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Abstract. The Fibonacci lengths of the finite p-groups have been studied by R. Dikici and
co-authors since 1992. All of the considered groups are of exponent p, and the lengths depend
on the celebrated Wall number k(p). The study of p-groups of nilpotency class 3 and exponent
p has been done in 2004 by R. Dikici as well. In this paper we study all of the p-groups of
nilpotency class 3 and exponent p2. This completes the study of Fibonacci length of all p-
groups of order p4, proving that the Fibonacci length is k(p2).
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1. Introduction

Let s = (si) be the 2-step Fibonacci sequence of numbers defined by s0 = 0,
s1 = 1, si = si−2 + si−1, for i ⩾ 2. We may extend the sequence backwards to
obtain a bi-infinite sequence. The fundamental period or Wall number (see [10]) of
this sequence is denoted by k(s, pn), where the sequence reduced modulo pn, for a
positive integer n and a prime p. Since now on, we denote k(s, pn) by k(pn).
A 2-step general Fibonacci sequence in a finite non-abelian 2-generated group

G = ⟨a, b⟩ is defined by x0 = a, x1 = b, xi = xmi−2x
l
i−1, for i ⩾ 2 and the integers m

and l. If m = l = 1, the least period of this sequence is called the Fibonacci length
of G and denoted by k(G). Since 1990, the Fibonacci length has been studied and
calculated for certain classes of finite groups. For instance, see [2], [3], [8], and [7].
There are only five classes of p-groups of order p4 and nilpotency class 3 (see

[9]), i.e; the groups
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H = ⟨a, b, c, d|ap = bp = cp = dp = 1, [a, b] = [a, c] = [a, d] = 1, [b, d] = 1, [c, d] = b⟩, p ̸= 3,

K = ⟨a, b, c|a9 = b3 = c3 = 1, [a, b] = 1, [a, c] = b, [c, b−1] = a−3,

Lα = ⟨a, b, c|ap2 = bp = 1, cp = aαp, [a, b] = ap, [a, c] = b, [b, c] = 1⟩

where α = 0, 1, or a non-residue modulo p.
The first group is of exponent p and studied by R. Dikici [4]. Other remained

groups are of exponent p2. First of all we attempt to give a power-commutator
presentation for the groups (see Johnson [6]) and by investigating their nilpotency
class we will go to the computation of Fibonacci length.

Theorem 1.1 MainSuppose that p is a prime and p ̸= 2, and let G be a p-group
of nilpotency class 3 and of order p4 which is of exponent p2. Then k(G) = k(p2).

2. The Group K

Let G = K. Since a−3 is a non-identity element of [G,G′], it is clear that G has
nilpotency class 3. Hence [G,G′] ⩽ Z(G). Therefore a3 is a central element. The
following series is a central series for G such that Gi−1/Gi are cyclic of order p:

1 = G4 ⩽ G3 ⩽ G2 ⩽ G1 ⩽ G0 = G,

where

G3 = ⟨a3⟩, G2 = ⟨a3, b⟩, G1 = ⟨a3, b, c⟩.

Hence a power-commutator presentation of G may be given as follows:

G = ⟨x, y, z|x3 = y3 = z3 = 1, w3 = x, [x, y] = [x, z] = [x,w] = 1, [z, y] = x, [w, y] = 1, [w, z] = y⟩

Note that in the new presentation, the group G be generated by w and z. Moreover
x is a central element. Also, each element of G can be uniquely represented as
xaybzcwd, where a, b, c reduced modulo 3 and d reduced modulo 9. First we give
some elementary results.

Lemma 2.1 For every positive integers m and n,

(i) zmyn = xmnynzm.

(ii) wmzn = xm(
n+1

2 )ymnznwm.

Proof Since x is a central element of G, then (i) may be proved by the induction
method. To prove (ii) we may use (i) and the relation [w, y] = 1.

■

Lemma 2.2 let xaybzcwd and xa
′
yb

′
zc

′
wd′

be elements of G. Then

(xaybzcwd)(xa
′
yb

′
zc

′
wd′

) = xa+a′+cb′+cdc′+d(c
′+1

2 )yb+b′+dc′zc+c′wd+d′

Proof By using Lemma 2.1, we have:
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(xaybzcwd)(xa
′
yb

′
zc

′
wd′

) = xa+a′
ybzcwdyb

′
zc

′
wd′

= xa+a′
ybzcyb

′
wdzc

′
wd′

= xa+a′
ybzcyb

′
xd(

c′+1

2 )ydc
′
zc

′
wdwd′

= xa+a′+d(c
′+1

2 )ybzcyb
′+dc′zc

′
wd+d′

= xa+a′+d(c
′+1

2 )ybxc(b
′+dc′)yb

′+dc′zczc
′
wd+d′

= xa+a′+d(c
′+1

2 )+c(b′+dc′)yb+b′+dc′zc+c′wd+d′
.

■

Lemma 2.3 Let x6aybzcwd and xa
′
yb

′
zc

′
wd′

be elements of G and m and l be
positive integers. Then

(i) (xayvzcwd)m = xma+(m2 )bc+(
m

2 )(
c+1

2 )d+ (m−1)m(2m−1)

6
c2dymb+(m2 )cdzmcwmd.

(ii) (xayvzcwd)m(xa
′
yb

′
zc

′
wd′

)l = xa
′′
yb

′′
zc

′′
wd′′

,

where

a′′ = ma+

(
m

2

)
bc+

(
m

2

)(
c+ 1

2

)
d+

(m− 1)m(2m− 1)

6
c2d

+ la′ +

(
l

2

)
b′c′ +

(
l

2

)(
c′ + 1

2

)
d′ +

(l − 1)(2l − 1)

6
c′2d′

+mlcb′ +m

(
l

2

)
cc′d′ +m2lcdc′ +md

(
lc′ + 1

2

)
b′′ = mb+

(
m

2

)
cd+ lb′ +

(
l

2

)
c′d′ +mldc′

c′′ = mc+ lc′

d′′ = md+ ld′.

Proof (i) By induction on m. (ii) By using (i) and Lemma 2.2. ■

Now by using Lemma 2.2, we can obtain Fibonacci sequence in the group G. We
shall use vector notation to calculate the sequence and define an infinite sequence
ri = (ai, bi, ci, di) via the 2-step recurrence and initial data r0 = (0, 0, 0, 1) which
corresponds to w, and r1 = (0, 0, 1, 0) which corresponds to z.

Proposition 2.4 For the group G, K(G) = k(9) = 24.

Proof We obtain the following loop (Note that ai, bi, ci reduced modulo 3 and di
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reduced modulo 9):

r0 = (0, 0, 0, 1), r6 = (1, 1, 2, 5), r12 = (1, 1, 0, 8), r18 = (2, 1, 1, 4),

r1 = (0, 0, 1, 0), r7 = (1, 0, 1, 8), r13 = (1, 2, 2, 0), r19 = (0, 1, 2, 1),

r2 = (1, 1, 1, 1), r8 = (2, 0, 0, 4), r14 = (2, 1, 2, 8), r20 = (2, 1, 0, 5),

r3 = (2, 1, 2, 1), r9 = (0, 0, 1, 3), r15 = (2, 0, 1, 8), r21 = (1, 2, 2, 6),

r4 = (0, 1, 0, 2), r10 = (0, 1, 1, 7), r16 = (1, 0, 0, 7), r22 = (0, 1, 2, 2),

r5 = (1, 2, 2, 3), r11 = (1, 1, 2, 1), r17 = (0, 0, 1, 6), r23 = (0, 0, 1, 8).

and r24 = (0, 0, 0, 1), r25 = (0, 0, 1, 0). Hence k(G) = k(9) = 24. ■

3. The Group Lα

The Case α = 0 : Let G = Lα, where α = 0. Then G = ⟨a, b, c|ap2 = bp = cp =
1, [a, b] = ap, [a, c] = b, [b, c] = 1⟩. By the relations of group, ap ∈ [G,G′]. Therefore,
G has nilpotency class 3 and [G,G′] ⩽ Z(G). Hence ap is a central element of G.
A power-commutator presentation of G may be given as follows:

G = ⟨x, y, z, w|xp = yp = zp = 1, wp = x, [x, y] = [x, z] = [x,w] = 1,

[z, y] = 1, [w, y] = x, [w, z] = y⟩.

The Case α = 1 : Let G = Lα, where α = 1. Then G = ⟨a, b, c|ap2 = bp =
1, cp = ap, [a, b] = ap, [a, c] = b, [b, c] = 1⟩. We may show that G has the following
power-commutator presentation:

G = ⟨x, y, z, w|xp = yp = 1, zp = wp = x, [x, y] = [x, z] = [x,w] = 1,

[z, y] = 1, [w, y] = x, [w, z] = y⟩.

The case where α is a non-residue modulo p: Let G = Lα, where α is a
non-residue modulo p. Then G = ⟨a, b, c|ap2 = bp = 1, cp = aαp, [a, b] = ap, [a, c] =
b, [b, c] = 1⟩. We may show that G has the following power-commutator presenta-
tion:

G = ⟨x, y, z, w|xp = yp = 1, zp = xα, wp = x, [x, y] = [x, z] = [x,w] = 1,

[z, y] = 1, [w, y] = x, [w, z] = y⟩.

Note that in the new presentations, the group G is generated by w and z. Moreover,
x is a central element. Also, each element of G can be uniquely represented as
xaybzcwd, where in the first case a, b, c reduced modulo p and d reduced modulo
p2 and in the second and third cases a and b reduced modulo p and c and d reduced
modulo p2. From now on we suppose that G = Lα, where α = 0, 1, or a non-residue
modulo p. First we prove some elementary results.

Lemma 3.1 For every positive integers m and n,

(i) wmyn = xmnynwm.

(ii) wmzn = x(
m+1

2 )nymnznwm.
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Proof Since x is a central element of G, then (i) may be proved by the induction
method. To prove (ii) we may use (i) and the relation [z, y] = 1. ■

Lemma 3.2 Let xaybzcwd and xa
′
yb

′
zc

′
wd′

be elements of G. Then

(xaybzcwd)(xa
′
yb

′
zc

′
wd′

) = xa+a′+db′+(d+1

2 )c′yb+b′+dc′zc+c′wd+d′
.

Proof By using Lemma 3.1, we have:

(xaybzcwd)(xa
′
yb

′
zc

′
wd′

) = xa+a′
ybzcwdyb

′
zc

′
wd′

= xa+a′
ybzcxdb

′
yb

′
wdzc

′
wd′

= xa+a′+db′yb+b′zcwdzc
′
wd′

= xa+a′+db′yb+b′zcx(
d+1

2 )c′ydc
′
zc

′
wdwd′

= xa+a′+db′+(d+1

2 )c′yb+b′+dc′zc+c′wd+d′
.

■

Lemma 3.3 Let xaybzcwd and xa
′
yb

′
zc

′
wd′

be elements of G and m and l be positive
integers. Then

(i) (xaybzcwd)m = xma+(m2 )bd+(
m

2 )c(
d+1

2 )+(m3 )cd
2

ymb+(m2 )cdzmcwmd.
(ii) (xaybzcwd)m(xa

′
yb

′
zc

′
wd′

)l = xa
′′
yb

′′
zc

′′
wd′′

,
where

a′′ = ma+

(
m

2

)
bd+

(
m

2

)
c

(
d+ 1

2

)
+

(
m

3

)
cd2

+ la′ +

(
l

2

)
b′d′ +

(
l

2

)
c′
(
d′ + 1

2

)
+

(
l

3

)
c′d

′2

+mldb′ +m

(
l

2

)
dc′d′ +

(
md+ 1

2

)
lc′

b′′ = mb+

(
m

2

)
cd+ lb′ +

(
l

2

)
c′d′ +mldc′,

c′′ = mc+ lc′,

d′′ = md+ ld′.

Proof (i) By induction on m. (ii) By using (i) and Lemma 3.2. ■

Lemma 3.4 Every element of the Fibonacci sequence in the group G may be pre-
sented by tn = xanybnzsnwsn−1, where the sequences {an}∞0 and {bn}∞0 are defined
as follows:

b0 = 0, bn

n−1∑
i=0

sn−1−isi−1si+1, n ⩾ 1,

a0 = 0, an

n−1∑
i=0

sn−1−i

(
si−1bi+1 +

(
si−1 + 1

2

)
si+1

)
, n ⩾ 1.
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Proof We use an induction method on n. It is obvious that t0 = w = xa0yb0zs0ws−1

and t1 = z = xa1yb1zs1ws0, for, a1 = b1 = 0. Now assume that the result holds for
n and n+ 1, where n ⩾ 0. Then

tn+2 = tntn+1

= (xanybnzsnwsn−1)(xan+1ybn+1zsn+1wsn)

= xan+an+1+sn−1bn+1+(sn−1+1

2 )sn+1ybn+bn+1+sn−1sn+1zsn+sn+1wsn−1+sn

= xa
′
yb

′
zsn+2wsn+1 ,

where

a′ = an + an+1 + sn−1bn+1 +

(
sn−1 + 1

2

)
sn+1

=
n−1∑
i=0

sn−1−i

(
si−1bi+1 +

(
si−1 + 1

2

)
si+1

)
n∑

i=0

sn−i

(
si−1bi+1 +

(
si−1 + 1

2

)
si+1

)
+ sn−1bn+1 +

(
sn−1 + 1

2

)
sn+1

=

n∑
i=0

sn−1−i

(
si−1bi+1 +

(
si−1 + 1

2

)
si+1

)

− s−1

(
sn−1bn+1 +

(
sn−1 + 1

2

)
sn+1

)
+

n∑
i=0

sn−i

(
si−1bi+1 +

(
si−1 + 1

2

)
si+1

)
+ sn−1bn+1 +

(
sn−1 + 1

2

)
sn+1

=
n∑

i=0

sn+1−i

(
si−1bi+1 +

(
si−1 + 1

2

)
si+1

)

=

n+1∑
i=0

sn+1−i

(
si−1bi+1 +

(
si−1 + 1

2

)
si+1

)
= an+2,

and

b′ = bn + bn+1 + sn−1sn+1

=

n−1∑
i=0

sn−1−isi−1si+1 +

n∑
i=0

sn−isi−1si+1 + sn−1sn+1

=
n∑

i=0

sn−1−isi−1si+1 − s−1sn−1sn+1 +
n∑

i=0

sn−isi−1si+1 + sn−1sn+1

=
n∑

i=0

sn+1si−1si+1

= bn+2
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■

From now on we shall be working modulo p2. Let k = k(p2). The following
equations hold and are easy to see:

sk−i = s−i = (−1)i+1si,

k−1∑
i=0

si =

k−1∑
i=0

sk−i,

k−1∑
i=0

si+a =

k−1∑
i=0

si (a ∈ Z).

The proofs of the Lemmas 3.5, 3.6 and 3.7 may be found in [2] and [4].

Lemma 3.5 The following equations hold:

(i)
k−1∑
i=0

si = 0.

(ii)
k−1∑
i=0

s2i = 0.

(iii)
k−1∑
i=0

s3i = 0.

Lemma 3.6 If p > 3, then

(i)
k−1∑
i=0

sisi−1 = 0.

(ii)
k−1∑
i=0

s2i−1si =
k−1∑
i=0

si−1s
2
i = 0.

Lemma 3.7 For every integers a, b, c, d, and e the following equations hold:

(i)
k−1∑
i=0

si+asi+bs−i+csi = 0.

(ii)
k−1∑
i=0

i−1∑
j=0

s−i+asi+bsi−j−dsj+esi+c = 0.

Lemma 3.8 The following equations hold:

(i)
k−1∑
i=0

(−1)is3i = 0.

(ii)
k−1∑
i=0

(−1)is2i−1si =
k−1∑
i=0

(−1)isi−1s
2
i = 0, p > 3.

Proof

(i)
k−1∑
i=0

(−1)is3i−1 =
k−1∑
i=0

s3−(i−1) =
k−1∑
i=0

s3k−(i−1) =
k−1∑
i=0

s3i = 0.

(ii) we may write:

0 =
k−1∑
i=0

s3i =
k−1∑
i=0

(−1)is3i+1 =
k−1∑
i=0

(−1)i(si + si−1)
3

= 3

k−1∑
i=0

(−1)isi−1s
2
i + 3

k−1∑
i=0

(−1)is2i−1si (1)
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On the other hand,

0 =
k−1∑
i=0

s3i =
k−1∑
i=0

(−1)i−1s3i−2 =
k−1∑
i=0

(−1)i(si − si−1)
3

= 3

k−1∑
i=0

(−1)isi−1s
2
i − 3

k−1∑
i=0

(−1)is2i−1si. (2)

Adding (1) and (2) we obtain

6

k−1∑
i=1

si−1s
2
i = 0,

and subtracting (2) from (1) we obtain

6

k−1∑
i=0

s2i−1si = 0.

Since p > 3, (ii) follows.

■

Now we are ready to prove the main results.
Proof of Main Theorem. By using Lemma 3.4, it is sufficient to show that

ak = ak+1 = bk = bk+1 = 0. We have:

bk =
k−1∑
i=0

sk−1−isi−1si+1 =
k−1∑
i=0

s−(i+1)si−1si+1 =
k−1∑
i=0

(−1)isi−1s
2
i+1

=

k−1∑
i=0

(−1)isi−1(si−1 + si)
2

=
k−1∑
i=0

(−1)is3i−1 +
k−1∑
i=0

(−1)isi−1s
2
i + 2

k−1∑
i=0

(−1)is2i−1si,

and the last three expressions vanish by Lemma 3.8. So bk = 0. Similarly,

bk+1 =

k∑
i=0

sk−isi−1si+1 =

k∑
i=0

s−isi−1si+1 =

k∑
i=0

(−1)i+1si−1sisi+1

=
k−1∑
i=0

(−1)i+1si−1si + si+1 =
k−1∑
i=0

(−1)i+1si−1si(si + si−1)

= −

(
k−1∑
i=0

(−1)isi−1s
2
i +

k−1∑
i=0

(−1)is2i−1si

)
,
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and the last two sums vanish by Lemma 3.8. On the other hand,

ak =

k−1∑
i=0

sk−1−i

(
si−1bi+1 +

(
si−1 + 1

2

)
si+1

)

=
k−1∑
i=0

sk−(i+1)

si−1

i∑
j=0

si−jsj−1sj+1 +

(
si−1 + 1

2

)
si+1


=

k−1∑
i=0

i∑
j=0

s−(i+1)si−1si−jsj−1sj+1 +

k−1∑
i=0

(
si−1 + 1

2

)
s−(i+1)si+1

=

k−1∑
i=0

i−1∑
j=0

s−i−1si−1si−jsj−1sj+1 +
1

2

k−1∑
i=0

(si−1 + 1)si−1s−(i+1)si+1,

and the first sum vanishes by Lemma 3.7(ii). For the second sum in the above
expression, we have:

k−1∑
i=0

(si−1 + 1)si−1s−(i+1)si+1 =

k−1∑
i=0

si−1si−1s−(i+1)si+1 +

k−1∑
i=0

si−1s−(i+1)si+1

=
k−1∑
i=0

si−2si−2s−isi +
k−1∑
i=0

(−1)isi−1s
2
i+1

and the first sum vanishes by Lemma 3.7(i) and the second one is equal to bk
which is zero. A similar method may be used to prove ak+1 = 0. This completes
the proof showing that k(G) = k(p2) for all of groups G = Lα, where α = 0, 1, or
non-residue modulo p.

4. Conclusion

The Fibonacci lengths of the finite p-groups had been studied by R. Dikici and
co-authors since 1992. All of the considered groups were of exponent p, and the
lengths depended on the celebrated Wall number k(p). The study of p-groups of
nilpotency class 3 and exponent p had been done in 2004 by R. Dikici as well. In
this paper we studied all of the p-groups of nilpotency class 3 and exponent p2.
This completed the study of Fibonacci length of all p-groups of order p4, proving
that the Fibonacci length is k(p2).
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