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Abstract. In this paper, we will compare a Homotopy perturbation algorithm and Taylor se-
ries expansin method for a system of second kind Fredholm integral equations. An application
of He’s homotopy perturbation method is applied to solve the system of Fredholm integral
equations. Taylor series expansin method reduce the system of integral equations to a linear
system of ordinary differential equation.
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1. Introduction and Preliminary Notes

Many new methods, such as variational method [5, 6], variational iteration method
[7], and others [8,9] are proposed to eliminate the shortcomings arising in the small
parameter assumption. A review of recently developed nonlinear analysis method
can be found in [10]. In recent year, the application of the HPM in nonlinear prob-
lems has been undertaken by scientists and engineers, since this method is used to
continuously deform a simple problem that is easy to solve into a difficult problem
under study. the HPM proposed first by He in 1998 was further developed and im-
proved by He. Recently, the application of homotopy perturbation method theory
have appeared in the works of many scientists, which shows that the method has
become a powerful mathematical tool [11].
In this paper, we use a modified Taylor series expansion method for solving Fred-
hom integral equations system of second kind. This method first presented in [4]
for solving Fredholm integral equations of second kind and then in [3] for solving
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Voltra integral equations of second kind.
Consider the second kind Fredholm integral equations system of the form

F (s) = G(s) +

∫ 1

0
K(s, t)F (t) dt, 0 6 s 6 1, (1)

where

F (s) = [f1(s), f2(s), ..., fn(s)]
T ,

G(s) = [g1(s), g2(s), ..., gn(s)]
T ,

K(s, t) = [kij(s, t)], i, j = 1, 2, ..., n.

In Eq.(1) the function K and G are given, and F is the solution to be determined
[1,2]. We assume that [1] has a unique solution.

1.1 Homotopy perturbation Method

To convey an idea of the HPM, we consider a general equation of type:

L(u) = 0, (2)

where L is an integral or differential operator. We difine a convex homotopyH(u, p)
by

H(u, p) = (1− p)F (u) + pL(u), (3)

where F (u) is a functional operator whit unknown solution v0, which can be ob-
tained easily. It is clear that, for:

H(u, p) = 0, (4)

from which we have

H(u, 0) = F (u) , H(u, 1) = L(u).

This shows that H(u, p) continuously traces an implicitly defined curve from a
starting point H(v0, 0) to a solution function H(u, 1). The embedding parameter
p monotonously from zero to a unit as the trivial problem F (u) = 0 continuously
deforms to original problem L(u) = 0). the embedding parameter p ∈ [0, 1] can be
considered as an expanding parameter [12] to obtain:

u =
∞∑
i=0

piui = u0 + pu1 + p2u2 + · · · . (5)
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When p → 1,(4) corresponds to (2) becomes the approximate solution of (2), i.e.

f = lim
p→1

u =

∞∑
i=0

ui. (6)

It is well known that the series (6) is convergent for most cases, and also that the
rate of convergence depends on L(u) (see [13].
Concerning the system of Fredholm integral equation of (1), the solution would be
taken in the following form:

f1(s) =

∞∑
i=0

pif1i = f10 + pf11 + p2f12 + · · · , (7)

f2(s) =

∞∑
i=0

pif2i = f20 + pf21 + p2f22 + · · · ,

1.2 Taylor series expansion Method

Consider the ith equation of (1):

fi(s) = gi(s) +

∫ 1

0

n∑
j=1

kij(s, t)fj(t)dt, i = 1, 2, ..., n. (8)

A Taylor series expansion can be made for the solution fj(t) in the integral Eq.(8):

fj(t) = fj(s) + f ′
j(s)(t− s) + ...+

1

m!
f
(m)
j (s)(t− s)m+ E(t), (9)

where E(t) denotes the error between fj(t) and its Taylor series expansion (9).

E(t) =
1

(m+ 1)!
f
(m+1)
j (s)(t− s)(m+1) + ...

If we use the first m term of Taylor series expansion (9) (as an approximate for

fj(t) in (8) and neglige the
∫ 1
0

∑n
j=1 kij(s, t)E(t)dt, then substituting (9) for fj(t)

in the integral in Eq.(8), we have

fi(s) ≃ gi(s) +

∫ 1

0

n∑
j=1

kij(s, t)
m∑
r=0

1

r!
(t− s)rf

(r)
j (s)dt, i = 1, 2, ..., n, (10)

fi(s) ≃ gi(s) +
n∑

j=1

m∑
r=0

1

r!
f
(r)
j (s)

∫ 1

0
kij(s, t)(t− s)rdt, i = 1, 2, ..., n, (11)

fi(s)−
n∑

j=1

m∑
r=0

1

r!
f
(r)
j (s)

[ ∫ 1

0
kij(s, t)(t− s)rdt

]
≃ gi(s), i = 1, 2, ..., n, (12)

if the integrals in Eq.(12) can be solved analytically, then the bracketed quantities
are functions of s alone. So Eqs. (12) becomes a linear system of ordinary differ-
ential equations that can be solved. However, this requires the manufacture of an
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appropriate number of boundary conditions. Now we present a method to manu-
facturing boundary conditions in easy way. In order to manufacturing boundary
conditions, we first differentiate both sides of (8) to get that for 0 < s < 1 and
i = 1, 2, ..., n :

f ′
i(s) = g′i(s) +

∫ 1

0

n∑
j=1

k ′
ijs(s, t)fj(t)dt, (13)

...

f
(m)
i (s) = g

(m)
i (s) +

∫ 1

0

n∑
j=1

k
(m)
ijs

(s, t)fj(t)dt, (14)

where k
(m)
ijs

(s, t) = ∂kij(s, t)/∂s
m. Substitute fj(s) for fj(t) in the integral equations

(13) and (14) to obtain that for 0 < s < 1 and i = 1, 2, ..., n :

f ′
i(s)−

[ ∫ 1

0

n∑
j=1

k ′
ijs(s, t)dt

]
fj(s) ≃ g′i(s), (15)

...

f
(m)
i (s)−

[ ∫ 1

0

n∑
j=1

k
(m)
ijs

(s, t)dt
]
fj(s) ≃ g

(m)
i (s). (16)

Now Eq.(12) combined together with (15) and (16) become a mth order linear
system of algebraic equations that can be solved analytically or numerically. For
further illustration we now use this method with n = 2 and m = 1 for solving
a second kind Fredholm integral equation system. Consider the following second
kind Fredholm integral equation system:{

f1(s) = g1(s) +
∫ 1
0 k11(s, t)f1(t) + k12(s, t)f2(t)dt,

f2(s) = g2(s) +
∫ 1
0 k21(s, t)f1(t) + k22(s, t)f2(t)dt,

(17)

a Taylor series expansion can be made for f1(t) and f2(t) as follows:

f1(t) = f1(s) + (t− s)f ′
1(s) +

1

2!
(t− s)2f ′′

1 (s) + E1(t),

f2(t) = f2(s) + (t− s)f ′
2(s) +

1

2!
(t− s)2f ′′

2 (s) + E2(t).

Substituting f1(t) and f2(t) in Eqs.(17) gives

f1(s) ≃ g1(s) +
∫ 1
0 k11(s, t)

{
f1(s) + (t− s)f ′

1(s) +
1
2!(t− s)2f ′′

1 (s)
}
dt

+
∫ 1
0 k21(s, t)

{
f2(s) + (t− s)f ′

2(s) +
1
2!(t− s)2f ′′

2 (s)
}
dt,

f2(s) ≃ g2(s) +
∫ 1
0 k21(s, t)

{
f1(s) + (t− s)f ′

1(s) +
1
2!(t− s)2f ′′

1 (s)
}
dt

+
∫ 1
0 k22(s, t)

{
f2(s) + (t− s)f ′

2(s) +
1
2!(t− s)2f ′′

2 (s)
}
dt.

(18)



S. M. Mirzaei/ IJM2C, 01 - 02 (2011) 117-123. 121

Eq.(18) becomes a linear system of ordinary differential equation and can be solved
after producing boundary conditions. For this we first differentiate both sides of
Eqs.(17) to get:

{
f ′
1(s) = g′1(s) +

∫ 1
0 k′11(s, t)f1(t)dt+

∫ 1
0 k′12(s, t)f2(t)dt,

f ′
2(s) = g′2(s) +

∫ 1
0 k′21(s, t)f1(t)dt+

∫ 1
0 k′22(s, t)f2(t)dt.

(19)

Substitute fj(s) for fj(t) in the integrals in Eqs.(19) gives

{
f ′
1(s) = g′1(s) + {

∫ 1
0 k′11(s, t)dt}f1(s) + {

∫ 1
0 k′12(s, t)dt}f2(s),

f ′
2(s) = g′2(s) + {

∫ 1
0 k′21(s, t)dt}f1(s) + {

∫ 1
0 k′22(s, t)dt}f2(s),

(20)

now Eq.(18) combined with Eqs.(20) become a linear two order system of algebraic
equations that can be solved easily.

2. Numerical Example

Example 2.1 Consider the following Fredholm system of integral equation:

f1(s) =
s

18
+

17

36
+

∫ 1

0

s+ t

3
(f1(t) + f2(t))dt, (21)

f2(s) = s2 − 19

12
s+ 1 +

∫ 1

0
st(f1(t) + f2(t))dt,

with the exact solution f1(s) = s+ 1 and f2(s) = s2 + 1 (see [14]).

Homotopy perturbation algorithm:

We may choose a convex homotopy such that as H(f1, f2, p) with components

H1(f1, f2, p) = f1(s)− g1(s)− p

∫ 1

0

s+ t

3
(f1(t) + f2(t))dt = 0, (22)

H2(f1, f2, p) = f2(s)− g2(s)− p

∫ 1

0
st(f1(t) + f2(t))dt = 0.

Substituting (7) into (22) , and equating the terms with identical powers of p, we
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have

p0 :

f10(s) = g1(s) ⇒ f10(s) =
s

18
+

17

36
≃ 0.0556s+ 0.4722,

f20(s) = g2(s) ⇒ f20(s) = s2 − 19

12
s+ 1 ≃ s2 − 1.5833s+ 1,

p1 :

f11(s) =

∫ 1

0

s+ t

3
(f10(t) + f20(t))dt ⇒ f11(s) ≃ 0.3472s+ 0.1590,

f21(s) =

∫ 1

0
st(f10(t) + f20(t))dt ⇒ f21(s) ≃ 0.4769s,

p2 :

f12(s) =

∫ 1

0

s+ t

3
(f11(t) + f21(t))dt ⇒ f12(s) ≃ 0.1903s+ 0.1181,

f22(s) =

∫ 1

0
st(f11(t) + f21(t))dt ⇒ f22(s) ≃ 0.3542s,

p3 :

f13(s) =

∫ 1

0

s+ t

3
(f12(t) + f22(t))dt ⇒ f13(s) ≃ 0.1301s+ 0.0802,

f23(s) =

∫ 1

0
st(f12(t) + f22(t))dt ⇒ f23(s) ≃ 0.2405s,

...

Therefore, the approximate solution of example 3.1 can be readily obtained by

f1(s) =

∞∑
n=0

f1n(s) , f2(s) =

∞∑
n=0

f2n(s). (23)

In practice, all terms of series (23) cannot be determind and so we use an approx-
imation of the solution by the following truncated series:

φ1,m(s) =
m−1∑
n=0

f1n(s) , φ2,m(s) =
m−1∑
n=0

f2n(s). (24)

The solution with eleven terms are given as

φ1,11(s) ≃ 0.9813s+ 0.9885,

φ2,11(s) ≃ s2 − 0.0345s+ 1.

Taylor series expansion method:
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In this example we have

k11(s, t) = k21(s, t) =
s+ t

3
, k12(s, t) = k22(s, t) = st

where

k′11(s, t) = k′21(s, t) =
1

3
, k′12(s, t) = k′22(s, t) = t. (25)

Substituting (25) into Eq.(20) and combined with Eq.(18) we have

f1(s) ≃ −0.00277778(110808− 42312s+ 21569s2 + 30570s3 − 52530s4 + 21600s5)

−369 + 601s− 510s2 + 150s3
,

f2(s) ≃ −0.00277778(132840− 282456s+ 542911s2 − 465450s3 + 182130s4 − 21600s5)

−369 + 601s− 510s2 + 150s3
.

3. Conclusion

In this paper, we use an application of homotopy perturbation method and Taylor
series expansion method for solving the system of second kind Fredholm integral
equations. Numerical result shows that both methods are useful and powerful.
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