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Abstract. Clustering of objects is an important area of research and application in variety
of fields. In this paper we present a good technique for data clustering and application of
this technique for data clustering in a closed area. We compared this method with K-nearest
neighbor and K-means.
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1. Introduction

Clustering of objects is an important area of research and of practical applications
in variety of fields, including pattern recognition and artifical intelligence, statistics,
vision analysis and medicine. The K-nearest neighbor (K-NN) algorithm is used
to perform the classification [13]. This decision rule provides a simple nonparamet-
ric procedure for the assignment of a class label to the input pattern based on the
class labels represented by the K-closest [14]. But this method has some problems.
One of the problems encountered in using the K-NN classifier is that normally
each of the sample vectors is considered equally important in the assignment of
the class label to the input vector [13]. This frequently causes difficulty in those
places where the sample sets overlap. A typical vectors representing the weight of
each cluster is given. Another difficulty is that once an input vector is assigned to
a class, there is no indication of its strength of membership in that class. To solve
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this problems, fuzzy K-NN applied [3, 7].
A fuzzy K-NN algorithm is developed utilizing fuzzy class memberships of the
sample sets and thus, producing a fuzzy classification rule [11].
The paper is organized as follows: In Section 2 and 3, we recall artificial neural net-
work and clustering respectively. In Section 4 we apply F -KNN for data clustering
in a closed area and compare this technique with K-nearest neighbor classification
and K-means [15].

2. Artificial neural network

Artificial neural network (ANN) is a network of interrelated elements that are
inspired by natural neural systems. The smallest unit of information processing is
a neuron, that will form the basis of function neural networks. Neural networks
provide an appropriate output according to the input patterns fed to the network
[1, 4].
Characteristics of neural networks are: Ability to learn, distribution of information,
generalization, parallel processing, [9].

2.1 Mathematical structure of neurons and neural network architecture

A simple mathematical model of a neuron is shown in Figure 1.

(a)

Figure 1. Neuron

Different structures of neural networks can be made through various combination
of the neurons together [2, 12]. A multilayer neural network is shown in Figure 2.

(a)

Figure 2. multilayer network

Typically, models of neural networks are divided into categories in terms of signal
transmission manner: Feed-forward neural networks and recurrent neural networks.
They are built up using different frameworks, which give rise to different fields of
applications [10].
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3. Clustering

Clustering is considered as a pre-processing phase design of neural networks.
”Clustering” is a process to obtain a partition P of a set E of N objects xi (i =
1, 2, . . . , N), using the resemblance or disemblance measure, such as a distance
measure d. A partition P is a set of disjoint subsets of E and the element Ps of P
is called a cluster and the centers of the clusters are called centroids or prototypes
[8]. The goal of a clustering analysis is to divide a given set of data or objects
into a cluster, which represents subsets or a group. The partition should have two
properties:

• Homogeneity inside clusters: the data, which belongs to one cluster should be as
similar as possible.

• Heterogeneity among the clusters: the data, which belongs to different clusters
should be as different as possible.

Many techniques have been developed for clustering data. In this paper, Fuzzy
K-nearest neighbor (F -KNN) clustering is used [8, 13].

3.1 Fuzzy K-nearest neighbor method

According to what stated in Section 1, to resolve the defects of K-nearest
neighbors, we use fuzzy K-nearest neighbor.

In this technique, we consider that membership function is as a distance func-
tion. In fact, the fuzzy K-nearest neighbor algorithm assigns class membership
to a sample vector rather than assigning the vector to a particular class. The
advantage is that no arbitrary assignments are made by the algorithm. In addition,
the vectors membership values should provide a level of assurance to accompany
the resultant classification.

The basis of this algorithm is to assign membership as a function of the vectors
distance from its K-nearest neighbors and those neighbors memberships in the pos-
sible classes [7, 16]. Let W = {x1, x2, . . . , xN} be a set of N labeled samples. Also,
let ui(x) be the assigned membership of the vector x, and uij be the membership
in the ith class of the jth vector of the labeled sample set.
ui(x) is computed through statment 1.

ui(x) =

∑K
j=1 uij(

1

∥ x− xj ∥
)

2

m−1∑K
j=1(

1
∥x−xj∥)

2

m−1

, (1)

where variable m determines how heavily the distance is weighted when
calculating each neighbor’s contribution to the membership value. As seen by (1),
the assigned memberships of x are influenced by both the inverse of the distances
from the nearest neighbors and their class memberships. The inverse distance
serves to weight a vector’s membership more if it is closer and less if it is farther
from the vector under consideration [6, 7, 14]. uij is an optimal solution that is
obtained by solving the following nonlinear programming [5].
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minQ =
N∑
i=1

M∑
k=1

umik(∥ xk − vi ∥)2 (2)

subject to

N∑
i=1

uik = fk,

0 <

M∑
k=1

uik < M,

0 < uik < 1.

Then,

uij =
fk∑C

j=1(
∥xk−vi∥
∥xk−vj∥)

2

m−1

. (3)

We arrive at the (3) by transforming (2) to a standard unconstrained optimiza-
tion by making use of Lagrange multipliers and determining a critical point of the
resulting function. In fact, uij is a local minimum or a saddle point of this function
[11].

4. Data clustering in a closed area

In this Section, we supposed that data set is a closed area such as a square
[0, 2] × [0, 2]. Then, we are clustering the data randomly with both of K-means
and K-nearest neighbor techniques. Finally, we compare the obtained results of
these methods with fuzzy K-nearest neighbor.

K-means clustering is a method commonly used to automatically partition a
data set into K groups. It proceeds by selecting K initial cluster centers and then
iteratively refining them as follows:

1 Each instance di is assigned to its closest cluster center.
2 Each cluster center Cj is updated to be the mean of its constituent in-

stances.

The algorithm converges when there is no further change in assignment of in-
stances to clusters. We initialize the clusters using instances chosen at random from
the data set [15].
The K-nearest neighbor is conceptually simple. We compute the distance from an
observation yi to all other points yj using the distance function

(yi − yj)
′S−1

pl (yi − yj), i ̸= j

where Spl is the mixed variance [13].

To classify yi into one of two groups, the K points nearest to yi are examined,
and if the majority of the K points belong to G1, assign yi to G1; otherwise assign
yi to G2. If we denote the number of points from G1 as K1, with the remaining K2
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points from G2, where K = K1 +K2, then the rule can be expressed as: Assign yi
to G1 if

K1 > K2

and to G2 otherwise [3, 13]. These rules are easily extended to more than two
groups. So, we are clustering data with these methods.
Now, we use the fuzzy K-nearest neighbor method to classify points inside a closed
area [17]. Data set is shown in Figure 3.
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(a)

Figure 3. Data set in a closed area

After comparing these methods, we will see with choosing K = 1, all data
will allocate to a just one cluster. In the case K = 2n, n ∈ N, data can’t
classify, because the amount of assignment to each cluster is equal. In the case
K = 2n + 1, n ∈ N, data can classify easily and due to each method, clustering
will have done. Clusters created through these methods and their comparison
are shown in Table 1. In this table M . V . F -KNN , F -KNN , KNN , K-means
denote Membership values of F -KNN , Predicted classes of F -KNN , Predicted
classes of KNN and Predicted classes of K-means respectively.

Table 1. Data set in a square

Data K M . V . F -KNN F -KNN KNN K-means
0.3193 3 0.6807 2 1 1
0.7400 3 0.2600 1 1 1
0.3801 3 0.6199 2 1 1
0.3705 3 0.6295 2 1 1
0.1189 3 0.8811 2 1 1
0.5317 3 0.4683 1 1 1
0.3705 3 0.6295 2 1 1
0.1788 3 0.8212 2 1 1
0.5643 3 0.4357 1 1 1
0.8113 3 0.1887 1 1 1

Now, for example we are clustering data in a circle. We choose data randomly in
a circle with radius 2 and center (0, 0). The equation of this circle is x2 + y2 ⩽ 9.
We are clustering this data with F -KNN , KNN and K-means methods. At the
end of this work, we compare the output.
The result of comparison is shown in Table 2.
According to this table, data classified to 3 clusters with own membership value
by F -KNN method and clssified to 2 classes by KNN and K-means.
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Table 2. Data set in a circle

Data K M . V . F -KNN F -KNN KNN K-means
0.3093 3 0.7107 3 1 1
0.5678 3 0.4807 2 2 1
0.8201 3 0.1599 1 2 1
0.4255 3 0.6239 2 1 2
0.1009 3 0.9081 3 1 1
0.6377 3 0.4853 2 2 1
0.6410 3 0.3240 1 2 1
0.1387 3 0.8812 3 1 1
0.3915 3 0.7995 3 1 2
0.8196 3 0.1917 1 2 1

5. Conclusion

In this work, we introduced fuzzy K-nearest neighbor and used it to clustering
data in a closed area, then we compared this method with K-means and K-nearest
neighbor. The advantage of this method is that no arbitrary assignments are made.
Moreover, the clusters are created during this process to maintain its homogeneity
property.
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