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Abstract.The matrix functions appear in several applications in engineering and sciences.
The computation of these functions almost involve complicated theory. Thus, improving the
concept theoretically seems unavoidable to obtain some new relations and algorithms for eval-
uating these functions. The aim of this paper is proposing some new formulas to the function
of block anti diagonal matrices. Moreover, some theorems will be proven and applications will
be given.
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1. Introduction

Let f(z) is an analytic function on a closed contour Γ which encircles σ(A), when-
ever σ(A) denotes the set of eigenvalues (spectrum) of matrix A. A function of an
square matrix can be defined by considering Cauchy integral definition as follows
[2, 3]:

f(A) = 1

2πi
∮
Γ
f(ξ)(ξI −A)−1dξ. (1)

The entries of (ξI −A)−1 are analytic on Γ, and f(A) is analytic in a neighborhood
of σ(A). It is noticed that the integral of an arbitrary matrix W could be under-
stood as the matrix whose entries are the integrals of the entries of W . Moreover,
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this mathematically appealing formula for computing the matrix function is very
complicated and requires complex analysis to be fully understandable. Therefore,
several applicable other techniques for evaluating matrix functions are investigated
in depth, such as Jordan canonical form, interpolation methods, series methods and
iterative procedures. The application of matrix functions have arisen in differen-
tial equation, Markov models, Control theory, non linear matrix equations, nuclear
magnetic resonance, nonsymmetric eigenvalue problem, boundary value problems
and several other area. For more readings, one may refer to [3, 6].
In this research article, the main contribution is the computation of block anti

diagonal matrices and its applications. Firstly, the concepts of the block anti di-
agonal and also central symmetric X-form matrices will be explained. Secondly,
several new formulations for computing function of block anti diagonal by proving
some theorems will be given. Thirdly, we will deduce the applications in differen-
tial equation and also in Control theory. Finally, conclusions of the article will be
drown.

2. New Formulations

In this section, the theory of the matrix functions will be modified. In order to
tackle this problem, definition of block anti diagonal matrix which has significant
role in our theory will be expressed as following. Let A11, . . . ,Amm are nk × nk

complex matrices with the same dimensions, then A is called block anti diagonal
matrix if it is in the following form:

A =
⎛
⎜⎜
⎝

A11

. .
.

Amm

⎞
⎟⎟
⎠
n×n

= blockadiagn(A11, . . . ,Amm). (2)

whenever ∑m
k=1 nk = n. Alternatively, assume A is an n × n complex matrix. If

α1, . . . , αn are complex scalars, then A is called anti diagonal matrix if it is in the
following form:

A =
⎛
⎜⎜
⎝

α1

. .
.

αn

⎞
⎟⎟
⎠
n×n

= adiagn(α1, . . . , αn). (3)

Example 2.1 A trivial anti diagonal matrix is called ”reversal identity matrix”
and denoted by Jn. This matrix is defined element wise as the matrix:

Jn = (jij)n×n =
⎧⎪⎪⎨⎪⎪⎩

1, j = n − i + 1,
0, j ≠ n − i + 1,

(4)

that is,

Jn =
⎛
⎜⎜
⎝

1

. .
.

1

⎞
⎟⎟
⎠
n×n

= adiagn(1, . . . ,1). (5)

Furthermore, properties of the reversal matrix as pointed out in [4], include as
following
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(1) JT
n = Jn.

(2) J−1n = Jn.

(3) Jp
n = In for even values of p, and Jp

n = Jn for odd values of p.

(4) Tr(Jn) = 1 if n is odd; and Tr(Jn) = 0 if n is even.

(5) Any matrix A satisfying the condition AJn = JnA is said to be ”centrosym-
metric”.

(6) Any matrix A satisfying the condition AJn = JnAT is said to be ”persym-
metric”.

Another applicable matrix in the text is central symmetric X-form matrix which is
investigated in depth in [5, 7]. The block version of this matrix is expressed in the
following definition. Assume A11, . . . ,Amm and B11, . . . ,Bmm are nk ×nk complex
matrices. We define the block central symmetric X-form matrix in the following
odd dimension form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Amm Bmm

⋱ . .
.

A22 B22

A11

B22 A22

. .
.

⋱
Bmm Amm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ C(2nk−1)×(2nk−1), (6)

and the block central symmetric X-form matrix in the even dimension form

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Amm Bmm

⋱ . .
.

A22 B22

A11 B11

B11 A11

B22 A22

. .
.

⋱
Bmm Amm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ C(2nk)×(2nk). (7)

It should be emphasized that the particular case of the matrices (6) and (7) are
the scalar central symmetric X-form matrices that have been defined in [5, 7] in
the following form:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

αm βm

⋱ . .
.

α2 β2

α1

β2 α2

. .
.

⋱
βm αm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

αm βm

⋱ . .
.

α2 β2

α1 β1

β1 α1

β2 α2

. .
.

⋱
βm αm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (8)

Now, we are interested to depict a discipline for the function of block anti diagonal
matrix. Before that, we investigate the function of block diagonal matrices briefly.
[3] Suppose f has the following Taylor expansion

f(z) =
∞
∑
k=0

f (k)(α)
k!

(z − α)k, (9)
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with radius of convergence r. If A ∈ Cn×n and ak = f(k)(α)
k! , then f(A) is defined

and is given by

f(A) =
∞
∑
k=0

ak(A − αI)k, (10)

if and only if each of the distinct eigenvalues λ1, . . . , λn of A satisfies one of the
conditions:
(1) ∣λi − α∣ < r,
(2) ∣λi − α∣ = r, and the series for f (ni−1) (whenever ni is the index of λi) is

convergent at the point λ = λi for i = 1, . . . , n. According to Theorem 2.1, by
setting α = 0, for diagonal matrix A = diag(ζ1, . . . , ζn), it is obvious that

f(A) = diag(
∞
∑
k=0

akζ
k
1 , . . . ,

∞
∑
k=0

akζ
k
n) = diag (f(ζ1), . . . , f(ζn)) , (11)

Simultaneously, if A = diag(A11, . . . ,Amm) is block diagonal matrix, then it is clear
that

f(A) = blockdiag(
∞
∑
k=0

akA
k
11, . . . ,

∞
∑
k=0

akA
k
mm) = blockdiag(f(A11), . . . , f(Amm)),

(12)
Some basic matrix functions that have received many attraction, are defined by
using Taylor series as following [3]:

exp(A) =
∞
∑
k=0

Ak

k!
, (13)

sin(A) =
∞
∑
k=0

(−1)kA2k+1

(2k + 1)!
, cos(A) =

∞
∑
k=0

(−1)kA2k

(2k)!
, (14)

log(I +A) =
∞
∑
k=0

(−1)kAk+1

(k + 1)
, ρ(A) < 1 (15)

sinh(A) =
∞
∑
k=0

A2k+1

(2k + 1)!
, cosh(A) =

∞
∑
k=0

A2k

(2k)!
, (16)

log(A) = −2
∞
∑
k=0

1

2k + 1
((I −A)(I +A)−1)2k+1, min

i
Reλi(A) < 1. (17)

A fundamental relationship between exponential dependent matrix functions is the
matrix analogue of ”Euler’s formula” which is defined as

eiA = cos(A) + sin(A), (18)
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and consequently yields that

sin(A) = eiA − e−iA

2i
, cos(A) = eiA + e−iA

2
. (19)

Now, we present following basic theorem. Let A = blockantidiagn(A11, . . . ,Amm) ∈
Cn×n, where A11, . . . ,Amm ∈ Cnk×nk . Then f(A) will be obtained as the even di-
mension form

f(A) =

⎛
⎜⎜⎜⎜⎜
⎝

∑∞k=0 a2k(A11A2m,2m)k
⋱

∑∞k=0 a2k(Am,mAm+1,m+1)k
Am+1,m+1∑∞k=0 a2k+1(Am,mAm+1,m+1)k

. .
.

A2m,2m∑∞k=0 a2k+1(A11A2m,2m)k

A11∑∞k=0 a2k+1(A2m,2mA11)k

. .
.

Am,m∑∞k=0 a2k+1(Am+1,m+1Am,m)k
∑∞k=0 a2k(Am,mAm+1,m+1)k

⋱ ∑∞k=0 a2k(A2m,2mA11)k

⎞
⎟⎟⎟⎟⎟
⎠

, (20)

and, the odd dimension form

f(A) =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

∑∞k=0 a2k(A11A2m−1,2m−1)k
⋱

∑∞k=0 a2k(Am−1,m−1Am+1,m+1)k

Am+1,m+1∑∞k=0 a2k+1(Am−1,m−1Am+1,m+1)k

. .
.

A2m−1,2m−1∑∞k=0 a2k+1(A11A2m−1,2m−1)k

A11∑∞k=0 a2k+1(A2m−1,2m−1A11)k

. .
.

Am−1,m−1∑∞k=0 a2k+1(Am+1,m+1Am−1,m−1)k
Amm∑∞k=0 a2k(Amm)k

∑∞k=0 a2k(Am+1,m+1Am−1,m−1)k
⋱

∑∞k=0 a2k(A2m−1,2m−1A11)k

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

(21)

Proof In order to prove this theorem, the block numbers of the matrix A divided
to two cases:
(Case 1: m is even number) In this case, suppose that m (the number of blocks)
of A is even. Therefore, A is given by

A = blockadiagn(A11, . . . ,Amm,Am+1,m+1, . . . ,A2m,2m).

It is clear that the powers of A for p ∈ {0,2,4,6, . . .} can be easily obtained by

Ap = blockdiagn ((A11A2m,2m)p, . . . , (Am,mAm+1,m+1)p, (Am+1,m+1Am,m)p, . . . , (A2m,2mA11)p) ,
(22)
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and for p ∈ {1,3,5,7, . . .}, it can be computed as

Ap = blockadiagn((A11A2m,2m)pA11 . . . (AmmAm+1,m+1)pAmm

(Am+1,m+1Am,m)pAm+1,m+1 . . . (A2m,2mA11)pA2m,2m).

Now, after employing series definition of the matrix function in the form

f(A) =
∞
∑
k=0

akA
k = ∑

k∈{2n}
akA

k + ∑
k∈{2n+1}

akA
k, (23)

and simplifying the relations, we attain the block X-form matrix (20).

(Case 2: m is odd number) In this case, the dimension of the number
of blocks is assumed to be odd. Therefore, A is given by:

A = blockadiagn(A11, . . . ,Am−1,m−1,Am,m,Am+1,m+1, . . . ,A2m−1,1m−1).

Then, the powers of block anti diagonal A for p ∈ {0,2,4,6, . . .} are expressed by

Ap = blockdiagn((A11A2m−1,2m−1)p, . . . , (Am−1,m−1Am+1,m+1)p, Ap
m,m,

(Am−1,m−1Am+1,m+1)p, . . . , (A11A2m−2,2m−1)p),

and also the powers of block anti diagonal A for p ∈ {1,3,5, . . .} are presented by

Ap = blockadiagn(A11(A11A2m−1,2m−1)p, . . . , Am−1,m−1(Am−1,m−1Am+1,m+1)p Ap
m,m,

Am+1,m+1(Am−1,m−1Am+1,+1)p, . . . , Am,m(A11A2m−1,2m−1)p).

Now, once again employing series definition of matrix function (23), the block X
form matrix (21) can be yielded. This completes the proof. ■

The structure of f(A) in Theorem 2 is characterized in Figure 1 and Figure 2.
We have plotted the f(A) either in even dimension or odd dimension by using
MATLAB software. The blocks are 5 × 5 the matrix 15 = (1)ij .
Example 2.2. Let A,B,C ∈ Cnk×nk and block anti diagonal matrix M is in the

form

M =
⎛
⎜
⎝

A
B

C

⎞
⎟
⎠
∈ Cn×n. (24)

It is known that on of the most fundamental matrix function with potential ap-
plication is matrix exponential. We are interested to obtain an explicit formula for
exp(M). According to the relation (21), we obtain
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Figure 1. Even blocks (m = 6, nk = 5, n = 30)
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Figure 2. Odd blocks (m = 5, nk = 5, n = 25)

eM =
⎛
⎜⎜⎜
⎝

∑∞k=0
(AC)k
(2k)! A∑∞k=0

(CA)k
(2k+1)!

∑∞k=0 Bk

k!

C∑∞k=0
(AC)k
(2k+1)! ∑∞k=0

(CA)k
(2k)!

⎞
⎟⎟⎟
⎠

=
⎛
⎜⎜⎜
⎝

∑∞k=0
(
√
AC)2k
(2k)! A(

√
CA)−1∑∞k=0

(
√
CA)2k+1
(2k+1)!

∑∞k=0 Bk

k!

C(
√
AC)−1∑∞k=0

(
√
AC)2k+1
(2k+1)! ∑∞k=0

(
√
CA)2k
(2k)!

⎞
⎟⎟⎟
⎠
.

Hence, after some algebraic manipulation and employing the relations sinh(A) =
∑∞k=0 A2k+1

(2k+1)! and cosh(A) = ∑∞k=0 A2k

(2k)! , it is brought forward as
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eM =
⎛
⎜
⎝

cosh(
√
AC) A(

√
CA)−1 sinh(

√
CA)

exp(B)
C(
√
AC)−1 sinh(

√
AC) cosh(

√
CA)

⎞
⎟
⎠

(25)

Let A = adiag(α1, . . . , αm) ∈ Cm×m. Then f(A) for the even dimension of A can
be determined by

f(A) =

⎛
⎜⎜⎜⎜⎜
⎝

∑∞k=0 a2k(α1α2m)k
⋱

∑∞k=0 a2k(αmαm+1)k
αm+1∑∞k=0 a2k+1(αmα2m+1)k

. .
.

α2m∑∞k=0 a2k+1(α1α2m)k

α1∑∞k=0 a2k+1(α1α2m)k

. .
.

αm∑∞k=0 a2k+1(αmαm+1)k
∑∞k=0 a2k(αmαm+1)k

⋱ ∑∞k=0 a2k(α1α2m)k

⎞
⎟⎟⎟⎟⎟
⎠

, (26)

and for the odd dimension of A can be obtained by

f(A) =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

∑∞k=0 a2k(α1α2m−1)k
⋱

∑∞k=0 a2k(αm−1αm+1)k

αm+1∑∞k=0 a2k+1(αm−1αm+1)k

. .
.

α2m−1∑∞k=0 a2k(α1α2m−1)k

α1∑∞k=0 a2k+1(α1α2m−1)k

. .
.

αm−1∑∞k=0 a2k+1(αm−1αm+1)k
∑∞k=0 akα

k
m

∑∞k=0 a2k(αm−1αm+1)k
⋱

∑∞k=0 a2k(α1α2m−1)k

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

. (27)

The matrices f(A) in (26) and (27) are central symmetric X-form while the
matrices (20) and (21)are not necessarily symmetric.

Example 2.3. This example made considering the scalar antidiagonal ma-
trix Mn = adiagn(ζ, . . . , ζ) where ζ ∈ R. Then, according to Corollary 2.1, for
n = 2k we obtain

exp(Mn) = (
cosh(ζ)In sinh(ζ)Jn
sinh(ζ)Jn cosh(ζ)In

) , (28)

exp(−Mn) = (
cosh(ζ)In − sinh(ζ)Jn
− sinh(ζ)Jn cosh(ζ)In

) ,
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and for n = 2k − 1 we attain

exp(Mn) =
⎛
⎜
⎝

cosh(ζ)In sinh(ζ)Jn
exp(ζ)

sinh(ξ)Jn cosh(ζ)In

⎞
⎟
⎠
,

exp(−Mn) =
⎛
⎜
⎝

cosh(ζ)In − sinh(ζ)Jn
exp(−ζ)

− sinh(ζ)Jn cosh(ζ)In

⎞
⎟
⎠
.

Consequently, for both cases we obtain that

cosh(M2k) = cos(ζ)I2k, sin(M2k) = sin(ζ)J2k, (29)

cosh(M2k−1) = cosh(ζ)I2k+1, sinh(M2k−1) = sinh(ζ)J2k−1. (30)

3. Applications

This section is devoted to provide some applications for the modified theory.

3.1 Matrix Differential Equation

It is well known that the differential equation has important role in engineering and
alive phenomena. One of the most repetitive equation which is appears in coupled
Spring-Mass systems is second order linear matrix differential equation [1, 3]. Let
us consider second order linear initial value problem in the form

∂2y(t)
∂t2

+Ay(t) = 0, y(0) = y0, y′(0) = y′0, (31)

where A ∈ Cn×n and y(t), y′(t) ∈ Cn. If the change variable z = ∂
∂ty(t) will be

applied, then the following system can be obviously obtained:

∂

∂t
(z
y
) = ( −tA

tI
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M

(z
y
) , (z(0)

y(0)) = (
y′0
y0
) . (32)

As it it is known that the vector initial value problem

∂y(t)
∂t
+Ay(t) = 0, y(0) = y0, (33)

where A ∈ Cn×n and y(t) ∈ Cn has the solution y(t) = eAty0. Hence, according to
modified theory which has been expressed in the text, the solution of (31) will be
yielded via
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etM =
⎛
⎜
⎝

cosh(
√
−At) −At(

√
−At)−1 sinh(

√
−At)

I(
√
−At)−1 sinh(

√
−At) cosh(

√
−At)

⎞
⎟
⎠

= ( cosh(i
√
At) −At(i

√
At)−1 sinh(i

√
At)

(i
√
At)−1 sinh(i

√
At) cosh(i

√
At)

) .

Since sinh(iA) = i sin(A) and cosh(iA) = cos(A), we then have

etM = ( cos(
√
A) A(

√
A)−1 sin(

√
A)

(
√
A)−1 sin(

√
A) cos(

√
A)

) . (34)

Thus, we attain

(z
y
) = ( cos(

√
At) A(

√
A)−1 sin(

√
At)

(
√
At)−1 sin(

√
At) cos(

√
At)

)(y
′
0

y0
) .

Consequently, we obtain the following solution for the equation (31):

y(t) = (
√
At)−1 sin(

√
At)y′0 + cos(

√
At)y0. (35)

It should be noticed that
√
A is any (non principal or principal) square root of A

which is the matrix satisfied in the matrix equation X2−A = 0. The solution (35) is
obtained in many test by using other approaches like inverse laplace transformation.

3.2 Computing Block Exponential Dependent Functions

Another application of modified theory is computing the block form of exponential
dependent functions such as sin(A), cosh(A) and tA. Assume

M = (A B
C D
) , (36)

wherein the blocks are in dimension nk × nk(k = 1,2), and n1 + n2 = n. Now,
according to relation (20), the exponential ofM can be easily computed as following

eM = e

⎛
⎜
⎝

A
D

⎞
⎟
⎠
+
⎛
⎜
⎝

B
C

⎞
⎟
⎠ = e

⎛
⎜
⎝

A
D

⎞
⎟
⎠e

⎛
⎜
⎝

B
C

⎞
⎟
⎠

= (e
A

eD
)( cosh(

√
BC) B(

√
CB)−1 sinh(

√
CB)

C(
√
BC)−1 sinh(

√
BC) cosh(

√
CB)

) .

It is remarked that in last simplification, we must have

(A
D
)( B

C
) = ( B

C
)(A

D
) .
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Hence, we can conclude that

eM = ( eA cosh(
√
BC) eAB(

√
CB)−1 sinh(

√
CB)

eDC(
√
BC)−1 sinh(

√
BC) eD cosh(

√
CB)

) . (37)

Thus, we obtain following explicit relations to the block exponential dependent
functions by combination of modified theory and equations (12), (13), (15), and
(18) as follows:

cos(M) = ( cos(A) cos(
√
BC) sin(A)B(

√
CB)−1 sin(

√
CB)

sin(D)C(
√
BC)−1 sin(

√
BC) cos(D) cos(

√
CB)

) , (38)

sin(M) = ( sin(A) cos(
√
BC) cos(A)B(

√
CB)−1 sin(

√
CB)

cos(D)C(
√
BC)−1 sin(

√
BC) sin(D) cos(

√
CB)

) , (39)

cosh(M) = ( cosh(A) cosh(
√
BC) sinh(A)B(

√
CB)−1 sinh(

√
CB)

sinh(D)C(
√
BC)−1 sinh(

√
BC) cosh(D) cosh(

√
CB)

) ,

(40)

sinh(M) = ( sinh(A) cosh(
√
BC) cosh(A)B(

√
CB)−1 sinh(

√
CB)

cosh(D)C(
√
BC)−1 sinh(

√
BC) sinh(D) cosh(

√
CB)

) ,

(41)

tM = ( tA cosh(
√
BC ln(t)) tAB(

√
CB)−1 sinh(

√
CB ln(t))

tDC(
√
BC)−1 sinh(

√
BC ln(t)) tD cosh(

√
CB ln(t))

) . (42)

It is straightforward that tM is defined by eM ln(t) for t > 0. This function is very
important, particularly in computing matrix Gamma an Beta functions that are
defined as [7]:

Γ(A) = ∫
1

0
e−ttA−Indt, (43)

B(A,B) = ∫
1

0
tA−In(1 − t)B−Indt. (44)

It is emphasized that the Gamma and Beta functions are important in solving
matrix differential equation.

3.3 Control Theory

For the third application of the modified theory, we mention an application in
Control theory. For this purpose, let A,B,C,D,E,F are square n×n matrices, and
furtherX(t) and Y (t) are n×n diagonal matrices. Then the following homogeneous
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coupled matrix differential equations with initial condition X(0) = E and Y (0) = F
is arisen in Control theory [1]:

∂X(t)
∂t

= AX(t)B +CY (t)D,

∂Y (t)
∂t

= CX(t)D +AY (t)B. (45)

This equation by using vector operator and Hadamard product can be rewritten
as:

∂

∂t
(vecX(t)
vecY (t)) = (

(BT ○A)t (DT ○C)t
(DT ○C)t (BT ○A)t)(

vecX(t)
vecY (t)) .

Therefore, if (BT ○A)(DT ○C) = (DT ○C)(BT ○A) then the general solution is

(vecX(t)
vecY (t)) = exp(

(BT ○A)t (DT ○C)t
(DT ○C)t (BT ○A)t)(

vecE
vecF

) .

According to the relations in the text, we obtain the following solution

(vecX(t)
vecY (t)) = (

e(B
T ○A)t sinh(DT ○C)t e(B

T ○A)t cosh(DT ○C)t
e(B

T ○A)t cosh(DT ○C)t e(B
T ○A)t sinh(DT ○C)t

)( vecE
vecF

) .

Consequently, after simplification the explicit will be yielded as following

vecX(t) = e(B
T ○A)t sinh(DT ○C)t.vecE + e(B

T ○A)t cosh(DT ○C)t.vecF,

vecY (t) = e(B
T ○A)t cosh(DT ○C)t.vecE +BT e(B

T ○A)t sinh(DT ○C)t. vecF. (46)

4. Conclusion

In this work, the computation of function of block anti diagonal matrices is
described by employing the series definition. Moreover, several explicit formulas
have been proposed in order to obtain simple way for computing some matrix
functions that have Taylor series. Eventually, applications in initial value prob-
lems, computing exponential dependent function of block matrices, and matrix
differential equations appear in Control theory are given by introducing some
examples.
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