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Abstract. This paper presents the analysis of a finite buffer renewal input queue wherein
the customers can decide either to join the queue with a probability or to balk. The service
process is Markovian service process (MSP ) governed by an underlyingm-state Markov chain.
Employing the supplementary variable and embedded Markov chain techniques, the steady-
state system length distributions at pre-arrival and arbitrary epochs are obtained. Based on
the system length distributions, some performance measures of the model and waiting-time
analysis are presented. Finally, numerical results are displayed to show the effect of model
parameters on the key performance measures.
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1. Introduction

Impatience is the most prominent characteristic as individuals always feel anxious
and impatient during waiting for service in real life. The customers’ impatient
acts should be involved in the study of queueing systems to model real situations
exactly. The importance of such systems appear in many real-life problems such
as the situations involving impatient telephone switchboard customers, hospital
emergency rooms handling critical patients, inventory systems that store perishable
goods, etc. Balking is one such impatient phenomenon where customers decide
either to join the queue or not to join the queue with a probability. Modeling balking
is worthwhile because one obtains new managerial insights and the lost revenues
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due to balking in various industries can be enormous. While making decision for
the number of servers needed in the service system to meet time-varying demand,
the balking probabilities can be used to estimate the amount of lost business in
more practical considerations for the managers as given in [12].
Performance analysis of queueing systems with balking has attracted many re-

searchers owing to their wide applications in real life congestion problems. [10] first
presented the M/M/1 queue with balking. [7] extended this work to GI/M/1/N
queue with balking using embedded Markov chain. [2] obtained the transient solu-
tion of a single server state dependent system with balking. An M/M/1 queue with
random balking has been studied by [13]. They obtained the stationary character-
istics of the system and maximum likelihood estimate of the balking parameter.
[11] have analyzed a single server queue with two types of services and restricted
admissibility using supplementary variable technique.
During the last few decades queueing systems under various type of arrival and

service processes have been investigated due to their applicability in various net-
working situations, production, manufacturing systems, etc. Traditional queueing
analysis using Poisson process is not powerful enough to capture the correlated na-
ture of arrival (service) processes. The correlated arrival and/or service processes
in queueing systems have been shown empirically and theoretically to have a sig-
nificant impact on the queueing behavior. The Markovian arrival process (MAP )
has been introduced due to the limitations of Poisson process in modelling corre-
lated arrivals. Like MAP , MSP is a versatile service process and can capture the
correlation among the service times. Several other service processes like Poisson
process, Markov modulated Poisson process (MMPP ), Phase (PH) type renewal
process, etc., can be considered as special cases of MSP . For details on MSP ,
readers are referred to [5] and [1].
In recent years there has been a great interest in analyzing various queueing

models with MSP . [3] discussed the asymptotic behavior of queues with MAP
and/or MSP using perturbation theory. [9] have analyzed a GI/MSP/1 queue
with finite and infinite buffers using a combination of embedded Markov chain and
supplementary variable techniques for the finite buffer system, and the matrix-
geometric method and the renewal-theory for the infinite buffer system. [15] have
analyzed a finite buffer GI/MSP/1 queue with accessible and non-accessible batch
service using embedded Markov chain and supplementary variable technique. [4]
studied a GI/BMSP/1 queue with state dependent arrivals using a combination
of matrix geometric method, Markov renewal theory and semi Markov process for
obtaining the queue length distributions at various epochs. [6] presented closed-
form analysis for evaluating the pre-arrival epoch probabilities of infinite buffer
GI/MSP/1 queue based on the roots of the characteristic equation. Using the
classical Markov renewal theory, they obtained the steady-state system length dis-
tribution at an arbitrary epoch. Recently, [8] analyzed a discrete-time finite buffer
GI/MSP/1 queue with N threshold policy. They obtained the system length dis-
tributions at pre-arrival and arbitrary epochs using supplementary variable and
embedded Markov chain techniques.
The present literature shows that the impatient behavior of customers has not

been considered in finite buffer GI/MSP/1 queues so far, to the best of our knowl-
edge. Motivated by this, we aim to incorporate balking in a finite buffer queue where
the input follows a renewal process and the departures form an MSP . The model
is analyzed using embedded Markov chain and supplementary variable techniques.
The former technique has been adopted for obtaining the steady-state probabilities
at pre-arrival epoch while the latter technique is used for obtaining the arbitrary
epoch probabilities. Some performance measures and the analysis of waiting-time



P. Vijaya Laxmi & K. Jyothsna./ IJM2C, 05 - 02 (2015) 173-184. 175

distribution in the system have been discussed. Numerical results have been pre-
sented in the form of tables and graphs to show the effect of model parameters on
the performance indices.
The rest of the paper is organized as follows: Section 2 presents model description

and the notations used to describe the model parameters. The analytical analysis
of the model is carried out in Section 3. In Section 4, some performance measures of
the model and waiting-time analysis are discussed. The behavior of the performance
measures against the variation of model parameters is studied in Section 5 through
some numerical results. Finally, Section 6 concludes the paper.

2. Model Description

Let us consider a GI/MSP/1/N queue with balking. We assume that the inter-
arrival times of successive arrivals are independent and identically distributed ran-
dom variables with cumulative distribution function A(u), probability density func-
tion a(u), u ≥ 0, Laplace Stieltjes transform (LST) A∗(θ) and mean inter-arrival
time 1/λ = −A∗(1)(0), where h(1)(0) denotes the first derivative of h(θ) evaluated
at θ = 0. If a customer on arrival finds n customers in the system then it decides
either to join the queue with probability bn or to balk with probability b̄n = 1− bn.
Further, we assume that b0 = 1, 0 ≤ bn+1 ≤ bn ≤ 1, 1 ≤ n ≤ N − 1 and bN = 0.
Customer are served by a single server according to First-Come First-Serve

(FCFS) service discipline. The service process is MSP and is governed by an un-
derlying m-state Markov chain having transition rate Lij , 1 ≤ i, j ≤ m, i ̸= j, with
a transition from state i to j without service completion and having transition rate
Mij , 1 ≤ i, j ≤ m, with a transition from state i to j with a service completion. The
matrix L = [Lij ] has nonnegative off-diagonal and negative diagonal elements. The
matrix M = [Mij ] has nonnegative elements, and both have at least one positive
entry. Let X(t) denote the number of customers served in (0, t] with state space
{n : n ≥ 0} and let J(t) be the state of the underlying Markov chain at time t
with state space {i : 1 ≤ i ≤ m}. Then {X(t), J(t)} is a two-dimensional Markov
process with state space {(n, i) : n ≥ 0, 1 ≤ i ≤ m}. The infinitesimal generator of
the above Markov process is given by

Q =


L M 0 0 . . .
0 L M 0 . . .
0 0 L M . . .
...

...
...

...
. . .

 .

We have (L+M)e = 0, where e is am×1 vector with all its components equal to 1.
Since (L+M) is the infinitesimal generator of the underlying Markov chain {J(t)},
there exists a stationary probability vector π such that π(L+M) = 0, πe = 1.
The fundamental service rate of the stationary MSP is given by µ∗ = πMe.
The case when the server remains idle for a certain time interval, then a cus-
tomer enters and the service process starts with the initial phase distribution
fj , j = 1, 2 . . . ,m,

∑m
j=1 fj = 1, independently of the path followed in the previ-

ous service period. Thus, an MSP is characterized by the matrices L,M and the
phase distribution vector f = (f1, f2, . . . , fm).
The customers are served individually according to MSP with mean service

time 1/µ∗. The state of the system at time t is described by the following random
variables:

• N(t)= number of customers present in the system including the one in service,
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• ζ(t)= phase of the service process,

• U(t)=remaining inter-arrival time for the next arrival.

We now define the joint probability densities of the system length N(t), phase
of the server ζ(t) and the remaining inter-arrival time U(t), respectively, by

πn,i(x, t)dx = Pr{N(t) = n, ζ(t) = i, x ≤ U(t) ≤ x+ dx}, 0 ≤ n ≤ N,

1 ≤ i ≤ m, x ≥ 0.

As t → ∞, the above probabilities are denoted by πn,i(x). Further, let πn(x) (0 ≤
n ≤ N) denote the row vectors of order 1×m whose ith component is πn,i(x).

3. Analysis of the Model

In this section, we shall carry out the analytical analysis of the model and obtain
the steady-state system length distributions at various epochs.

3.1 Steady-State Probabilities at Pre-Arrival Epoch

Consider the system just before an arrival of a customer which are taken as em-
bedded points. Let t0, t1, . . . be the time epochs at which successive arrivals occur
and t−n , t+n be the time epochs just before and after the arrival instant tn, respec-
tively. The inter-arrival times Tn+1 = tn+1 − tn, n ≥ 0, are independently and
identically distributed random variables with common distribution function A(x).
Let there be given a non-increasing sequence {bn}, 0 ≤ n ≤ N of non-negative real
numbers with b0 = 1 and bN = 0. The sequence {bn} is called balking sequence.
Thus, bn = Pr{t+n = t−n +1/t−n = n}, denotes the probability that if a customer on
arrival finds n customers in the system joins the queue. The state of the system at
t−i is defined as {Ns(t

−
i ), ζ(t−i )}, where Ns(t

−
i ) is the number of customers in the

system, ζ(t−i ) indicates the phase of the service process. In the limiting case, let

π−
n,j = lim

t→∞
Pr{Ns(t

−
i ) = n, ζ(t−i ) = j}, 0 ≤ n ≤ N, 1 ≤ j ≤ m,

where π−
n,j denotes the pre-arrival epoch probabilities that that there are n cus-

tomers in the system when the service process is in phase j. Let π−
n (0 ≤ n ≤ N)

be the row vector of order 1×m whose ith component is π−
n,i.

Let Sn(n ≥ 0) denote an m × m matrix whose (i, j)th element represents the
conditional probability that n customers have been served during an inter-arrival
time and the underlying Markov chain of the service process is in phase j just
before the arrival, given that the underlying Markov chain was in phase i at the
previous pre-arrival epoch.
Observing the state of the system at two consecutive embedded points, we have

an embedded Markov chain whose state space is equivalent to Ω = {(i, j), 0 ≤
i ≤ N, 1 ≤ j ≤ m}. The elements [Pij ]m×m of the one step transition probability
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matrix (TPM) P(N+1)m×(N+1)m of the above mentioned Markov chain is given by

Pij =



S0 : i = 0, j = 1,
biS0 : 1 ≤ i ≤ N − 1, 1 ≤ j ≤ N, i+ 1 = j,
∆ij : 1 ≤ i ≤ N − 1, 1 ≤ j ≤ N, (i+ 1) > j,
SN−j : i = N, 1 ≤ j ≤ N,
Γi : 0 ≤ i ≤ N, j = 0,
0 : otherwise,

where ∆ij = biSi+1−j+b̄iSi−j and Γi =
(
Im −

∑i−1
k=0 Sk − biSi

)
ef , ef is a stochas-

tic matrix and has the invariant vector f and Im is the identity matrix of order
m. It may be remarked here that if any of the fj = 0 (1 ≤ j ≤ m) then the jth

column of the matrices Γi will be equal to zero and hence (0, j)th column of P
will also be equal to zero. In order to obtain the stochastic matrix (0, j)th row and
column should be deleted from the matrix P and the corresponding component of
the pre-arrival epoch probability π−

0,j will be equal to zero.
The matrices Sn involved in the TPM, in general, for arbitrary inter-arrival time

distribution requires numerical integration and can be carried out along the lines
given in [14]. However, when the inter-arrival time distribution is of PH type, these
matrices can be evaluated without any numerical integration as follows:
Let A(x) have a PH distribution with irreducible representation (α, T), where

α and T are of dimensions β. Then, the matrices Sn are given by

Sn = Un

(
Im ⊗T0

)
, 0 ≤ n ≤ N − 1,

where for 0 ≤ n ≤ N − 1,

U0 = − (Im ⊗α) (L⊗ Iβ + Im ⊗T)−1 ,

Un = −Un−1 (M⊗ Iβ) (L⊗ Iβ + Im ⊗T)−1 , 1 ≤ n ≤ N − 1.

T0 is given by T0 = −Te and ⊗ denotes the Kronecker product of two matrices.
It may be noted here that the various inter-arrival time distributions arising in
practical applications can be approximated by PH distributions.
The pre-arrival epoch probabilities π−

n (0 ≤ n ≤ N) can be evaluated by solving
the system of equations (π−

0 ,π
−
1 , . . . ,π

−
N ) = (π−

0 ,π
−
1 , . . . ,π

−
N )P . We have used

GTH algorithm for solving the system of equations.

3.2 Steady-State Probabilities at Arbitrary Epoch

To obtain steady-state distribution at an arbitrary epoch we will develop the rela-
tions between distribution of number of customers in the system at pre-arrival and
arbitrary epochs. For this we use supplementary variable technique and relate the
states of the system at two consecutive time epochs t and t+ dt. Using probabilis-
tic arguments, matrices, vector notations and taking limit as t → ∞, we have the
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following differential-difference equations at steady-state:

−π
(1)
0 (x) = π1(x)M,

−π(1)
n (x) = πn(x)L+ πn+1(x)M+ πn−1(0)bn−1a(x) + πn(0)(1− bn)a(x),

1 ≤ n ≤ N − 1,

−π
(1)
N (x) = πN (x)L+ πN−1(0)bN−1a(x) + πN (0)a(x),

where πn(0) are the respective probabilities with remaining inter-arrival time equal
to zero. Let us define the LST of πn(x) as π∗

n(θ) =
∫∞
0 e−θxπn(x)dx, so that

πn = π∗
n(0), where πn is the 1 ×m vector whose ith component πn,i denotes the

probability that n customers are in the system and the service process is in phase
i at an arbitrary time. Multiplying the above system of equations by e−θx and
integrating with respect to x over 0 to ∞ yields

−θπ∗
0(θ) = π∗

1(θ)M− π0(0), (1)

−θπ∗
n(θ) = π∗

n(θ)L+ π∗
n+1(θ)M+ πn−1(0)bn−1A

∗(θ) + πn(0)(1− bn)A
∗(θ)

−πn(0), 1 ≤ n ≤ N − 1, (2)

−θπ∗
N (θ) = π∗

N (θ)L+ πN−1(0)bN−1A
∗(θ) + πN (0)A∗(θ)− πN (0). (3)

Post multiplying (1) to (3) by the vector e, adding them and using (L+M)e = 0,
we obtain

N∑
n=0

π∗
n(θ)e =

1−A∗(θ)

θ

N∑
n=0

πn(0)e.

Taking limit as θ → 0 and using the normalization condition
∑N

n=0 πne = 1 yields

N∑
n=0

πn(0)e = λ. (4)

3.2.1 Relations between system length distribution at arbitrary and pre-arrival
epochs

The pre-arrival epoch probabilities π−
n and the rate probabilities πn(0) are re-

lated by:

π−
n =

1

λ
πn(0), 0 ≤ n ≤ N, (5)

where λ is given in (4). Setting θ = 0 in (2), (3) and using (5), we obtain the
arbitrary epoch probabilities as

πN = λbN−1π
−
N−1(−L)−1,

πn =
(
πn+1M+ λ(bn−1π

−
n−1 − bnπ

−
n )

)
(−L)−1, n = N − 1, N − 2, . . . , 1.

As the only unknown π0 cannot be obtained explicitly from the steady-state equa-
tions (1) to (3), we evaluate it using normalization condition as π0 = π−

∑N
n=1 πn.

This completes the evaluation of steady-state probabilities at various epochs.
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Remark 1: Taking bn = 1, 0 ≤ n ≤ N − 1, our model reduces to GI/MSP/1/N
queue and the results match numerically with [9], see Table 1.
Remark 2: Taking MSP representation for Poisson service times, our model re-
duces to GI/M/1/N queue with balking and our results match numerically with
[7], see Table 2.

4. Performance Measures

Performance measures are important features of any queueing system as they reflect
the efficiency of the queueing system under consideration. Once the steady-state
probabilities at different epochs are known, various performance measures of the
system can be obtained. The blocking probability (Ploss), the expected number of
customers in the system (Ls) and the expected waiting-time in the system (Wsl)

using Little’s rule are, respectively, given by Ploss = π−
Ne; Ls =

∑N
n=1 nπne; Wsl =

Ls/λ
′, where λ′ = λ(J.N.) and J.N. =

∑N−1
n=0 bnπ

−
n e. The average balking rate

(B.R.) is given by B.R. =
∑N

n=1 λ(1− bn)πne.

4.1 Waiting-Time Analysis

In this subsection, we obtain the expected waiting-time in the system of an arriv-
ing customer (who joins the queue), under the FCFS discipline. Let W ∗

s (θ) and
Ws be the LST and the expected waiting-time in the system of a customer who
joins the queue and waits for service, respectively. Let δk(θ) be the LST of the
probability that k customers will be served within a time x and the service process
upon completion of service passes to phase j, provided k customers were in the
system and the service process was in phase i at the beginning of service. Since the
probability that the service of a customer who joins the queue is completed in the
interval [x, x+ dx] is given by the matrix eLxMdx and the total service time of k
customers is the sum of their service times, we have

δ1(θ) =

∫ ∞

0
e−θxeLxMdx = (θIm − L)−1M, δk(θ) = δk1(θ), k ≥ 2.

Therefore, W ∗
s (θ) is given by

W ∗
s (θ) =

1

J.N.

N−1∑
n=0

bnπ
−
n δ

n+1
1 (θ)e.

The expected waiting-time in the system is given by

Ws =
1

J.N.

N−1∑
n=0

n∑
k=0

bnπ
−
n (−L−1M)k(−L)−1e. (6)

It may be noted that the expected waiting-time obtained from (6) matches exactly
with Wsl obtained from Little’s rule.



180 P. Vijaya Laxmi & K. Jyothsna./ IJM2C, 05 - 02 (2015) 173-184.

Table 1. Steady-state probabilities of PH/MSP/1/80 queue with and without
balking

with balking without balking
n π−

n e πne π−
n e πne

0 0.503032 0.503761 0.460374 0.461098
1 0.261868 0.261440 0.181168 0.180868
2 0.139937 0.139756 0.109279 0.109142
3 0.062684 0.062605 0.074485 0.074399
4 0.022952 0.022924 0.052031 0.051971
5 0.007078 0.007069 0.036510 0.036468
10 0.000003 0.000003 0.006241 0.006234
15 0.000000 0.000000 0.001067 0.001066
20 0.000000 0.000000 0.000182 0.000182
...

...
...

...
...

80 0.000000 0.000000 0.000000 0.000000
Sum 1.000000 1.000000 1.000000 1.000000
Ls 0.871176 1.732004
Ws 2.881797 4.024256
B.R. 0.127905 0.000000

Table 2. Steady-state probabilities of M/M/1/5 queue with balking

n 0 1 2 3 4 5 Sum
π−
n e 0.423277 0.364018 0.156528 0.044871 0.009647 0.001659 1.000000

πne 0.423277 0.364018 0.156528 0.044871 0.009647 0.001659 1.000000
Ls = 0.858573, Ws = 2.0, B.R. = 0.141638.

5. Numerical Results

To demonstrate the applicability of the analytical results obtained in the previous
sections, extensive graphical and numerical work has been done. The balking func-
tion is taken as bn = 1/(n+ 1), 1 ≤ n ≤ N − 1 with b0 = 1. Further, it is assumed
that for n ≥ N, bn = 0.
The steady-state probabilities of PH/MSP/1/80 queue with and without

balking is presented in Table 1. The MSP representation is taken as L =[
−3.39 0.0
0.0 −0.21

]
, M =

[
3.19 0.2
0.2 0.01

]
and f = (0.6, 0.4) with µ∗ = 1.8. The PH

representation is taken as α= (0.3, 0.7), T =

[
−0.6 0.074
0.0575 −0.45

]
with λ = 0.430391.

The fourth and fifth columns of the table exactly match with [9]. Table 2 dis-
plays the system length distributions of M/M/1/5 queue with balking. The MSP
representation of exponential distribution is taken as L = [−0.5], M = [0.5] and
f = (1.0) with µ∗ = 0.5 and λ = 0.43. One may note that the pre-arrival and arbi-
trary epoch probabilities are the same due to memoryless property of exponential
distribution.
The effect of N on Ploss and Ws is depicted in Figures 1 and 2, respectively, in

PH/MSP/1 queue. For Figure 1, the following three types of service time distri-
butions have been considered:
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Figure 1. N versus Ploss
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Figure 2. Effect of N on Ws

(i) Poisson with MSP representation L = [−0.5], M = [0.5] and f = (1.0),

(ii) MSP with L =

[
−1.5125 0.750
0.875 −1.025

]
, M =

[
0.7625 0.0
0.125 0.025

]
and f = (1.0, 0.0),

(iii) MSP with L =

[
−6.9375 0.9375
0.0625 −0.1958

]
, M =

[
6.0 0.0
0.0 0.1333

]
and f = (1.0, 0.0).

MSP s (ii) and (iii) have lag 2 correlation coefficients equal to 0.0000050 and
0.143181, respectively. The above three service time distributions have equal mean
service rate µ∗ = 0.5. The PH representation is taken as α= (0.3, 0.7), T =[
−0.6 0.07
0.06 −0.45

]
with λ = 0.43. For Figure 2, we have considered MSP (ii) and
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(iii) representations and the PH representation is taken as in Figure 1. It may
be observed from the figure that Ws is lower for highly correlated MSP (iii) for
N = 2, 3, 4 and for N > 4, Ws is lower for MSP (ii).
The dependence of expected system length on buffer capacity is presented in

Figure 3 for E3/MSP/1 queue with and without balking. The MSP representation
is taken as in case (ii) and the Erlang-3 inter-arrival time representation is taken

as α= (1.0, 0.0, 0.0), T =

−1.29 1.29 0.0
0.0 −1.29 1.29
0.0 0.0 −1.29

 with λ = 0.43. The expected

system lengths increase with N in both the models. Moreover, for fixed N , the
system lengths are lower in the case of queues with balking compared to queues
without balking as it should be.
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The effect of ρ(= λ/µ∗) on Ws is presented in Figure 4 for three inter-arrival time
distributions. The three inter-arrival time distributions are taken as exponential,
Erlang-2 (E2) and hyper exponential (HE2) distributions. The PH representa-
tions of the above inter-arrival time distributions are taken as (i) α= (1.0), T =

[−γ] with λ = γ, (ii) α= (1.0, 0.0), T =

[
−γ γ
0.0 −γ

]
with λ = γ/2 and (iii)

α= (0.149883, 0.850117), T =

[
−γ1 0.0
0.0 −γ2

]
with 1/λ = 0.149883/γ1+0.850117/γ2.

By suitably varying the values of γ, γ1 and γ2, various values of ρ can be obtained.
The MSP representation is taken as in case (ii) of Figure 1. From the figure, it
can be seen that HE2 distribution yields higher Ws compared to exponential and
E2 inter-arrival time distributions. Further, for any inter-arrival time distribution
Ws increases with ρ.
The impact of λ on B.R. in E3/MMPP/1 queue is presented in Figure 5

for N = 3 and 10. The PH representation of E3 distribution is taken as

α= (1.0, 0.0, 0.0), T =

−γ γ 0.0
0.0 −γ γ
0.0 0.0 −γ

 with λ = γ/3. By suitably varying the val-

ues of γ, one can obtain various values of λ. The service time is taken as MMPP
whose infinitesimal generator is

R =

 −0.1 0.1 0.0
0.003 −0.183 0.18
0.02 0.38 −0.4


and Υ = diag(0.3, 0.569, 0.4). One may note that L = R − Υ, M = Υ and
f = (0.6, 0.3, 0.1) with µ∗ = 0.5. The average balking rate increases with the
increase of λ, for fixed N . Further, B.R. decreases with the increase of N . However,
the decrease in B.R. is insignificant for N > 10.
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6. Conclusions

In this paper, we have carried out an analysis of a finite buffer GI/MSP/1 queue
with balking. The distributions of the system length at pre-arrival and arbitrary
epochs are obtained. The former are obtained using embedded Markov chain tech-
nique while the latter are obtained using supplementary variable technique. Com-
putational experiences with a variety of numerical results in the form of tables and
graphs are discussed to display the effect of the system parameters on the perfor-
mance measures. The present model can be generalized to finite buffer GI/MSP/1
queue with N -policy and balking using the procedure discussed in this paper which
is left for future investigation.
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