabilization of flow rates leads to convergence of water table to a final value. Variation in 
௫ୀ௅ݍ  with recharge rate ܰ and stream rise rateߣ  are plotted in Fig. 6 and Fig. 7 
respectively. It is clear from this figure that flow rate at stream-aquifer interface increases 
with recharge. Furthermore, stream rise rate plays an important role in determining the 
inflow-outflow at the stream aquifer interface. It is established that a fast rising stream may 
allow its water to enter into the aquifer (bank storage mechanism). 
 

 
Fig. 5.Flow rate at the stream-aquifer interface for β = 3 and 5 deg 

 
 
6. Conclusions 
 
This study focuses on three major issues: (i) derive analytical expressions for water head 
and flow rate in an unconfined sloping aquifer due to continuous recharge and 
stream-varying water level, (ii) examine the efficiency and validity range of the 
linearization of method, and (ii) analyze the response of an aquifers to varying 
hydrological parameters. The linearized Boussinesq equation characterizing the transient 
groundwater flow is solved using Laplace transform technique, and the corresponding 
nonlinear equation is solved numerically by a fully explicit predictor-corrector scheme. 
Numerical experiments carried out in this study indicate that the evolution and 
stabilization of the phreatic surface and interaction of water between the stream and 
aquifer depend significantly on the bed slope and other aquifer parameters. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.Variation in flow rate at stream-aquifer interface with N 
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Fig. 7.Variation in flow rate at stream-aquifer interface with λ 
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