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Abstract. In this paper, we propose a method to approximate the solution of a linear Fred-
holm integro-differential equation by using the Chebyshev wavelet of the first kind as basis.
For this purpose, we introduce the first Chebyshev operational matrix of integration. Cheby-
shev wavelet approximating method is then utilized to reduce the integro-differential equation
to a system of algebraic equations. Illustrative examples are included to demonstrate the ad-
vantages and applicability of the technique.
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1. Introduction

Wavelets theory is relatively new in mathematical researches. In recent years,
wavelets have found their way into different fields of science and engineering.
Wavelets permit the accurate representation of a variety of functions and oper-
ators. Orthogonal functions and polynomial series have been received considerable
attention in dealing with various problems of dynamical systems. The main char-
acteristic of this technique is that it reduces these problems to those of solving a
system of algebraic equations, thus greatly simplifying the problems. The common
wavelets which have been used to solve integral or integro-differential equations are
Legendre, CAS, Haar and Chebyshev wavelets [3, 6].

The other approach is based on converting the underlying differential equations
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into an integral equations through integration, approximating various signals in-
volved in the equation truncated orthogonal series W(¢) and using the operational
matrix of integration P, to eliminate the integral operations. The matrix P is given
by

t
/\I/(t’)dt’:P\I'(t) . 0<t<l
0

where U(t) = [¢0,%1,...,%n_1]" and the matrix M can be uniquely determined
on the basis of the particular orthogonal functions. The elements g, ¥1, ..., ¥n—_1
are the basis functions, orthogonal on the certain interval [0,1]

Gu and Jiang in [4] proposed the operational matrix of integration using Haar
wavelets. In the sequel, Razzaghi and Yousefi in [5] used the Legendre wavelets
to define the operational matrix of integration. Then, Danfu and Xufeng in [2]
applied CAS wavelet operational matrix of integration in order to approximate
the solution of integro-differential equations. Also, Babolian and Fattahzadeh in
[1] suggested a method to solve the differential equations by using Chebyshev
wavelet operational matrix of integration.

In this paper, we introduce a new numerical method to solve the following linear
Fredholm integro-differential equation using the first kind Chebyshev wavelet
operational matrix of integration.

F@O) +yt) + [ kt,s)y(s)d(s) 0<t<1 W

—N
<
[N
S =
I
<

S

where the function f(t) € £2(0,1) , the kernel k(t,s) € £2([0, 1] x [0,1]) are known
and y(t) is the unknown function to be determined. The paper is organized as
follows:

In Section 2, we describe the Chebyshev wavelets and its properties. The Cheby-
shev wavelets operational matrix of integration will be derived in Section 3. In
Section 4, we propose a method to solve the linear Fredholm integro-differential
equation (1) and approximate the unknown function . Finally, in Section 5, we
solve some illustrative examples.

2. Chebyshev Wavelets and their Properties

2.1 Chebyshev Wavelets

Chebyshev wavelets ¢, , = ¥(k, n, m,t) have four arguments,n = 1,2, ..., 2k=1 &
can assume any positive integer, m is degree of Chebyshev polynomials of the first
kind and denots the time.

2F2T, (28 —2n + 1) 2L <t < 5t

0 otherwise

Q;Z)n,m (t) — {

where ,

Tn(t) m>0
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and m = 0,1....,M — 1,n = 1,2....,2¥"1 In Equation (2) the coefficients
are used for orthonormality. Here T,,(t) are Chebyshev polynomials of the first
kind of degree m which are orthogonal with respect to the weight function
w(t) =1/v1 =12, on [-1,1], and satisfy the following recursive formula:

To(t) = 1, Tl(t) = t, Tm+1(t) = QtTm(t) — Tm_l(t), m = 1, 2, N

We should note that in dealing with Chebyshev wavelets the weight function w(x)
have to be dilated and translated as

wn(t) = w(2Ft — 2n + 1)

to get orthogonal wavelets on the interval [0,1].

2.2  Function approximation

A function f(t) € £2[0,1] , (where ©(t) = w(2t — 1)) may be expanded as

f(t) = Z Z Cn,mwn.m(t)7 (4)

n=1m=0

where ¢pm = (f(t), Ynm(t))w,, in which (0,0) denotes the inner product in
L2 [0,1]. If we consider truncated series in (3), we obtain

261 M1

FO =D cnmtnm(t) = CTU (), (5)

n=1 m=0

where C and ¥(t) are 2871 M x 1 matrices given by

C = [C105CL1y -y CLM—=1,C205 - -+, C2M—15 -+ -5 C2h=10, - ,CQk—17M71]T (6)
= [c1, ¢, ... ,Czk—lM]T,
T(t) = [h10(t), Y11 (), -« o, Y1 —1(t), oy Par-19(t), .oy hore—1 1 (O]T (7)
= [, 92, . oe]”

The integration of the vector can be obtained as
t
/ U(t')dt' = PU(t). (8)
0
Our main purpose is to obtain the matrix P.

3. Chebyshev Wavelet Operational Matrix of Integration

In this section, we will derive the operational matrix P of integration which plays
a great role in dealing with the problem of Ferdholm integro-differential equation.
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First we construct the 6 x 6 matrix P for M = 3 and k£ = 2. In this case, there are
six basis functions which are given by

Y10 = %
Y1 =2/ 2(4t - 1) . o<t<o, (9)
2
P12 = 2\/2((425 —1)2-1)
Yoo = <=
Y =2/2(4 - 3) ! (10)
2
o = 2\/2((41 - 32~ 1)
and from (7),
W6 (t) = (10, Y11, Y12, P20, P21, P22] - (11)

By integrating (9) and (10) from 0 to t and representing it to the matrix form,
we obtain

t 2t 0<t< 3,
lblo(t/)dt/_ ™ 2
0 = 3 <t<l,
1 1 1
= [47 mvoa §a0’0]¢’6(t)
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/tw (') at’ {07 0<t< 3,
21(t) dt” = 5 1
0 2,/220 -3 +1, S<it<,
1 1
=10,0,0, ———, 0, ——|Wg(1).
/t 0, 0<t< 3,
Yoo () dt’ = 2 [ 32 23
U/ (=83 — 2482 +178) — = L <«
0 T (3 + ) 6 sy 9 )
1 1
=10,0,0, ———=, —=, 0] Tg(t).
Thus
t
/\I/6<t/)dt/—P6><6\I/6(t), (12)
0
where
_ . )
11 50 2 00
— 0f 0 00
2/2
2 1 2/2
_£ _,0_1 00
1 3 2 3
Poxe = + 1
4 0 00 1 —0
1 \/51
0 00— 0 =
2\/\@ 4
2 1
—XZ 20
| 000 3 2

In (11) and (12) the subscript of Psxg and Wg denote the dimension. In fact the
matrix Psxg can be written as

Pavs = 1 {L3x3 F3x3
*® 7 4 | O3x3 Laxs

where

1
! V2 0 2 00
L3><3: —L 0 1 and F3><3 0 00
2v/2 4 2v/2
L3 2
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For general case, we have

/ “p@)dt = Pu()
0

where W(t)is given in (7) and P is a 28"1M x 2¥=1M matrix given by

"LF F ...F]
OLF..F

1 S
P:z—k 00 ..
S L F
00... 0 L]

where F' and L are M x M matrices. In this case,

a) If M = 2 we have

1
1 -
F = 20 and L= 1 V2
00 _1
2v2
b) If M =3,5,7,... we have
[ 2 0--- 00]
0 0---00
22
22 0 ... 00
0 0---00
2v2
F= -5 000
: 0---00
2v2
(M—4;6/[—2)0 - 00
0 0O---00
22
| —afew 0 00
and
— 1 -—
11 7 (1) 0O 0 0-- 0 0
77 0o o0o0- 0 0
2 1 1
< 0o-+o Lo 0 0
L= —Fg 0 0 —% 0 15+ 0 0
2 1
¥2 00 0-50-- 0 0
V2 ' 1
(M—3)\(}4—1) 0O 0 0 0O 0 SR
2 1
L~ (M—2)M 00 0 00 T 2(M-2) 0 i

(13)
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c) If M =4,6,8,--- we have

2 0---00]
0 0---00
2v/2
_Tf 0---00
0 0---00
2
_T\/g 0---00
F= .
2v2
_(M_s)(M—3)O"'OO
0 0---00
2v2
(M—3)(M—1)O"'00
i 0 0---00]
and
- 1 -
11 7 (1) 0 0 O0-- 0 0
_ﬁ 0 7 0 0 0- 0 0
2 1 1
?f 0 -30 5 0- 0 0
L= —Fg 0 0 -2 0 - 0 0
2 1
S73 00 0 —-50- 0 0
2 1
_(M—}%M—l) 0 0 0 5=
2 1
L (M—2)M 00 00 0'”_2(M72) U

The integration of the product of two Chebyshev wavelet function vectors is
obtained as:

_ ! T
1_/0 w()w ()T dt (14)

where I is the identity matrix.

4. Solution of the Linear Fredholm Integro-Differential Equation

Consider the linear Fredholm integro-differential equation given by (1). We approx-
imate y'(t) , f(t) and k(¢, s) by using Chebyshev wavelet space as follows:

/

y () ~YTU@), yO) =Y w@®), fO)~XTU®#) and k(t,s)~VT (t)KU(t),

where Y, Yy and X are 257 1M x 1 matrices whose coefficients are defined similarly
to (6). Also, K is a 28=1M x 28~ )M matrix with the following elements:

Kij = (i (), (k(t,8),¢(s) , i,5=12...,2"M.
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Then from (13), we have

y(t) = / (s) d(s) + y(0) ~ / Y TW(s)d(s) + YTU(t) = YT PU(t) + Y 0 (1)
=YTP+Y] Ut

Substituting into (1) we have
’ ’ 1 7
vy =o)X + v) " (PTY +Yo) + / V() TKU(s)U(s)T(PTY +Yp)d(s)
0

By (14),
v)TY =) TX + 9T (PTY +Yy)+ v)'K(PTY +Yp)
or
(I-KPT —PTY =KYy+Yy+ X (15)

By solving this linear system we can get the vector Y. Thus,
YT =vTP+yyd or  y@t)=YTU() (16)

5. Numerical Examples

In this section, we consider three integro-differential equations. We apply the sys-
tem of equations in (15) and (16). The programs have been provided by Mathe-
matica. y and g in tables denote the exact solution and the numerical solution,
respectively.

Ezxample 5.1 Let

y (z) = fol sin [dmx + 27t] y () dt +y (z) — cos (2mz) — 27 sin (27z) — & sin(4mz)
y(0) =1
(17)
with exact solution y (x) = cos(27z) .
We solve (15) by using the mentioned method in Section 4, with Pjax12. Table 1
shows the numerical results of the Equation (17) using Chabyshev wavelet method
are better than the results of CAS wavelet method.

Example 5.2 Let

{y’ () =xe® +e* —x+ fol wy(t) dt (18)

y(0) =0

with exact solution y(z) = ze” .

In this example, we solve (15) by using the Chebyshev wavelet method with
Piox10- Table 2 shows that the numerical results of the example in Chabyshev
wavelet method are better than the results of the Legendre wavelet method.
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Ezxample 5.3 Let

y(z)=1-31z+ fol xty(t) dt

y(0) =0

with exact solution y(z) =z .
Table 1. Comparison of Chebyshev wavelet and
CAS wavelet in Example 1

Table 2.

x Chebyshev—Plgx 12

CAS - Piax12

ly — 4l
0.09 0.00059917 0.05078780
0.08 0.00276144 0.04767720
0.07 0.00521435 0.02589700
0.06 0.00664701 0.01486380
0.05 0.00696096 0.07351310
0.04 0.00607222 0.14761900
0.03 0.00391160 0.23355700
0.02 0.00042504 0.32673500
0.01 0.00442625 0.42187600
0.1 0.00474126 0.03691660
0.2 0.05276500 0.09556360
0.3 0.03453150 0.04916060
0.4 0.04278170 0.05737700
0.5 0.00244686 0.49269400
0.6 0.04624910 0.05097740
0.7 0.04743300 0.06504720
0.8 0.07903460 0.08221020
0.9 0.03978690 0.03469560

Legendre wavelet in Example 2

Comparison of Chebyshev wavelet and

T Chebyshev-Piax 12

Legendre-P12x 12

ly — 9l

0.09 0.003936730 0.156341000

0.08 0.003098730 0.138591000

0.07 0.002363070 0.115878000

0.06 0.001728820 0.087918000

0.05 0.001195080 0.054426900

0.04 0.000760973 0.015121000

0.03 0.000425633 0.030282900

0.02 0.000188235 0.082067400

0.01 0.000047972 0.140514000

0.1 0.004878020 0.169415000

0.2 0.020196300 0.106074000

0.3 0.047036800 0.107078000

0.4 0.086633600 0.175800000

0.5 0.140321000 0.339474000
Table 3. Comparison of Chebyshev, CAS and Legendre wavelets in
Example 3

x Chebyshev-Piax12  CAS - Piaox12  Legendre-Piax12
ly — 9l ly — 7l ly — 3l

0.09 0.00120024 0.02486320 0.07005790
0.08 0.00094507 0.02574420 0.05855910
0.07 0.00072107 0.02211350 0.04446370
0.06 0.00052791 0.01357090 0.02766580
0.05 0.00036531 0.00002468 0.00806295
0.04 0.00023295 0.01830220 0.01444370
0.03 0.00013055 0.04088650 0.03994960
0.02 0.00005781 0.06693760 0.06854620
0.01 0.00001445 0.09544690 0.10032200
0.1 0.00148687 0.02015420 0.07906980
0.2 0.00615451 0.00164509 0.05906060
0.3 0.01433670 0.00015358 0.06262440
0.4 0.02640410 0.02318070 0.11753000
0.5 0.04276500 0.12556300 0.05171500

135

(19)
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We solve (15) by using the method mentioned in Section 4 with Pja.19. Table 3
shows that the numerical results of the example in Chabyshev wavelet method are
better than the results of Legendre wavelet and CAS wavelet methods

6. Conclusion

The aim of the presented work is to develop an efficient method for solving an
integro-differential equation by reducing it into a set of algebraic equations. In this
method, we used the first kind Chebyshev wavelet operational matrix of integra-
tion for solving the integro-differential equation.

Numerical examples showed that Chebyshev wavelet method can behave better
than the other mentioned wavelets method and give better approximation in com-
parison with the other wavelets especially for small values of x.
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