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Abstract. In this paper, Elzaki Homotopy Perturbation Method is employed for solving linear
and nonlinear differential equations with a variable coefficient. This method is a combination
of Elzaki transform and Homotopy Perturbation Method. The aim of using Elzaki transform
is to overcome the deficiencies that mainly caused by unsatisfied conditions in some semi-
analytical methods such as Homotopy Perturbation Method, Variational Iteration Method
and Adomian Decomposition Method. The approximate solutions obtained by means of Elzaki
Homotopy Perturbation Method were compared in a wide range of problem’s domain with
those results obtained by Homotopy Perturbation Method. The comparison shows a precise
agreement between the exact solutions and the obtained results by this new method as an
applicable one, which needs less computation and is much easier and more convenient than
others. So, it can be widely used in engineering and other branches of science.
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1. Introduction

The importance of obtaining the exact or approximate solutions of linear and non-
linear partial differential equations in physics and mathematics is still a significant
problem that needs new methods. As we know, most new linear and nonlinear equa-
tions do not have a precise analytic solution. So, beside numerical methods that
have largely been used to handle these problems, there are also analytic techniques
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to solve these equations. Some of the classic analytic methods are: perturbation
techniques [8, 22], expansion method and Hirota bilinear method [15, 23].
In recent years, many researchers have paid attention to study the solutions of

partial differential equations by using various methods such as Adomian Decompo-
sition Method (ADM) [5, 16], He’s semi-inverse method [24], Homotopy Perturba-
tion Method (HPM) [11, 12, 21], Variational Iteration Method (VIM) [1, 7, 19] and
Variational Iteration Method using He’s Polynomials (VIMHP) [17, 18]. Most of
these methods have their inbuilt deficiencies like the calculation of Adomian’s poly-
nomials, the Lagrange multiplier, divergent results and huge computational work.
The Homotopy Perturbation Method was formulated by taking the full advantage
of the standard homotopy and perturbation methods and has been modified later
by some scientists to obtain more accurate results, rapid convergence and to reduce
amount of computation [13, 20]. But, as mentioned above, it has some shortages
that need to be modified. This paper introduces an improvement on HPM and con-
siders the effectiveness of the Elzaki Homotopy Perturbation Method (EHPM) in
solving partial differential equations. Our proposed method, gives accurate results
in wide range via one or two iteration steps.

2. Homotopy Perturbation Method (HPM)

The essential idea of HPM is to introduce a homotopy parameter, say p, which
takes the values from 0 to 1. When p = 0, the system of equations is in a suf-
ficiently simplified form, which normally admits a rather simple solution. As p
gradually increases to 1, the system goes through a sequence of “deformation”, the
solution of each stage is “close” to that at the previous stage of “deformation”.
Eventually, at p = 1, the system takes the original form of equation and the fi-
nal stage of “deformation” gives the desired solution. The embedding parameter
can be considered as an expanding parameter [9, 10]. To illustrate the basic con-
cept of Homotopy Perturbation Method, consider the following nonlinear system
of differential equations:

A(u) = f(r), r ∈ Ω (1)

with boundary conditions

B(u,
∂u

∂n
), r ∈ Γ (2)

where A is a differential operator, B is a boundary operator, f(r) is a known analytic
function, and Γ is the boundary of the domain Ω . Generally speaking, the operator
A can be divided into two parts L and N , where L is a linear and N is a nonlinear
operator. Therefore, (1) can be rewritten as follows:
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L(u) +N(u)− f(r) = 0. (3)

We construct a homotopy v(r, p) : Ω× [o, 1] → Rn, which satisfies

H(v, p) = (1− p)[L(v)− L(u0)] + p [A(v)− f(r)] = 0, p ∈ [0, 1] r ∈ Ω (4)

H(v, p) = L(v)− L(u0) + pL(u0) + p[N(v)− f(r)] = 0, (5)

where u0 is an initial approximation of (1). In this method, using the homotopy
parameter p, we have the following power series presentation for v,

v = v0 + pv1 + p2v2 + . . . . (6)

The approximate solution can be obtained by setting p = 1, i.e.

u =

∞∑
i=0

vi = v0 + v1 + v3 + . . . . (7)

The convergence of series (7) is discussed in [14]. The method considers the non-
linear term N [v] as

N(v) =

+∞∑
i=0

piHi = H0 + pH1 + p2H2 + · · · ,

where Hn’s are the so-called He’s polynomials [6], which can be calculated by using
below formula

Hn(v0, v1, · · · , vn) =
1

n!

∂n

∂pn

(
N

(
n∑

i=0

pivi

))
p=0

, n = 0, 1, 2, · · · .

3. Basic idea of EHPM

The purpose of this section is to discuss the use of Elzaki transform algorithm in
HPM (EHPM) for solving differential equations. Consider general inhomogeneous
nonlinear equation with initial and boundary conditions is given below:

L[u(x, t)] +N [u(x, t)] = g(x, t), (8)

∂ju

∂xj
(0, t) = yj(t), j = 0, 1, · · · , n− 1
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and initial conditions

∂ju

∂tj
(x, 0) = zj(x), j = 0, 1, · · · ,m− 1

where L = dm

dtm ;m ∈ N is linear operator, N [u(x, t)] represents the non-linear
terms and g(x, t) is the source term. The methodology consists of applying Elzaki
transform with respect to t on both sides of Equation (8)

E[Lu(x, t)] + E[Nu(x, t)] = E[g(x, t)]. (9)

E
[
∂ju

∂xj
(0, t)

]
= E[yj(t)], j = 0, 1, · · · , n− 1.

If we denote E[u(x, t)] = T (x, v) and E
[
∂ju
∂xj (0, t)

]
= yj(v), using the differential

property of Elzaki transform and initial conditions, we get

T (v)

vm
−

m−1∑
k=0

zkv
2−m+k + E[Nu(x, t)] = E[g(x, t)]. (10)

So, we can write Equation (10) as

L T (x, v) +N T (x, v) = h(x, v), (11)

∂jT

∂xj
(0, v) = yj(v), j = 0, 1, · · · , n− 1

where L is new linear operator, N is new nonlinear operator and h(x, v) is a source
term of equation after applying Elzaki transform and considering initial conditions.
The next step in EHPM is constructing the appropriate homotopy for Equation (11)
and supposing the solution as a power series. Therefore,

T = lim
p→1

∞∑
i=0

piv̄i(x, v) = v̄0(x, v) + v̄1(x, v) + v̄2(x, v) + . . . . (12)

Applying the inverse Elzaki transform on both sides of Equation (12), gives the
solution of Equation (8) as

u(x, t) = lim
p→1

∞∑
i=0

pivi(x, t) = v0(x, t) + v1(x, t) + v2(x, t) + . . . . (13)

For more information about Elzaki transform refer to [2].
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4. Convergence Analysis

In this section, we study the convergence of Elzaki Homotopy Perturbation Method.
Consider equation (11)

L T (x, v) +N T (x, v) = h(x, v). (14)

If we denote h(x, v) = f(r), we can construct a homotopy v̄(r, p) : Ω× [o, 1] → Rn,
which satisfies

H(v̄, p) = (1− p)[L(v̄)− L(T0)] + p [A(v̄)− f(r)] = 0, p ∈ [0, 1] r ∈ Ω (15)

H(v̄, p) = L(v̄)− L(T0) + pL(T0) + p [N (v̄)− f(r)] = 0. (16)

We can write Equation (16) in the following form

L(v̄) = L(T0) + p [f(r)−N (v̄)− L(T0)]. (17)

Applying the inverse operator, L−1, to both sides of Equation (17), we obtain

v̄ = T0 + p [L−1f(r)− L−1N (v̄)− T0]. (18)

Suppose that

v̄ =

∞∑
i=0

piv̄i (19)

substituting (19) into the right-hand side of Equation (18) gives:

v̄ = T0 + p [L−1f(r)− L−1N [

∞∑
i=0

piv̄i)]− T0]. (20)

If p → 1, the exact solution may be obtained by using

T = lim
p→1

v̄

= L−1f(r)− L−1N [

∞∑
i=0

v̄i]

= L−1f(r)−
∞∑
i=0

(L−1N )(v̄i),
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and finally by applying inverse Elzaki transform, the solution of Equation (8) can
be obtained. To study the convergence of the method, let us state the following
Theorem.

Theorem 4.1 (Sufficient Condition of Convergence)Suppose that X and Y are

Banach spaces and N : X → Y is a contractive nonlinear mapping, that is

∀ w,w∗ ∈ X : ||N (w)−N (w∗)|| ⩽ γ ||w − w∗|| , 0 < γ < 1 (21)

then, according to Banach’s fixed point theorem N has a unique fixed point T, that

is N (T ) = T :

Assume that the sequence generated by homotopy perturbation method can be writ-

ten as

Wn = N (Wn−1), Wn−1 =

n−1∑
i=0

wi, n = 1, 2, 3, . . . (22)

and suppose that W0 = w0 ∈ Br(w) where Br(w) = w∗ ∈ X | ||w∗ −W || < r, then

we have

(i)Wn ∈ Br(w),

(ii) limn→∞Wn = w.

Proof

(i) By inductive approach, for n → 1, we have

||W1 − w|| = ||N (W0)−N (w)|| ⩽ γ ||w0 − w||.

Assume that ||Wn−1 −w|| ⩽ γn−1 ||w0 −w||, as induction hypothesis, then

||Wn − w|| = ||N (Wn−1)−N (w)|| ⩽ γ ||Wn−1 − w|| ⩽ γn ||w0 − w||.

Using (i), we have

||Wn − w|| ⩽ γn ||w0 − w|| ⩽ γnr < r ⇒ Wn ∈ Br(w).
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(ii) Because of ||Wn −w|| ⩽ γn ||w0 −w|| and limn→∞ γn = 0, limn→∞ ||Wn −
w|| = 0 that is,

lim
n→∞

Wn = w.

■

5. Applications

To illustrate the proposed method for partial differential equations the following
examples are considered. First of all, we solve these equations with HPM and then
solve them with the help of EHPM.

Example 5.1 Consider the following nonlinear wave equation [4]

∂2u

∂x2
− u

∂2u

∂t2
= 1− x2 + t2

2
, 0 ⩽ x, t ⩽ 1 (23)

Subject to boundary conditions

u(0, t) =
t2

2
,

∂

∂x
u(x, 0) = 0. (24)

Exact solution of this equation is

u(x, t) =
x2 + t2

2
.

HPM approach

Substituting Equation (23) into (5) and supposing u(x, 0) = x2

2 , we have an
equation system including (n + 1) equations to be simultaneously solved; n is the
order of p in Equation (6). Comparing the like-power coefficient of p gives:
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p0 :
d2ν0
dx2

− d2u0
dx2

= 0,

p1 :
d2ν1
dx2

− (ν0ν0tt
)− x2 + t2

2
= 0,

... (25)

Solving differential Equation (25),we have

ν0 =
x2

2
,

ν1 =
x2(6t2 + x2)

24
,

ν2 = x6(
1

240
t2 +

1

2688
x2),

... (26)

The solution of Equation (23) can be obtained as u(x, t) =
∑∞

i=0 νi.

EHPM approach

Applying the Elzaki transform on both sides of Equation (23), and using initial
conditions, we get

T − v2E[u
∂2u

∂t2
] = −v6 + (1− t2

2
)v4 +

t2

2
v2. (27)

Applying inverse Elzaki transform yields

u =
x2

2
− t2x2

4
− x4

24
+

t2

2
+ E−1[v2E(uutt)]. (28)

Now, we apply the homotopy perturbation method

u(x, t) =

∞∑
i=0

νi(x, t)

=
x2

2
− t2x2

4
− x4

24
+

t2

2
+ p E−1[v2E[

∞∑
i=0

Hi(ν)]], (29)
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where Hn(ν) are He’s polynomials. The modified recursive relation is given below

ν0 =
x2

2
− t2x2

4
− x4

24
+

t2

2
,

ν1 = E−1[v2E[H0(ν)]] = E−1[v2E[ν0ν0tt
]]

=
t2x2

4
+

x6(3t2 − 7)

720
+

x8

2688
− x4(t2 − 1)

24
,

ν2 = E−1[v2E[H1(ν)]] = E−1[v2E[ν0ν1tt
+ ν1ν0tt

]]

=
x4t2

24
− x6(8t2 − 7)

720
+

x8(36t2 − 64)

40320
− x10(168t2 − 519)

3628800
− 43x12

1064480
,

... (30)

The other components of the solution can be easily found by using before recursive
relation.
Consequently,

u(x, t) = ν0 + ν1 + ν2 + . . . ,

=
t2

2
+

x6(3t2 − 7)

720
+

x2

2
− x4

24
+

x8

2688
− x4(t2 − 1)

24
+ . . . .

Studying Table 1 and Figure 1 show that our proposed technique has an excellent
agreement with the exact solution in comparison with HPM.

Table 1. The relative errors for HPM , and

EHPM at x = 0.5 for Equation (23).

t REHPM REEHPM

0.00000000 2.0845e-002 1.3857e-006
1.0000e-001 1.3606e-002 1.6170e-006
2.0000e-001 1.0270e-001 2.2154e-006
3.0000e-001 2.1626e-001 2.9781e-006
4.0000e-001 3.2870e-001 3.7333e-006
5.0000e-001 4.2701e-001 4.3935e-006
6.0000e-001 5.0777e-001 4.9359e-006
7.0000e-001 5.7226e-001 4.3935e-006
8.0000e-001 6.2326e-001 5.3691e-006
9.0000e-001 6.6362e-001 5.7116e-006
1.0000e+000 6.9573e-001 6.1983e-006
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Figure 1. Comparison between the results of EHPM, HPM and the exact solution of Equation (23) at a)
x = 0.5 and b) t = 0.5.

Example 5.2 Consider the following nonlinear differential equation[4]

∂2u

∂x2
− u2

∂2u

∂t2
= 2(1− (x2 + t2)2), 0 ⩽ x, t ⩽ 1 (31)

subject to boundary conditions

u(0, t) = t2,
∂

∂x
u(x, o) = 0 (32)

exact solution of this equation is

u(x, t) = x2 + t2.

HPM approach
Substituting Equation (31) into (5) and supposing u(x, 0) = x2, we have an equa-
tion system including (n + 1) equations to be simultaneously solved; n is the order
of p in Equation (6). Comparing the like-power coefficients of p gives:

p0 :
d2ν0
dx2

− d2u0
dx2

= 0,

p1 :
d2ν1
dx2

− (ν20ν0tt
) + 2(x2 + t2)2 = 0,

... (33)
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Solving differential Equation (33),we have

ν0 = x2,

ν1 =
−x2(15t4 + 5t2x2 + x4)

15
,

ν2 = −x8(
1

135
x2 +

3

14
t2),

... (34)

The solution of Equation (31) can be obtained as u(x, t) =
∑∞

i=0 νi.

EHPM approach

Applying the Elzaki transform on both sides of Equation (31) and using initial
conditions, we get

T − v2E[u2
∂2u

∂t2
] = −48v8 − 8t2v6 + (2− 2t4)v4 + t2v2. (35)

Applying inverse Elzaki transform gives

u =
−1

15
x6 − 1

3
t2x4 + (1− t4)x2 + t2 + E−1[v2E(u2utt)]. (36)

Now, we apply the homotopy perturbation method

u(x, t) =

∞∑
i=0

νi(x, t)

=
−1

15
x6 − 1

3
t2x4 + (1− t4)x2 + t2 + p E−1[v2E[

∞∑
i=0

Hi(ν)]], (37)
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where Hn(ν) are He’s polynomials. The modified recursive relation is given below

ν0 =
−1

15
x6 − 1

3
t2x4 + (1− t4)x2 + t2,

ν1 = E−1[v2E[H0(ν)]] = E−1[v2E[ν20ν0tt
]]

= t4x2 − 8t6x3

3
+

77t4x9

270
+

17t2x12

1485
− 5t2x15

875

− 14t4x13

585
− t2x16

1350
+ . . . ,

ν2 = E−1[v2E[H1(ν)]] = E−1[v2E[(ν21 + 2ν0ν2)ν0tt
+ 2ν0ν1ν1tt

+ ν20ν2tt
]]

=
14x3t4

3
− 2t2x2 − 271t2x28

17413975
+ . . . ,

... (38)

The other components of the solution can be easily found by using before
recursive relation and consequently

u(x, t) = ν0 + ν1 + ν2 + . . . .

Table 2 and Figure 2 show the ability and accuracy of EHPM to handle the
PDEs.

Table 2. The relative errors for HPM , and EHPM

at x = 0.5 for Equation (31).

t REHPM REEHPM

0.00000000 4.1956e-003 1.7437e-008
1.0000e-001 4.3425e-002 7.0725e-008
2.0000e-001 1.4592e-002 5.7985e-007
3.0000e-001 2.7948e-002 4.0971e-006
4.0000e-001 4.1687e-002 2.2543e-005
5.0000e-001 5.4418e-002 9.6956e-005
6.0000e-001 6.5779e-002 3.3719e-004
7.0000e-001 7.5904e-002 9.8362e-004
8.0000e-001 8.5092e-002 2.4833e-003
9.0000e-001 9.3644e-001 5.5627e-003
1.0000e+000 1.0182e+000 1.1271e-002
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Figure 2. Comparison between the results of EHPM, HPM and the exact solution of Equation (31). at a)
x = 0.5 and b) t = 0.5.

Example 5.3 Consider the linear Klein-Gordon equation[3]

utt − uxx = u, (39)

subject to boundary conditions

u(0, t) = cosh(t), ux(0, t) = 1, (40)

and initial conditions

u(x, 0) = 1 + sin(x), ut(x, 0) = 0. (41)

The exact solution of this equation is

u(x, t) = sin(x) + cosh(t). (42)

HPM approach

Substituting Equation (39) into (5) and supposing u(x, 0) = 1+sin(x), we have an
equation system including (n + 1) equations to be simultaneously solved; n is the
order of p in Equation (6). Comparing the like-power coefficients of p gives:
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p0 :
d2ν0
dt2

− d2u0
dt2

= 0,

p1 :
d2ν1
dt2

− d2ν0
dx2

+ ν0 = 0,

pi :
d2νi
dt2

−
d2ν(i−1)

dx2
+ ν(i−1) = 0, i = 2, 3, . . .

(43)

Solving differential Eqs. (43),we have

ν0 = 1 + sin(x),

ν1 =
−1

2
t2(1 + 2 sin(x)),

ν2 =
1

12
t4(

1

2
+ 2 sin(x)),

... (44)

The solution of Equation (39) can be obtained as u(x, t) =
∑∞

i=0 νi.

EHPM approach

Applying the Elzaki transform on both sides of Equation (39) and using initial
conditions, we get

∂2T

∂x2
+ T (1− 1

v2
) = −(1 + sin(x)). (45)

Now, applying the homotopy perturbation method on Equation (45) and using
T0 = xv2 + 1

1−v2 as the initial approximation and finally comparing the like-power
coefficients p we obtain

ν̄0 = xv2 +
1

1− v2
,

ν̄1 = − 1

6v2
(x3(v4 − v2) + 3x3(v2 − 1) + 6xv2 − 6v2 sin(x)),

ν̄2 =
v2 − 1

120v4
(x5(v4 − v2) + 5x34(v2 − 1) + 20x3v2 − 120xv2 + 120v2 sin(x)),

... (46)
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Now, applying inverse Elzaki transform on Equation (46) gives

ν0 = x+
1

2
(et + e−t),

ν1 = dirac(t, 1)(sinx− x+
x3

6
)− x3

6
,

ν2 = dirac(t)
x5

120
− dirac(t, 1)(x− sinx− x3

6
+

x5

120
)

+ dirac(t, 2)(x− sinx− x3

6
+

x5

120
)− x3

6
+

x5

120
,

... (47)

Therefor, the solution of Equation (39) can be obtained as

u(x, t) = ν0 + ν1 + ν2 + . . . .

Table 3 and Figure 3 approve that the introduced method can overcome deficiencies
that arise in HPM and can be used to solve different problems.

Table 3. The relative errors for HPM , and EHPM

at x = 0.5 for Equation (39).

t REHPM REEHPM

1.0000e+000 6.9267e-001 7.6377e-007
2.0000e+000 1.1163e+000 3.6418e-007
3.0000e+000 7.6185e-001 1.4646e-007
4.0000e+000 3.9071e-001 5.5590e-008
5.0000e+000 2.9072e-001 2.0682e-008
6.0000e+000 3.8784e-001 7.6398e-009
7.0000e+000 5.5288e-001 2.8148e-009
8.0000e+000 7.0707e-001 1.0361e-009
9.0000e+000 8.2237e-001 3.8122e-010
1.0000e+001 8.9838e-001 1.4025e-010

Figure 3. Comparison between the results of EHPM, HPM and the exact solution of Equation (39). at a)
x = 5 and b) t = 5.
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6. Conclusion

In this paper, the EHPM and HPM were used to obtain the analytic solutions
of partial differential equations. The comparison between the numerical results
obtained by EHPM and HPM were made and it was found that EHPM is more
effective than HPM because of higher level of accuracy and less amount of com-
putational work. Hence, it may be concluded that this method is a powerful and
an efficient technique in finding the solutions for wide classes of problems. The
computations associated with the examples in this paper were performed using
Matlab 7.
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