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Abstract. This paper presents an analytical model characterizing unsteady groundwater flow in an unconfined aquifer
resting on a sloping impervious bed. The aquifer is in contact with a constant water level at one end. The other end is in
hydrological connectionwith a stream whose level is increasing form an initial level to a final level by a known
exponentially function of time. During this process, the aquifer is vertically replenished by a constant downward
recharge. The linearized Boussinesq equation is solved analytically using Laplace transform to obtain the closed form
expression for hydraulic head distribution in the aquifer and flow rate at the stream-aquifer interface. The expressions
derived in this study can handle the cases of upward sloping, horizontal bed conditions and sudden rise in stream water.
The validity of linearization method adopted in this study is examined by solving the nonlinear equation by an explicit
numerical scheme. Response of an aquifer to the variations in bed slope, recharge rate and rise rate of the stream water
is illustrated with a numerical example. Sensitivity of the flow rate with various parameters is analyzed.
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1. Introduction

Estimation of surface and groundwater interaction is an important hydrological
investigation due to its key role in conjunctive management of groundwater resources.
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Several analytical and numerical models have been developed to predict the
surface-groundwater interaction in stream-aquifer systems under varying hydrological
conditions [11-14, 18]. Estimations of water table fluctuations in unconfined aquifer with
surface infiltration have also been presented by several researchers [15, 17, 19-21].

The subsurface seepage flow in unconfined aquifers is usually formulated as a parabolic
nonlinear Boussinesq equation which does not admit analytical solution. Therefore, the
methodology adopted in most of the aforesaid models is to linearize the Boussinesq
equation and develop analytical solution of the resulting equation. Although, the
approximate analytical solution obtained in these studies provide useful insight in the flow
process; however, the subsurface drainage over hillslope cannot be satisfactorily addressed
with their results. Another perceived limitation is that they do not account for the gradual
rise in the stream water.

The role of sloping bedrock in evolution of the phreatic surface has been underlined in
numerous studies [8-10]. The results derived for horizontal aquifer may seriously
underestimate or overestimate the actual results if applied to the sloping bed geometry.
Approximation of groundwater flow over unconfined sloping beds based on extended
Dupuit-Forchheimer assumption (streamlines are approximately parallel to the sloping
impervious bed) can be expressed in the form of an advection-diffusion equation,
popularly known as Boussinesq equation [1, 7]. Analytical solutions of linearized
Boussinesq equation under constant or time-varying boundary conditions have been
presented by a number of researchers [1- 6, 16]. It is worth mentioning that the efficiency
of the linearization must be examined by validating the model results with either field data
or by comparing the results with numerical solution of the nonlinear Boussinesq equation.
The present study is an attempt to quantify the groundwater-surface water interaction with
more realistic approach. The mathematical model considered here deals with transient
groundwater flow regime in a homogeneous unconfined aquifer of finite width overlying a
downward sloping impervious bed owing to seepage from stream of varying water level
and constant downward recharge. The aquifer is in contact with a constant piezometric
level at one end and a stream of time varying water level at another end. The stream is
considered to penetrate full thickness of the aquifer. Furthermore, the aquifer is
replenished by a constant recharge. Efficiency of the linearization method is examined by
solving the nonlinear Boussinesq equation by a fully explicit predictor-corrector numerical
scheme. The effect of bed slope, recharge rate and stream rise rate on the water table
fluctuation and flow mechanism is analyzed using a numerical example. The solution
presented here can be applied to asymptotic scenarios of sudden or very slow rise in the
stream water by assigning an appropriate value to the stream rise rate parameter.

2.Problem Formulation and Analytical Solution

As shown in Fig.1, we consider an unconfined aquifer overlaying an impermeable sloping
bed with downward slopetan 8. The aquifer is in contact with a constant piezometric
levelhg at its left end and a stream at the right end. The water in the stream is gradually
rising from its initial level h; to a final level hy, by a known exponential decaying
function of timet. Moreover, the aquifer is replenished vertically at a constant rate. If the
variation in the hydraulic conductivityand specific yield of the aquifer with spatial
coordinate is neglected, and the streamlines are considered to be nearly parallel to the
impermeable bed (extended Dupuit-Forchheimer approach) then the groundwater flow in
the aquifer can be characterized by the following nonlinear Boussinesq equation [10]

6<h6_h>_ oh Ne(t) S oh 0

ax\ ox an $+Kcoszﬂ_1{coszﬁ£
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whereh(x, t)is the height of the water table measured above the impermeable slopingbed
in the vertical direction. KandSrespectively are the hydraulic conductivity and specific

yield of the aquifer. Nis the constant recharge rate. £(t)is a unit step function defined as
follows:

0ift<0

dﬂ:{lﬁt>0 )
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Fig. 1.Schematic diagram of an unconfined aquifer

The initial and boundary conditions are:

h@¢:0)=m+ﬁ°zmx ?3)
h(x =0,t) = hy “
h(x = L,t) = hg — (hg — hy)e ™™ (%)

whereLis length of the aquifer.Ais a positive constant signifying the rate at which the water
in the stream rises from its initial valueh; to a final level h,. Equation (1) is a second
order nonlinear parabolic partial differential equation which cannot be solved by analytical
methods. However, an approximate analytical solution can be obtained by solving the
corresponding linearized equation. In the present work, we adopt the linearization method
as suggested by Marino [16]. Firstly, rewrite Equation (1) as

ﬂ_tanﬁ%_i_ Ne(t) S oh (6)
0x? h 0x  Khcos?p B Kh cos? B 0t
whereh is the mean saturated depth in the aquifer. The value of h is successively
approximated using an iterative formula h = (hq + h;)/2, where h, is the initial water

table height, and h; is the varying water table height at time t at the end of which his
approximated. Equation (6) is further simplified using the following dimensionless
variables and substitutions
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h— hy x K hcos?B 7
H=—— X=-1=—F777—t
hL - ho L t SLZ
Therefore, Equation (6) becomes
0°H LtanpBoH N L*Ne(7) _O0H ®
ax? h  0X  Kh(h, —hy)cos?p 0t
where
_(0ift<0
£ ={} ity 0 )
Now, define the following parameters
Ltan L2N
a= — ’ = — ’
2h ! Kh(h;, — hg) cos?
2 (10)
SL
7\1 =
Khcos? B
so that, equation (8) becomes
0°H 2 6H+N _0H an
axz ~ Hax TNE =5
The initial and boundary conditions reduce to
HX,t=0)=X (12)
HX=0,1)=0 (13)
HX=11)=1-eM" (14)

Equation (11) along with conditions(12)—(14) is solved by Laplacetransform. Define the
Laplace transform of H(X, t) as follows:

[ee]

L{HX, ©):T - s} = H(X,s) = f H(X, t)e 5%dt (15
0

The Laplace transform of equation (11) yields

0*H _ oH N; 0H

o°'H _ oH N, oH (16)
Xz 2% TS Tae

The general solution of equation (16) can be found using elementary methods. Moreover,
the arbitrary constants contained in the general solution are obtained by using the Laplace
transform of Equations (13)—(14) in it. We get
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H(X, s) = e <2a — Nl)Sinh ((1 _ X)m)

s? sinh(Va? +s)
2a — N,
+e™® ( 5
; 7)
A )sinh(X\/aZ +5)| x 2a
Cs(s+4y) sinh(VaZ +s) )
Ny
s

Inverse Laplace transform of equation (17) is obtained from calculus of residue. Define
. 1 C+iW_
LYHX, )} =HX, 1) =— limJ- H(X,s)e"ds (18)
271 w—eo c—iw

wherec is an arbitrary positive number. The integration in equation (18) is performed along
aline s = ¢ in the complex plane where s = x + i y. The real number c is chosen so that s =
¢ lies to the right of all singularities, but is otherwise arbitrary. The inverse Laplace
transform of equation (17) yields

H(X, 1)
Sinh(X a? — ,11)
sinh(\/aZ——Al)

2m(2 Ny) aX inSl’n(nn’X)(l _e—(a2+n2n2)1.)
T (a? + n2m2)? )

o-a Z (-D"n sm(nr[X)(1 — e—(a®+n nz)f)

(a? +n?m?)?

=X- e_a(l—x)(l — e—ll‘[)

2 e=a-x) Z (=D)"nsin(nuX)(1 — e~(@+n*7)
e (a? +n?n?)(a? + n?n? — 1,)

Equation (19) provides analytical expression for the water head distribution in the
downward sloping aquifer under conditions mentioned in Equations (3)—(5). One can
obtain the corresponding results for an upward sloping by replacing aby — aand for a
horizontal bed by setting a — 0. Furthermore, equation (19) can also be used to predict the
water head profiles when the rise in the stream is extremely rapid; similar to the case of
flood like situation, by letting A —co. We obtain
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H(X,7)

_ y _ p-a(i-®) sinh X

sinh %o
nsin(nnX)(1 - e‘(a2+n2n:2)1-)
- 2n(2a — N,)e™* Z
n(2a )e { (a? + n2m?)?2
e Z (—1)™n sm(nnX)(1 — e—(@?+n 1'[2)‘[)

(a,Z + n2 2)2

(20)

+ 2me—a(1-X) Z S Sin(nn'X)(l — e—(a2+n2n2)r)
e (a? + n2m?)

3.Determination of Flow Rate and Steady State Profile

The flow rateq(x, t) in the aquifer is defined as

q(x, t) = —Kh(%—tanﬁ) (21)

andat the stream-aquifer interface, the flow rate is

et = =Klho = (ho = )} [(32) - tan] (2

Invoking Equation (20) in Equation (22), the expressions for flow rate at the
stream-aquifer interface are obtained as follows:

K
Qx=L = z [1 - 27.[2(2“

. { . ke (_1)nn2(1 _ e—(a2+n2n2)t)
V)¢ Z (a? + n?m?)?
b nz(ln__le—(a2+n2n2)t)
- ; (a2 + n2m2)2 }
. Z n?(1 — e ) 23)
4 (a? + n?m?)(a? + n?m? —Ay)

e oo =

tanh

ho —hy
X (ho = hy){ho + (hy — ho)e ™}
It is worth noting that despite continuous recharge, the profiles of water head attain a
steady state value for large value of time. The expressions for steady-state water head and

flow rate at stream-aquifer interface can be obtained by setting t — oo in Equations (20) and
(23), yielding

LtanB]
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h*
i d 2 _
sinh ((L) Ja /11>
sinh(w/oz2 — /11)

¢ nsin(nmx/L)
) ] (a? + n?m?)? (24)
gt (—D™n sin(mrx/L)}

=X _ pmai-x/m)

L

+2n2a — Nl)e"‘("/’“){

(aZ + Tl27'[2)2
n=1

o e-a(=x/L) Z (—D™nsin(nmx/L)
1 o] (a? + n?m?)(a? + n?n? — 1;)

X (hg — hy)hg
q*
L
(-1)"n?

—2m2Q2a— N {e® Yy —————

T ( a 1){8 nzl(a2+n27r2)2
-y n’ } 25)

2 2.72)\2
n=1(a :nﬂ)

n2

92
212y 21 (a? + n?2n?)(a? + n?n? — 1,)
n=

a?— A Ltanp
—ja+ + X (hg — hy)h
{ tanh az—ll} hO_hL] o

4.Numerical Solution of the Non-linear Equation

To assess the efficiency of linearization technique, the non-linear Boussinesq equation is
solved numerically by using Mac Cormack scheme. For this, Equation (1) is written as

oh 6( 6h>_ oh N 26)

- Oax\hax) "Gty

where, C; = (K cos? 8)/S andC; = (K sin2f8)/2S. Mac Cormack scheme is a predictor
corrector scheme in which the predicted value of 4 is obtained by replacing the spatial and
temporal derivatives by forward difference, i.e.

. At
hk,n+1 = hk,n +C; W [hk+1,n(hk+1,n - hk,n)
- hk,n(hk,n - hk—l,n)] (27)
At N
- C2 E (hk+1,n - hk,n) + §At

The corrector is obtained by replacing the space derivative by backward differences,
whereas the time derivative is still approximated by forward difference
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t
Rins1 = hgn + €y —(Ax)2 [hk,n+1(hk+1,n+1 - hk,n+1)
- hltt—l,n+1(hzt,n+1 - h;—l,n+1)] (28)
At . N
-G E(hk,n+1 — hicimer) + At

The final value of hy 4 is given as an arithmetic mean of hy, ,,,and hy' 44, ie.
1 . At .
higns1 = 3 hin + hpis = C2 Ax (Rins1 = Pk-1n+1)
At * * *
+G W{hk,nﬂ(hkﬂ,nﬂ - hk,n+1) (29)

* * * N
- hk—l,n+1(hk,n+1 - hk—l,n+1)}] + §At
The initial and boundary conditions are discretized as

ho—h
hk,l = ho -2 I ka (30)
hini1 = ho (1)
hime1 = ho = (hg — hy)e?tn+ (32)
Numerical experiments reveal that the method is stable if ale)i < 0.06 and A;ﬁt < 0.09

5. Discussion of Results

To demonstrate the applicability of the closed form solution given by Equations (19) and
(23), we consider an aquifer with L = 150 m. Other hydrological parameters are: K = 3.6
m/, § =034, hy =5 m, hy =2 m, N =4 mm/hr and 4 = 0.054 per hr. Numerical
experiments were carried out, and it is found that the first 50 terms of the summation series
satisfactorily approximates the final value. The profiles of transient water head h obtained
from equation (19) for B = 3 deg are plotted in Fig. 2 (continuous curves).

6
55 A t=120h
5 80h
E 45
= 40h
g 4
2
~ 3.5
% 72 20h
= 3 — Analytical 4 o
--- Numerical er o) 10h
</
25
2 T T T
0 50 100 150

Distance x (m)

Fig. 2.Comparison of analytical and numerical solution for § = 3 deg
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Numerical solution of the non-linear Boussinesq equation (1) using Mac Cormack scheme
for the same data set is also presented in Fig. 2 (dotted curves). Close agreement between
the numerical and analytical solutions demonstrates the efficiency of the linearization
method adopted in this study. Comparison of water head height obtained from numerical
and analytical solutions is presented in Table 1. It is observed that the analytical solution
slightly underestimates the actual results.

Tablel. Comparison of analytical (anal.) andnumerical (num.) results
x(m) t=20h t=40h t=80h t=120h
anal.  num. anal.  num. anal.  num. anal.  num.
20 48216 4.8466 49321 49492 5.0956 5.0964 5.175 5.1775
40 4.5558 4.6001 4.7919 4.8213 5.14 5.1403  5.3005 5.3046
60 42301 4.2853 4.6054 4.6380 5.1479 5.1462 53791 5.3838
80 3.879 39341 44116 44387 5.1336 5.1297 54103 54153
100  3.5611 3.6002 4.2742 4.2905 5.1081 5.1032 5.3891 5.3942
120 3.3997 3.4185 4.2817 4.2846 5.0731 5.069 53036 5.3079
140  3.6527 3.6525 4.49 4.4845 5.0119 5.0108 5.1293 5.1312

Relative percentage difference (RPD) between numerical and analytical values of water
head with the numerical solution is analyzed. It is observed that the RPD is maximum in
the middle part of the aquifer and negligible near the interfaces x = 0 and x = L. In
order to obtain a validity range of the analytical results, the range of RPD for different
values of sloping angle f is presented in Table 2.

Table2. Range of RPD between analytical and numerical solution for A = 0.054 h™!

B Range of RPD

5 —0.0713 to 0.5232
3 —0.1322 to 0.5455
0 —0.1822 to 0.5692
-3 —0.2014 to 0.6227
-5 —0.2511 to 0.6532

Average distance between the analytical and numerical solutions is also calculated using

L2 norm which is defined as follows:
1/2

(%) Iy — hall = (%) [ f L:O{hnum — hana}dx (33)

whereh,,,and h,, respectively denote the numerical and analytical solutions. The L2
norm for f = 3 deg, 1 = 0.054h~1,t = 20,40, 80 and 120 hrs is presented in Table 3.

Table3. Average distance between analytical and numerical solution

t (h) Average distance using
L2 Norm

20 0.01344

40 0.02107

80 0.01074

120 0.00528

Fig. 3 presents the comparison of transient water head profiles for f# = 3 and 5 deg. As
time progresses, the water table grows in the aquifer. Continuous recharge causes
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groundwater mound which finally stabilizes due to inflow-outflow equilibrium. Since,
steeper downhill slope allows more water to from the left end; such aquifers exhibit
relatively higher growth the phreatic surface. This phenomenon is evident from Fig. 3
wherein the water table profiles in an aquifer with 5 deg bed slope are higher than the
corresponding profiles of 3 deg bed slope.

6
55 t=120h
5 30h \
—~ 40h
E 45 |
o 20h
s 4
3}
= 5 /
3 35
® )
= — B=3Deg /'712‘/;9/“/
3 1 = B=5Deg ey S
>
25 4
2 T T r .
0 50 100 150

Distance x (m)

Fig. 3.Transient profiles of water head for § =3 and 5 deg

Considering a fixed point x in the domain with distance ratio x/L = 0.75, we plot in Fig. 4
the water head at this point against time ¢ for various values ofA. It can be observed from
this figure that the rise rate of the stream water plays an important role in determining the
transient profiles of free surface as well as its stabilization level. A fast rising stream
reduces the outflow at stream-aquifer interface, leading to growth in the water table.

55
~ 5
£
<
®
S 45
<
§ // —  Sudden rise
g —— %=0.054h'
4
= —-— A=0.05h"
- A=0.012h'!
35 " " " -
0 20 4q'ime t (hf’P 80 100

Fig.4.Variation in water head height at x = 75 m

Using equation (23), the flow rates at interface x = L is plotted in Fig. 5. The initial flow
rate at the interface x = L are given by

ho—h
Grep = KRy ("L—L) +tan (34)
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Clearly, q,-;, varies with bed slope. At initial stages, the stream-aquifer interface
experiences flow along positive direction of x-axis. As time progresses, the outflow at
x = L reaches a minimum level and increases thereafter. A reasonably long aquifer with
small bed slope experiences a temporary inflow at this interface. For large value of time,
the flow rate attains steady state value given by Equation (25). It is worth noting that
stabilization of flow rates leads to convergence of water table to a final value. Variation in
qx=; Wwith recharge rate Nand stream rise rated are plotted in Fig. 6 and Fig. 7
respectively. It is clear from this figure that flow rate at stream-aquifer interface increases
with recharge. Furthermore, stream rise rate plays an important role in determining the
inflow-outflow at the stream aquifer interface. It is established that a fast rising stream may
allow its water to enter into the aquifer (bank storage mechanism).

3.5

25 A

Flow Rates (m/h)

0 50 im0 150 200
Fig. 5.Flow rate at the stream-aquifer interface for =3 and 5 deg

6. Conclusions

This study focuses on three major issues: (i) derive analytical expressions for water head
and flow rate in an unconfined sloping aquifer due to continuous recharge and
stream-varying water level, (ii) examine the efficiency and validity range of the
linearization of method, and (ii) analyze the response of an aquifers to varying
hydrological parameters. The linearized Boussinesq equation characterizing the transient
groundwater flow is solved using Laplace transform technique, and the corresponding
nonlinear equation is solved numerically by a fully explicit predictor-corrector scheme.
Numerical experiments carried out in this study indicate that the evolution and
stabilization of the phreatic surface and interaction of water between the stream and
aquifer depend significantly on the bed slope and other aquifer parameters.
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Fig. 6.Variation in flow rate at stream-aquifer interface with N
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Fig. 7.Variation in flow rate at stream-aquifer interface with A

7. References

[1] Akylas, E., Koussis,A.D., Response of sloping unconfined aquifer to stage changes in adjacent stream. I.
Theoretical analysis and derivation of system response functions. J. Hydrol,338 (2007) 85-95.
[2] Bansal, R.K., Das, S.K., The effect of bed slope on water head and flow rate at the interfaces between the stream
and groundwater: analytical study. J HydrolEng,14(8) (2009) 832-838.
[3] Bansal, R.K., Das,S.K. Water table fluctuations in a sloping aquifer: analytical expressions for water exchange
between stream and groundwater. J Porous Media ,13(4)(2010) 365-374.
[4] Bansal, R.K. Das S.K.An analytical study of water table fluctuations in unconfined aquifers due to varying bed
slopes and spatial location of the recharge basin. J HydrolEng, 15 (2010) 909-917.
[5] Bansal, R.K., Das S.K., Response of an unconfined sloping aquifer to constant recharge and seepage from the
stream of varying water level. Water Resour. Manag,25 (2011) 893-911.
[6] Bansal R.K., Groundwater fluctuations in sloping aquifers induced by time-varying replenishment and seepage
from a uniformly rising stream. Trans. Porous Med,94 (2012) 817-826.
Behzadi,S.S., Numerical solution of Boussinesq equation using modified Adomian decomposition and homotopy
analysis methods. Int. J. of Mathematical Modeling & Computations, 1(1) (2011) 45-58.
Boufadel, M.C. PeridierV., Exact analytical expressions for the piezometric profile and water exchange between
the stream and groundwater during and after a uniform rise of the stream level. Water Resour Res. Doi:
10.1029/2001 WR000780, 2002.
[9] Brutsaert, W., The unit response of groundwater outflow from a hillslope. Water Resour Res,30(10) (1994)
2759-2763.
[10]Chapman T.G., Modelling groundwater flow over sloping beds. Water Resour Res,16(6) (1980) 1114-1118.
[11]Gill,M.A., Bank storage characteristic of a finite aquifer due to sudden rise and fall in the river level. J Hydro,
176(1985) 133-142.
[12]Hantush,M.S., MS Wells near streams with semipervious bed. J Geophys Res,3(1) (1965), 227-234.
[13]Higgins,D.T., Unsteady drawdown in a two-dimensional water table aquifer. J Irrig Drain Div, Proc Am
SocCivEng 106(IR3) (1980)237-251.
[14] Latinopoulos,P., Periodic recharge of finite aquifers from rectangular areas. Adv Water Resour, 7 (1984) 137-140.
[15]Latinopoulos,P., A boundary element approach for modeling groundwater movement.Adv Water Resour,9 (1986)
171-177.
[16]Marino M.A., Rise and decline of the water table induced by vertical recharge. J. Hydrol,23 (1974) 289-298.
[17]Moench, A F., Barlow P.M., Aquifer response to stream-stage and recharge variations. I. Analytical step-response
functions. J Hydrol,230 (2000) 192-210.
[18]PY Polubarinova-Kochina “Theory of groundwater movement,” Princeton University Press, N.J. 1962.
[19] Rai, S.N. Singh, R.N., On the prediction of groundwater mound due to transient recharge from rectangular area.
Water ResourManag,10 (1986) 189—198.
[20]Upadhyaya, A., Chauhan H.S., Water table rise in sloping aquifer due to canal seepage and constant recharge. J Irrg
Drain Eng,128 (2002) 160-167.
[21]Verhoest, N.E.C.,Troach,P.A., Some analytical solution of the linearized Boussinesq equation with recharge for a
sloping aquifer. Water Resour Res,36(3) (2000)793-800.

[7

—

[8

—

200



