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Abstract. In this paper simple quartic trigonometric polynomial blending functions, with a
tension parameter, are presented. These type of functions are useful for constructing trigono-
metric Bézier curves and surfaces, they can be applied to construct continuous shape preserv-
ing interpolation spline curves with shape parameters. To better visualize objects and graphics
a tension parameter is included. In this work we constructed the Trigonometric Bézier curves
followed by a construction of the shape preserving interpolation spline curves with local shape
parameters and finally several numerical examples are presented such as open shape preserv-
ing interpolation curve, closed shape preserving interpolation curve and surfaces. As a direct
application we computed the area surrounded by a closed curve.
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1. Introduction

In recent years, several new spline curve and surface schemes have been proposed
for geometric modeling in Computer Aided Geometric Design (CAGD). Recently, in
order to overcome the limitations of the Non-Uniform Rational B-Splines (NURBS)
methods in the applications of CAGD, important studies have been done using dif-
ferent trigonometric polynomial to represent diverse curves and surfaces [9, 19]. In
the area of shape-preserving interpolation for planar curve, considerable progress
has been made by several authors (see [11, 18, 20]). Particular attention has been
paid to study shape preserving interpolation which has been a subject of great
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interest in CAGD. Many papers have dealt with alternative techniques for shape
representation (see [9, 17, 18, 20] for a review of these techniques). Basing on Bern-
stein basis, Kui [11] and Kui and Xingming [12] gave a kind of shape preserving
interpolation curves, respectively. Zhu et al. [20] reported recently new quartic
trigonometric polynomial blending functions. Lamnii et al. [15], presented an al-
ogorithm of decomposition and reconstruction corresponding to the 2π-periodic
algebraic trigonometric wavelets and discussed their applications in the area of
approximation of planar closed curves.
Polynomial B-spline curves have been widely used on the grounds of flexibility

and efficiency. In order to improve the shape of a curve and adjust the extent
which a curve approaches its control polygon, some methods of generating curve
were presented by using tension parameters, see [9, 19]. Constructing curves and
surfaces, which preserve the shape implied by the data, has been extensively studied
by several authors [7, 16, 17].
It is important to study the spline curve representations that provide local con-

trol, that is, the capability of modifying one portion of the curve without altering
the remainder. From a practical standpoint, we are interested in constructing the
trigonometric polynomial representations which can manipulate a curve effectually.
The purpose of this paper is to present quartic trigonometric polynomial blending
functions where we include a tension parameter β, the latter is mainly important for
object visualization. These blending functions are useful for constructing trigono-
metric Bézier curves and can be applied to construct continuous shape preserving
interpolation spline curves with shape parameters. Using tensor product, we can
construct Bézier-type surfaces, which have properties similar to polynomial Bézier
surfaces.
The remainder of this paper is organized as follows. In section 2, the quartic

Trigonometric polynomial blending functions are described and the properties of
these functions are shown. In the same section, Trigonometric Bézier curves are
constructed. Trigonometric parametric curve segments are illustrated in section 3.
The Trigonometric polynomial interpolation is discussed in Section 4. In section 5,
several numerical examples are presented in which open and closed Trigonometric
curves as well as area of closed planar curves are described. Conclusion is given in
section 6.

2. Trigonometric Bézier Curves

With the basis defined in [20], we can define the generalized quartic trigonometric
polynomial blending functions with tension parameter β and the corresponding
generalized trigonometric Bézier curves.

2.1 Quartic Trigonometric Polynomial Blending Functions with Tension
parameter β

The quartic trigonometric polynomial blending functions proposed in this section
are quite similar to those introduced by ZHU et al. in [20].

Definition 2.1 Let β be the tension parameter and t ∈ [0, π
2β ]. The general-

ized Quartic trigonometric polynomial blending functions with tension parameter



A. Lamnii et al./ IJM2C, 05 - 02 (2015) 99-109. 101

Bi,β , i = 0, ..., 5 are defined as:

B0,β(t) = (1− sin(βt))4,
B1,β(t) = 4 sin(βt)(1− sin(βt))3,
B2,β(t) = (1− sin(βt))2(1− cos(βt))(9 + 8 sin(βt) + 3 cos(βt)),
B3,β(t) = (1− sin(βt))(1− cos(βt))2(9 + 3 sin(βt) + 8 cos(βt)),
B4,β(t) = 4 cos(βt)(1− cos(βt))3,
B0,β(t) = (1− cos(βt))4.

(1)

Figure 1, plots these basis functions for different values of the tension parameter
β in the interval [0, π

2β ].
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(a) β = 0.5.
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(b) β = π/4.
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(c) β = 1.

Figure 1. The curves of the blending functions basis (for t ∈ [0, π
2β

]).

The blending functions studied in the present work have the following proper-
ties which are analogous to those found for the quintic trigonometric Bézier basis
functions (see [20]):

(1) Nonnegativity : ∀t ∈ [0, π
2β ], Bi,β(t) ⩾ 0, i = 0, ..., 5.

(2) Partition of unity :

5∑
i=0

Bi,β(t) = 1.

(3) Symmetry : Bi,β(t) = B5−i,β(
π
2β − t), for i = 0, 1, 2.

(4) Maximum : Each Bi,β has one maximum value in [0, π
2β ].

2.2 Trigonometric Bézier Curves with Tension Parameter

This section describes the theory and method of using the tension parameter β
to control the form of the interpolating trigonometric Bézier curve Bβ(t). Note
that changing the tension factor β does not affect the form of Bβ(t) and the
interpolation features at the data points.

Let V = {V0, ..., V5} be a set of points Vi ∈ R2 or R3. The Trigonometric Bézier
curves with tension parameter β > 0 associated with the set V is defined by:

Bβ(t) =

5∑
i=0

Bi,β(t)Vi, t ∈ [0,
π

2β
]. (2)

The points Vi, (i = 0, ..., 5) are called quartic trigonometric Bézier control points.

Figure 1 shows the quartic Trigonometric Bézier curves with different tension
parameter values. Keeping the same control polygon, as β varies we are not simply
changing the domain of a single curve, but defining different curves. It can be seen
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that quartic trigonometric Bézier curves are close to the control polygon. Therefore,
quartic trigonometric Bézier curves can nicely preserve the feature of the control
polygon. Control polygons provide an important tool in geometric modeling. The
tension-like effect of this tension factor β is illustrated in Figures 1 and 2 where
the interval changes as a function of β keeping all the properties of the blending
functions verified. It is an advantage if the curve being modeled tends to preserve
the shape of its control polygon.
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Figure 2. The curves of the blending functions basis (for t ∈ [0, π
2β

]).

We find the important geometric properties analogous to those of the Bézier
curves and those described in [20], so that we can write:

(1) Terminal properties: straightforward computation, we have:



Bβ(0) = V0,
B′

β(0) = 4(V1 − V0)β,

B′′
β(0) = 12(V0 − 2V1 + V2)β

2,

Bβ(
π
2β ) = V5,

B′
β(

π
2β ) = 4(V5 − V4)β,

B′′
β(

π
2β ) = 12(V3 − 2V4 + V5)β

2.

(3)

(2) Trigonometric Bézier curves exhibit a symmetry property : V0, ..., V5

and V5, ..., V0 define the same trigonometric Bézier curve, i.e.,
Bβ(t;V0, V1, V2, V3, V4, V5) = Bβ(

π
2β − t, V5, V4, V3, V2, V1).

(3) Geometric invariance: since the blending functions have the properties of par-
tition of unity, the shape of these trigonometric Bézier curves is independent
of the choice of coordinates.

(4) Convex hull property: the blending functions have the properties of nonnega-
tivity and partition of unity, as a consequence, the trigonometric Bézier curve
lies completely in the convex hull of the control polygon spanned by V0, ..., V5.

(5) Variation diminishing property : no straight line intersects a Bézier curve more
times than it intersects its control polygon.

(6) Convexity-preserving property: the variation diminishing property means the
convexity preserving property holds.
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3. Trigonometric Parametric Curve Segments

Given the interpolation points Pi, i = 0, 1, 2, 3 and the trigonometric Bézier control
points Vi, i = 0, ..., 5, allowing for the continuity and the shape preserving property,
the terminal points requirements are given in the following:

Bβ(0) = V0 = P1,
B′

β(0) = 4(V1 − V0)β = α1(P2 − P0),

B′′
β(0) = 12(V0 − 2V1 + V2)β

2 = α1(P0 − 2P1 + P2),

B′′
β(

π
2β ) = 12(V3 − 2V4 + V5)β

2 = α2(P1 − 2P2 + P3),

B′
β(

π
2β ) = 4(V5 − V4)β = α2(P3 − P1),

Bβ(
π
2β ) = V5 = P2,

(4)

where α1, α2 ∈ [0,+∞[ are shape parameters and β > 0 is a tension parameter.
We noted that these terminal points requirements are analogous to those given in
[20].
The curve segment can be generated, using equations (4) and the blending func-

tions, as follows:

Proposition 3.1 Let β be the tension parameter, Vi, i = 0, ..., 5 the control points
and Pi, i = 0, 1, 2, 3 the corresponding interpolation points, then, we have for
t ∈ [0, π

2β ]:

Pβ(t, α1, α2) =

5∑
i=0

Bi,β(t)Vi =

3∑
i=0

TBi,β(t, α1, α2)Pi (5)

where

TB0,β(t, α1, α2) = −α1

4βB1,β(t) +
(

α1

12β2 − α1

2β

)
B2,β(t),

TB1,β(t, α1, α2) = B0,β(t) +B1,β(t) +
(
1− α1

6β2

)
B2,β(t) +

(
α2

12β2 + α2

2β

)
B3,β(t) +

α2

4βB4,β(t)

TB2,β(t, α1, α2) =
α1

4βB1,β(t) +
(

α1

12β2 + α1

2β

)
B2,β(t) +

(
1− α2

6β2

)
B3,β(t) +B4,β(t) +B5,β(t)

TB3,β(t, α1, α2) =
(

α2

12β2 − α2

2β

)
B3,β(t)− α2

4βB4,β(t).

(6)

Proof Let
TB0,β(t, α1, α2) = a00B0,β(t) + a01B1,β(t) + a02B2,β(t) + a03B3,β(t) + a04B4,β(t) + a05B5,β(t),
TB1,β(t, α1, α2) = a10B0,β(t) + a11B1,β(t) + a12B2,β(t) + a13B3,β(t) + a14B4,β(t) + a15B5,β(t),
TB2,β(t, α1, α2) = a20B0,β(t) + a21B1,β(t) + a22B2,β(t) + a23B3,β(t) + a24B4,β(t) + a25B5,β(t),
TB3,β(t, α1, α2) = a30B0,β(t) + a31B1,β(t) + a32B2,β(t) + a33B3,β(t) + a34B4,β(t) + a35B5,β(t).

(7)

From (5) and (7), we have

5∑
i=0

Bi,β(t)Vi = (a00B0,β(t) + a01B1,β(t) + a02B2,β(t) + a03B3,β(t) + a04B4,β(t) + a05B5,β(t))P0

+ (a10B0,β(t) + a11B1,β(t) + a12B2,β(t) + a13B3,β(t) + a14B4,β(t) + a15B5,β(t))P1

+ (a20B0,β(t) + a21B1,β(t) + a22B2,β(t) + a23B3,β(t) + a24B4,β(t) + a25B5,β(t))P2

+ (a30B0,β(t) + a31B1,β(t) + a32B2,β(t) + a33B3,β(t) + a34B4,β(t) + a35B5,β(t))P3.



104 A. Lamnii et al./ IJM2C, 05 - 02 (2015) 99-109.

We then have

B0,β(t)V0 = B0,β(t) (a00P0 + a10P1 + a20P2 + a30P3) ,

B1,β(t)V1 = B1,β(t) (a01P0 + a11P1 + a21P2 + a31P3) ,

B2,β(t)V2 = B2,β(t) (a02P0 + a12P1 + a22P2 + a32P3) ,

B3,β(t)V3 = B3,β(t) (a03P0 + a13P1 + a23P2 + a33P3) ,

B4,β(t)V4 = B4,β(t) (a04P0 + a14P1 + a24P2 + a34P3) ,

B5,β(t)V5 = B5,β(t) (a05P0 + a15P1 + a25P2 + a35P3) .

Furthermore, we have the following

V0 = a00P0 + a10P1 + a20P2 + a30P3,
V1 = a01P0 + a11P1 + a21P2 + a31P3,
V2 = a02P0 + a12P1 + a22P2 + a32P3,
V3 = a03P0 + a13P1 + a23P2 + a33P3,
V4 = a04P0 + a14P1 + a24P2 + a34P3,
V5 = a05P0 + a15P1 + a25P2 + a35P3.

(8)

According to (8) and using (4), we deduce that TBj,β(t, α1, α2), j = 0, 1, 2, 3, can
be written in the form (6). ■

Remark 1

• The TBi,β , i = 0, ..., 3 verify the partition of unity :
3∑

i=0

TBi,β(t, α1, α2) = 1;

• For β = 1, we find exactly the TBi(t, α1, α2) expressions described in [20].

4. Shape Preserving Interpolation Spline Curves

4.1 Trigonometric parametric Spline Curves

Let Pi ∈ Rd (i = 0, ..., n − 1, d = 2, 3) be the interpolation points, U =
(u1, u2, ..., un−1) the knot vector where u1 < u2 < ... < un−1 and shape parameters
αi ∈ [0,+∞[, (i = 0, ..., n− 1).
For i = 1, ..., n− 2, the ith trigonometric parametric curve segment is given as a

function of TBj,β(t, αi, αi+1), j = 0, ..., 3, by the following expression:

Pi,β(t, αi, αi+1) =
3∑

j=0

TBj,β(t, αi, αi+1)Pi+j−1, 0 ⩽ t ⩽ π

2β
. (9)

The corresponding trigonometric parametric spline curve, of the studied basis,
composed by all of the trigonometric parametric curve segments are defined as
follows, for i = 1, ..., n− 1,

Pβ(u) = Pi,β(
π

2β
× u− ui

∆ui
, αi, αi+1), u ∈ [ui, ui+1], (10)

where ∆ui = ui+1 − ui.
As described in [20], Pβ(u) interpolates the interpolation points Pi, i = 0, ..., n−

1. As an example, adding two control interpolation points P−1, Pn+1, two knots
u0, un, and two shape parameters α0, αn are sufficient to construct an open curve
Pβ(u) interpolating all of the points Pi, i = 0, ..., n − 1. Closed Bézier curves are
generated by specifying the first and the last control points at the same position. For
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constructing a closed curve Pβ(u) interpolating all of the points Pi, i = 0, ..., n−1,
we have to add three interpolation points P−1 = Pn, Pn+1 = P0, Pn+2 = P1 three
knots u0, un, un+1, and three shape parameters α0, αn, αn+1.

4.2 Trigonometric Parametric Spline Surfaces

A surface may be defined by the tensor product of two curves so that the proper-
ties of the blending functions are not modified. Tensor product B-spline surfaces
whereas a curve requires one tension parameter for its definition, a surface requires
two tension parameters β > 0 and λ > 0. Similarly to the work done by Liu et al.
(see [17]), we define trigonometric parametric spline surfaces as a tensor product.
More precisely we have the following definition.

Definition 4.1 Given m × n interpolation points Pkl (k = 0, 1, ...,m − 1; l =
0, 1, ..., n− 1), two knot vectors U = [u1, u2, ..., um−1] and V = [v1, v2, ..., vn−1] and
two shape parameters vectors α = [α1, α2, ..., αm−1] and µ = [µ1, µ2, ..., µn−1] . For
tension parameters β > 0 and λ > 0, the trigonometric parametric spline surface
patch has the form :

Sβ,λ
i,j (u, v, αi, αi+1, µj , µj+1) =

3∑
k=0

3∑
l=0

TBk,β(u, αi, αi+1)TBl,λ(v, µj , µj+1)Pi+k−1,j+l−1, (11)

where u ∈ [0, π
2β ], v ∈ [0, π

2λ ], i = 0, ...,m− 2 and j = 0, ..., n− 2.

Then the trigonometric parametric spline surface is given by,

Sβ,λ(u, v) = Sβ,λ
i,j (

π

2β
× u− ui

∆ui
,
π

2λ
× v − vj

∆vj
, αi, αi+1, µj , µj+1), u ∈ [ui, ui+1], v ∈ [vj , vj+1].(12)

5. Numerical Examples and Application

In order to justify the accuracy and efficiency of our presented trigonometric func-
tions we consider some graphical examples.

5.1 Trigonometric Interpolation Spline Curves and Surfaces

Taking into account the wide range of applications of B-spline functions, it seems
that the properties of B-spline functions mentioned above can be useful in solving
some problems related to approximation theory, numerical analysis or computer
graphics, for example representation of splines. To compare our computed results
and justify the accuracy and efficiency of our presented trigonometric functions we
consider the following examples. Figures 3 and 4 show open trigonometric polyno-
mial planar curves generated by using the shape preserving trigonometric interpo-
lation spline curves given in this paper. The plots of the given examples, for the
same control polygon, are obtained for different values of β and α. It can be seen
that the space curve preserve nice feature for the space interpolation points. Fig-
ures 5, 6 and 7 show closed trigonometric polynomial curves generated by using the
shape preserving trigonometric interpolation spline curves, obtained for different
values of β and α. The open and closed planar curves were generated by projecting
the space curve Pβ(u) into the plane. Figure 8 shows the graph control polygon
and the trigonometric parametric interpolation spline surface for different values
of the tension parameters β and λ.
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Note that, for each illustration example we took the following : ui = i× h with
h = π

2β(n−3) , αi = α and µi = µ, ∀ i. The values of α, β, λ and µ are given in the

figure captions.

(a) Control polygon. (b) β = 0.5, α = 8 × 10−4. (c) β = 3π, α = 8 × 10−4. (d) β = 2, α = 10−2.

Figure 3. Open planar curves.

(a) Control polygon. (b) β = 4, α = 2 × 10−2. (c) β = 15, α = 2 × 10−2. (d) β = 7, α = 2 × 10−2.

Figure 4. Open planar curves.

(a) Control polygon. (b) β = 0.8, α = 1.25 × 10−2. (c) β = 1.5, α = 1.25 × 10−2. (d) β = 7, α = 1.25 × 10−2.

Figure 5. Closed planar curves.

(a) Control polygon. (b) β = 0.8, α = 10−2. (c) β = 1.5, α = 10−2. (d) β = π, α = 10−2.

Figure 6. Closed planar curves.
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(a) Control polygon. (b) β = 0.8, α = 1.25 × 10−2. (c) β = 15, α = 1.25 × 10−2. (d) β = 7, α = 1.25 × 10−2.

Figure 7. Closed planar curves.

(a) Control polygon. (b) β = 0.1, α = 0.1. (c) β = 0.5, α = 0.1.

Figure 8. Trigonometric parametric spline surface with different values of tension parameters.

5.2 Area of Closed Planar Curves

In this subsection, we are interested to compute the area of closed planar curves by

using Green’s theorem. Let Pβ(u) =
n+2∑
i=−1

φi,β(u)Pi be a closed planar trigonometric

curve, with n+ 4 interpolation points Pi = (XPi
, YPi

).
The trigonometric polynomial blending functions φi,β are given by :

for i = 2, ..., n− 1,

φi,β(u) = TB0,β(
π

2β
×

u − ui

∆u
, αi, αi+1)1[ui,ui+1] + TB1,β(

π

2β
×

u − ui−1

∆u
, αi−1, αi)1[ui−1,ui]

+

TB2,β(
π

2β
×

u − ui−2

∆u
, αi−2, αi−1)1[ui−2,ui−1] + TB3,β(

π

2β
×

u − ui−3

∆u
, αi−3, αi−2)1[ui−3,ui−2],

with the left hand side boundary trigonometric polynomial blending functions are

φ−1,β(u) = TB0,β(
π

2β
×

u − u0

∆u
, α0, α1)1[u0,u1],

φ0,β(u) = TB0,β(
π

2β
×

u − u1

∆u
, α1, α2)1[u1,u2] + TB1,β(

π

2β
×

u − u0

∆u
, α0, α1)1[u0,u1],

φ1,β(u) = TB0,β(
π

2β
×

u − u1

∆u
, α2, α3)1[u2,u3] + TB1,β(

π

2β
×

u − u1

∆u
, α1, α2)1[u1,u2] + TB2,β(

π

2β
×

u − u0

∆u
, α0, α1)1[u0,u1],

and the right hand side ones are given by

φn,β(u) = TB1,β(
π

2β
×

u − un

∆u
, αn, αn+1)1[un,un+1] + TB2,β(

π

2β
×

u − un−1

∆u
, αn−1, αn)1[un−1,un] +

TB3,β(
π

2β
×

u − un−2

∆u
, αn−2, αn−1)1[un−2,un−1],

φn+1,β(u) = TB2,β(
π

2β
×

u − un

∆u
, αn, αn+1)1[un,un+1] + TB3,β(

π

2β
×

u − un−1

∆u
, αn−1, αn)1[un−1,un],

φn+2,β(u) = TB3,β(
π

2β
×

u − un

∆u
, αn, αn+1)1[un,un+1],
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From Green’s theorem (see [4, 5]), the enclosed area can be written as the bilinear
form of,

Aβ =
1

2

∮ ∣∣Pβ(u)P
′
β(u)− P ′

β(u)Pβ(u)
∣∣ du, (13)

where
∣∣∣Pβ(u)P

′
β(u)− P ′

β(u)Pβ(u)
∣∣∣ denotes the cross product’s determinant.

Let us denote by

M = (Mi,j)−1⩽i,j⩽n+2 = (
∮ ∣∣∣φi,β(u)φ

′
j,β(u)− φ′

i,β(u)φj,β(u)
∣∣∣ du)−1⩽i,j⩽n+2,

X = (XP−1
, ..., XPn+2

)T and Y = (YP−1
, ..., YPn+2

)T .
According to the above notations, Eq. (13) is equivalent to

2Aβ = XTM Y. (14)

The matrix M has the following form:

M =



0 I1 I2 I3 0 . . . 0
−I1 0 I6 I4 I3 0 . . . 0
−I2 −I6 0 I5 I4 I3 0 . . . 0
−I3 −I4 −I5 0 I5 I4 I3 0 . . . 0
0 −I3 −I4 −I5 0 I5 I4 I3 0 . . . 0

. . .
. . .

. . .
. . .

. . .
. . .

0 . . . 0 I3 I4 I5 0 I5 I4 I3 0
0 . . . 0 −I3 −I4 −I5 0 I5 I4 I3
0 . . . 0 −I3 −I4 −I5 0 I6 I2
0 . . . 0 −I3 −I4 −I6 0 I1
0 . . . 0 −I3 −I2 −I1 0



where:
I1 =

∮
(φ−1,β(u)φ

′
0,β(u)− φ′

−1,β(u)φ0,β(u))du;

I2 =
∮
(φ−1,β(u)φ

′
1,β(u)− φ′

−1,β(u)φ1,β(u))du;

I3 =
∮
(φ−1,β(u)φ

′
2,β(u)− φ′

−1,β(u)φ2,β(u))du;

I4 =
∮
(φ0,β(u)φ

′
2,β(u)− φ′

0,β(u)φ2,β(u))du;

I5 =
∮
(φ1,β(u)φ

′
2,β(u)− φ′

1,β(u)φ2,β(u))du;

I6 =
∮
(φ0,β(u)φ

′
1,β(u)− φ′

0,β(u)φ1,β(u))du.

6. Conclusion

The trigonometric polynomial blending functions constructed in this paper have
the properties analogous to those of the quintic Bernstein basis functions and the
trigonometric Bézier curves are also analogous to the quintic Bézier ones. In this
basis we included the tension parameter which is mainly important for object
visualization. The trigonometric Bézier curves are close to the control polygon.
Therefore, these trigonometric Bézier curves can preserve the shape of the control
polygon. For any shape parameters satisfying the shape preserving conditions, the
obtained shape preserving trigonometric interpolation spline curves are all con-
tinuous. There is no need to solve a linear system and the changes of a local
shape parameter will only affect two curve segments. Numerical examples indicate
that our method can be applied to generate nice features preserving space curves



A. Lamnii et al./ IJM2C, 05 - 02 (2015) 99-109. 109

and surfaces. Generalizing the idea to quasi-interpolation with trigonometric spline
curve and tensor product surfaces will be reported in a future paper.
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model, Computer Aided Geometric Design, 18 (1) (2001) 37–60.

[19] W. Wentao and W. Guozhao, Trigonometric polynomial uniform B-spline with shape parameter,
Chinese Journal of Computers, 7 (2005) 1192–1198.

[20] Y. Zhu, X. Han and J. Han, Quartic Trigonometric Bézier Curves and Shape Preserving Interpola-
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