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deterministic and/or nondeterministic models for TP have been developed. 

A basic assumption in any transportation problem is that the cost is directly proportional 
to the number of units transported, while, in most real-world applications, a fixed cost for 
distributing of products in each route is also considered. Many practical supply chain 
distribution problems with fixed charge can be formulated as fixed charge transportation 
problems (FCTP). 

Balinski [6] first formulated the FCTP and presented an approximate algorithm to solve 
it. Hirsch and Dantzig [12] proved that the FCTP is NP-hard. This problem is formulated 
as a mixed integer network programming problem and solved by some exact algorithms, 
such as branch and bound and cutting plane; however, these algorithms are usually 
inefficient and computationally expensive, especially for large-sized instances. 
Therefore, in the last two decades, several heuristics and metaheuristics have been 
presented to solve FCTPs (see, for example, heuristics [4–8]; tabu search [24]; simulated 
annealing [5];  genetic algorithm (GA) [11–16]; artificial immune and genetic algorithm 
[19]; simplex-based simulated annealing [26]; minimum cost flow-based genetic 
algorithm [25]). 

Step fixed charge transportation problem (SFCTP) is an extended version of the FCTP 
and is introduced by Kowalski and Lev [16]. The SFCTP has received little attention in 
the transportation problem literature. To the best of our knowledge, two heuristics 
proposed by Kowalski and Lev [16] Altassan, et al., [3] and an artificial immune 
algorithm by El-Sherbiny [9] have been presented to solve SFCTPs. 

In this paper, we consider the step fixed charge transportation problem (SFCTP). Up until 
now, no one has considered neither GA nor MA for any kind of SFCTPs. So, we 
presented GA and MA for solving the SFCTP for the first time. 

The rest of the paper is organized as follows. In Section 2, the SFCTP model is 
described, while in Sections 3 the solution approach is discussed. The experimental 
design and comparisons are presented in Section 4. Finally, the conclusion and future 
work are reported in Section 5. 

 

2.   Mathematical Model and Descriptions 

SFCTP can be stated as a transportation problem in which there are m suppliers and n 
customers. Each of the m suppliers can ship to any of the n customers at a shipping cost per 
unit ܿ௜௝ plus a fixed cost	݇௜௝, assumed for opening this route. Each supplier i=1,2,…,m  
has ௜ܵ	  units of supply, and each customer j=1,2,…,n has a demand of ܦ௝	units. The 
objective is to determine which routes are to be opened and the size of the shipment on 
those routes, so that the total cost of meeting demand, given the supply constraints, is 
minimized. This problem can be formulated as follows: 
 
Min     ∑ ∑ ܿ௜௝

௡
௝ୀଵ

௠
௜ୀଵ ௜௝ݔ ൅ ∑ ∑ ݇௜௝

௡
௝ୀଵ

௠
௜ୀଵ  ௜௝ݕ

         s.t    

෍ݔ௜௝

௠

௜ୀଵ

ൌ ௜ܵi ൌ 1,2, … ,m, 

෍ݔ௜௝

௡

௜ୀଵ

ൌ ݆																		௝ܦ ൌ 1,2, … , ݊, 

௜௝ݔ ൒ 0,																											∀	݅, ݆, 
Where  
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௜௝ݕ ൌ ൝
௜௝ݔ															1 ൐ 0,
 	݁ݏ݅ݓݎ݄݁ݐܱ								0

 
The fixed cost		݇௜௝	 for route (i, j) is related to the transported units through its route. This 
consists of a fixed cost ෨݇௜௝,ଵ	for opening the route (i, j) and an additional cost		݇௜௝,ଶ	when the 
transported units exceeds a certain amount 	௜௝ܣ		 . Therefore, 	݇௜௝	 ൌ 	ܾ௜௝,ଵ		݇௜௝,ଵ	 ൅
	ܾ௜௝,ଶ	݇௜௝,ଶ	, where  

	ܾ௜௝,ଵ ൌ ൝
௜௝ݔ																1 ൐ 0,
௜௝,ଶܾ	    ,	݁ݏ݅ݓݎ݄݁ݐܱ									0 ൌ ൝

௜௝ݔ													1 ൐ ,௜௝ܣ	
 ,  	݁ݏ݅ݓݎ݄݁ݐܱ										0

and  ݇௜௝,ଵ	, 		݇௜௝,ଶ	, 	݇௜௝, ௜௝ܣ ൒ 0.  
 
Note that ݇௜௝  has two steps. It could have multiple steps, depending on the problem 
structure. Without loss of generality, we assume that  

෍ ௜ܵ

௡

௜ୀଵ

ൌ෍ܦ௝

௠

௝ୀଵ

௜ܵ, ௝ܦ ൒ 0.	 

 

Where ݔ௜௝ is the unknown quantity to be transported on the route (i, j) that from plant i to 
consumer j, ܿ௜௝ is the shipping cost per unit from plant i to consumer j. ݇௜௝ is the fixed 
cost associated with route (i, j). In this paper, we assume a balanced transportation 
problem, because the unbalanced transportation problem can be converted to a balanced 
transportation problem by introducing a dummy supplier or a dummy consumer. Despite 
its similarity to a standard TP problem, SFCTP is significantly harder to solve because of 
the discontinuity in the objective function Z introduced by the fixed costs. 

 

 
3.   Solution Approach 

3.1. Representation and Initialization 

Most of the metaheuristics use a random procedure to generate an initial set of solutions. 
The initialization of a solution is performed from randomly generated m + n –2 digits in 
range [1, m + n]. Figs. 1 and 2 illustrate a transportation graph and it's spanning tree. 
 

 

 D1 D2 D3 D4 D5 ai 
O1  6 5   11 
O2 2   16 1 19 
O3 12  5   17 
O4     7 7 
bj 14 6 10 16 8  
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Fig. 1. Illustration of basis on the transportation tableau and the transportation graph. 
 

 

1 2 3 4 5 6 7 8 9 
         

O1 O2 O3 O4 D1 D2 D3 D4 D5 
 

 

Fig. 2. A Spanning tree and its solution representation. 
 
When generating the solution, there will be a possibility that it cannot be adapted into the 
transportation network graph. For this purpose, the feasible solution generation procedure 
proposed by Hajiaghaei-Keshteli et al. [13] is used. The feasibility criterion is as follows: 







nm

mi
i

m

i
i LL

11

)1()1(  (1) 

Where Li is the appearance number of node i in solution S(T). The criterion can be 
showed by equation 2: 







nm

mi
i

m

i
i nLmL

11

 (2)
 

Considering the length of solution, the following equation is obtained: 







nm

mi
i

m

i
i nmLL

11

2  (3)
 

So we can easily show the feasibility criteria from (2) and (3) as follows: 





m

i
i nL

1

1  
(4)

 

And 







nm

mi
i mL

1

1  (5)
 

 
A solution has m + n –2 digits. Considering the feasibility criteria (equations (4) and (5)), 
we randomly generate a string with n –1digits from set O, and another with m –1digits 
from set D. To design a feasible solution, the two produced strings are combined together 
at random, as depicted in Fig. 3. After generating a feasible solution, the transportation 
network graph can be determined by using the following decoding procedure: 
 
 

S(T) = 1 7 5 3 8 2 4
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Procedure: Convert solution S(T) to the transportation tree 
Input: Transportation network graph and solution S(T) 
Output: A transportation tree 
 
Step 1: Let S(T) be the original solution and let S'(T) be the set of all the nodes that are 
not part ofS(T) and designed as eligible for consideration. 
Step 2: Repeat the following process – (2.1) – (2.5) – until no digits are left in S(T). 
2.1 Let i be the lowest numbered eligible node in S'(T). Let j be the leftmost digit of 
S(T). 
2.2 If i and j are not in the same set O or D, add the edge (i,j) to tree T. Otherwise, select 
the next digit k from S(T) that is not included in the same set with i, exchange j with k, 
and add the edge (i,k) to the tree T. 
2.3 Remove j (or k) from S(T) and i from S'(T). If j (or k) does not occur anywhere in the 
remaining part of S(T), put it into S'(T). 
2.4 Assign the available amount of units to xij = min{ai,bj} (or xik = min{ai, bk}) to the 
edge (i,j) or (i,k)) where iO and j, kD. 
2.5 Update availability ai =ai–xij and bj = bj–xij (or bk = bk–xik). 
Step 3: If no digits remain in S(T) then there are exactly two nodes, i and j, still eligible 
in S'(T) for  consideration. Add edge (i, j) to tree T and form a tree with m + n –1 edges. 
Step 4: If there are no available units to assign, then stop. Otherwise, there are y plants 
with 0a  units, and z costumers with 0b  demands yet. One of these states 
occurs: 

I. If 1y  and 1z , Add the edge between the plant and the customer to the tree 

and assign the available amount to the edge. 

II. If 1y and 1z , Add the edge between the plants and the customer to the tree 

and assign the available amount to the edge. 

III. If 1y  and 1z , Add the edge between the plant and the customers to the tree 
and assign the available amount to the edge. 

IV. If 1y  and 1z , Consider them as a new transportation model with y plants 

and z customers, then generate solution, and Repeat step 1 to 4.  

If a cycle exists; remove the edge that is assigned zero flow. A new spanning tree is 
formed with m + n –1 edges. 
 

m=3  and  n=5 



3

1

4
i

iL and  



8

4

2
i

iL  

 

 

 

Fig. 3. Illustration of generating feasible solution. 
 
All conditions that may occur in designing transportation tree in step 4 are considered, 
while in the previous procedure, some states are not involved. Therefore it does not 

Random n-1 digits from set O  1 3 2 3
   

Random m-1 digits from set D 7 6
   

feasible solution 1 7 3 2 6 3 
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produce any transportation tree in some situation. To more explanation and clarify this 
difference, we give an example and illustrate it in Fig. 4. 
 

 

 

 

 

Fig 4. Illustration of the previous procedure proposed by Jo et al. [15] to designing 
transportation. 

 
In this example, one can easily conclude that it cannot be solved by the previous 
procedure presented by Jo et al. [15]. There are still two plants (O2and O3) and two 
customers (D2 and D5) remain. We solve this dilemma with step 4 in the presented 
procedure in Fig. 5. 
 

 D2 D5  

O2 3 
 

3 

O3 2 1 3 

 5 1  

Fig 5. Solving the dilemma by step 4 in the presented procedure  
 

Fig. 6 shows combined two Figs 4 and 5. Therefore we can reach to final transportation 
tree and transportation graph in Fig. 7 by removing the edges which are assigned zero 
flow. 

S(T) = 1 7 5 3 8 2 4

 D1 D2 D3 D4 D5 ai  

O1  11    11 0 

O2    16  19 3 

O3 4  10   17 3 

O4     7 7 0 

 bj 4 16 10 16 8  

 0 5 0 0 1 

1 2 3 4 5 6 7 8 9 
         

O1 O2 O3 O4 D1 D2 D3 D4 D5 

0 

0 

0 

0
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 D1 D2 D3 D4 D5 ai 

O1  11    11 

O2  3  16  19 

O3 4 2 10  1 17 

O4     7 7 

bj 4 16 10 16 8  

 

Fig. 6. Combined two Figs. 4 and 5. 
 

O1

O2

O3

O4

D1

D4

D3

D2

D5

3

7

4

11

10

16

1

Plants

Customers

2

 

 

Fig. 7. Final transportation tree and transportation graph for the example. 
 
3.2. The Proposed Memetic Algorithm 

Biological genes in parents influence offspring. Additionally, MAs are inspired by 
Dawkin’s concept of a meme [7], which represents a unit of cultural evolution that can 
exhibit local refinement. The same concept is the basis for the expansion of a GA. MA is 
a GA in which a separate local search procedure plays a significant role. In the proposed 
MA, the local search procedure is applied to each child to search for a better solution. 
From an optimization point of view, MAs are hybrid metaheuristics that combine the 
global and local search to perform exploration while the local search method performs 
exploitation. 
 
Selection mechanism: 
Analogous to natural selection, the more fit the parent is the more likely they are to have 
offspring. A simple way of carrying out this selection is via roulette wheel selection. The 
wheel has different width spaces so that the worst solution has the minimum wedge 
increasing up to the best solution with the maximum wedge. Since the objective function 
is the minimization of the total cost, better chromosomes are those results in a lower 

0 

0 0

0 
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objective function. The higher fitness value means the better solution, so we define the 
following function to evaluate each fitness value: 
 

Function Objective

1
Value Fitness   

 
Using the roulette-wheel selection mechanism, the higher fitness value a solution has, the 
more chance it has to be selected. 
 
Reproduction: 
The best solution or Chromosomes with higher fitness values are more desirable than the 
other and should be considered in next generations. At a minimum, the best solution from 
the current population needs to be copied to the next generation thus ensuring the best 
score of the next generation is at least as good as the previous generation. Here elite is 
expressed as a percent, so the top pr% of the chromosomes is kept with the better fitness 
values. Hence they are copied to the next generation. 
 
Crossover: 
Crossover is the breeding of two parents to produce offsprings. The main purpose of this 
operator is to generate ‘better’ offspring, i.e. to create better sequences after combining 
the parents. The generated offsprings have features from both parents and thus may be 
better or worse than either parent according to the objective function. As we assigned pr% 
of the chromosomes of generation to reproduction, the (1–pr)% remaining chromosomes 
are generated through crossover operator. In this paper, we employ the One-point 
crossover. 
 
Local search and Mutation: 
Mutation is expressed as a probability. For each solution in the parent population a 
random number is generated from uniform distribution between 0 and 1 giving this 
solution a percent chance of being mutated. If this solution is chosen for mutation then a 
copy of the solution is made and job sequences mutated. In this paper, we employ the Big 
Swap Mutation. Local search is carried out for a fixed number (nmax) of neighborhood or 
mutation searches for each offspring. 
 

4.   Experimental Design 

4.1. Instances 

Hajiaghaei-Keshteli et al. [11] generated random test problems to verify the efficiency of 
their solution approach. We extend their plan to step costs in this paper. To cover various 
problem configurations, several levels of influencing inputs are considered. After 
determining the size of test problems in a given instance, considering the important effect 
of the step fixed costs to the solution for each size, four problem types (A–D) are 
generated. For a given problem size, problem types differ from each other by the range of 
step fixed costs, which increases upon progressing from problem type A through problem 
type D. The problem sizes, types, step fixed costs ranges and their detail are shown in 
Table 1. 
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Table 1. Test problems characteristics. 
 

   Range of variable costs Range of first and second fixed costs 
Problem size Total Demand Problem type Aij Lower limit Upper limit Lower limit Upper limit 

10×10 10,000 A 400 3 8 50 200 
10×20 15,000 B 400 3 8 100 400 
15×15 15,000 C 400 3 8 200 800 
10×30 15,000 D 400 3 8 400 1,600 
50×50 50,000       

30×100 30,000       
50×200 50,000   
 

4.2. Experimental Results 

We set searching time to be identical for both algorithms which is equal to 1.7 × (n + m) 
milliseconds. Hence, this criterion is affected by both n and m. The number of suppliers 
and customers, the more rise of searching time increases. Considering twenty instances for 
each of the twenty eight problem type, or eighty instances for each of the seven problem 
sizes, for both algorithms, the instances have been run five times. Due to having different 
objective functions scale in each instance their relative percentage deviation (RPD) is 
used. The RPD is obtained by the following formula: 
 

RPD = 
Algsol − Minsol × 100 

Minsol 
 
where Algsol is value of algorithm and Minsol is the best value between the algorithms.  
In order to verify the statistical validity of the results, we have performed an analysis of 
variance (ANOVA) to analyze the results. The means plot and LSD intervals (at the 95% 
confidence level) for GA and MA are shown in Fig. 8. As can be seen from the result 
figure, the performance of MA is better than GA. 

MAGA

2.50

2.25

2.00

1.75

1.50

R
P

D

 
Fig . 8. Means plot and LSD intervals for the MA and GA. 

 
 

5.   Conclusion and Future Works 

In this paper, we have developed a GA and a MA to solve the Step Fixed Charge 
Transportation Problem. In order to evaluate the efficiency of developed algorithm, a new 
plan is extended based on previous test problems to generate random instances. The 
comprehensive set of computational experiments for instances with different configuration 
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and problem sizes show that the MA provides good average RPD results and outperforms 
the GA. As a direction for future research, addressing mentioned problem in the solid 
transportation [22] is a promising research avenue with significant practical relevance. 
Also our approach can be extended to the case of inventory cost [17] or fuzzy numbers 
[23]. Since the model was considered for single objective optimization, in future the multi 
objective model may be considered. In the present model, only transportation cost of 
products was concerned. Other possible objective such as delivery earliness tardiness can 
be added to the model. In addition, the probabilistic demand pattern may also be 
considered in the future study. 
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