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Abstract. In this paper, a production inventory model is developed for the business enter-
prise which consists of three wings. The first wing is for manufacturing new items, the second
wing is for collecting the returned items, while third wing is for remanufacturing the returned
item. In this model we consider the fact that the storage item is deteriorated during storage
periods and salvage value is incorporated to the deteriorated items. The demand, deteriora-
tion, production, remanufacturing and return rates are time dependent. The shortages are
allowed and fully backlogged. The model is solved analytically by minimizing the total inven-
tory cost. The model can be applied for optimizing the total inventory cost of deteriorating
items inventory under reverse logistic for a business enterprise where demand and deteriora-
tion both is function of time.

Keywords: Inventory, Deteriorating items, Shortages, Time dependent Deterioration,
Salvage value, Weibull distribution, Time varying holding cost.
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1. Introduction

Inventory of items is a very important part of the logistic system common to
all economic sectors such as agriculture, industry, trade and business. Generally
inventory is a balance between demand and supply. One of the most unrealistic
assumptions in traditional inventory model was that items preserved their physical
characteristics while they were kept stored in inventory. However, the deteriorating
items are subject to a continuous loss in their masses or utility throughout their life
time due to decay, damage, dryness, spoilage and penalty of other reasons. Owing
to this fact controlling and maintaining inventory of deteriorating items becomes
a challenging problem for decision makers.
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Maintenance of inventories of deteriorating items under reverse logistic is a prob-
lem of major concern in the supply chain of almost any business organization.
Collection of used products, as paper, bottle, and battery, is a known idea in

modern economies. Reuse, remanufacturing and recycling of cars and electronic
appliances, and disposal of hazardous waste are very recent research field. The listed
activities include a very broad area, and it seems to have different management
problems. Reverse logistics is an extension of logistics, which deals with handling
and reuse of reusable used products withdrawn from production and consumption
process. Such a reuse is e.g. recycling or repair of spare parts. An environmental
conscious materials management and/or logistics can be achieved with reuse. It
has an advantage from economic point of view, as reduction of environmental load
through return of used items in the manufacturing process, but the exploitation of
natural resources can be decreased with this reuse that saves the resources from
extreme consumption for the future generation.
The first reverse logistic (repair/reuse/recycling) model was first investigated by

Schrady (1967) in an EOQ context. The paper has examined the cost savings of
repair of high cost items at the U.S. navy aviation supply office in opposite to
procurement. The condition of the basic model is that there are only procurement
and several repair batches. Richter, K. (1996) gave the EOQ repair and waste
disposal model with variable setup numbers. In this model the author extended to
the case of variable setup numbers n and m for production and repair within some
collection time interval.
Teunter, R. H. (2001) developed an economic ordering quantities model for re-

manufacturable items inventory systems. Balkhi, Z. T. (2001) gave an optimal
solution on a finite horizon production lot size inventory model for deteriorating
items. Brito and Dekker (2002) have given a smooth to the theory of reverse logis-
tics totally, from such three aspects as why people needs reverse logistics, for what
products the reverse logistics should be used, and how to carry out reverse logistics.
Dobos, I., and Richter, K. (2003, 2004) described a production/recycling model
with stationary demand and return rates and an extended production/recycling
model with stationary demand and return rates. Tang, O., and Grubbstron, R .W.
(2005) Considering stochastic lead times in a manufacturing/remanufacturing sys-
tem with deterministic demands and returns . Grubbstrm, R. W., and Tang, O.
(2006) explain an optimal production opportunities in a remanufacturing system .
Jaber, M. Y., Nuwayhid, R. Y., and Rosen, M. A .( 2006) gave a thermodynamic
approach to modelling the economic order quantity in which they consider some
hidden costs that not accounted for when modelling inventory systems.
Konstantaras, I., and Papachristos, S. (2006) gave an inventory model of lot-

sizing for a singleproduct recovery system with backordering. In this article, a
single-product recovery system is studied. Used products are collected from cus-
tomers and kept at the recoverable inventory warehouse for future recovery. King,
A. M., Burgess, S. C., Ijomah, W., and McMahon, C. A. (2006) describes and com-
pares the four alternative strategies to reducing end-of-life waste within the context
of extended producer responsibility: namely repairing, reconditioning, remanufac-
turing or recycling. It also introduces a more robust definition of remanufacturing,
validated by earlier research, which differentiates it from repair and reconditioning.
Jaber, M. Y., and Rosen, M. A. (2008) developed an economic order quantity

repair and waste disposal model with entropy cost. In this model they suggest that
improvements to production systems may be achievable by applying the first and
second laws of thermodynamics to reduce system entropy (or disorder). El Saadany,
A. M. A., and Jaber, M. Y. (2008) developed an EOQ repair and waste disposal
model with switching costs. Jaber, M. Y., and El Saadany, A. M. A. (2009) gave
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the production, remanufacture and waste disposal model with lost sales. In this
model they considered that the demand for manufactured items is different from
that for remanufactured (repaired) ones. Omar, M., and Yeo, I. (2009) describe
a model for a production repair system under a time varying demand process.
In this study, they consider a production system that satisfies a continuous time-
varying demand for a finished product over a known and finite planning horizon
by supplying either new products or repaired used products. Liu, N., Kim, Y.,
and Hwang, H. (2009) gave an optimal operating policy for the production system
with rework. In this paper they studied a production inventory system with rework
where a stationary demand is satisfied either by production setup with new raw
materials or by rework setup with defective items coming from production process.
Behret, H., and Korugan, A. (2009) gave performance analysis of a hybrid system
under quality impact of returns. In this paper they analyze a hybrid system that
meets the demand with remanufactured or new products.
Konstantaras, I., and Skouri, K. (2010) studied about lot sizing for a single

product recovery system with variable setup numbers. In this paper a production-
remanufacturing inventory system is considered, where the demand can be satisfied
by production and remanufacturing. Ahmed, M. A., Saadany, E., and Jaber, M. Y.
(2010) gave a production/remanufacturing inventory model with price and quality
dependant return rate. Adel A. Alamri (2011) developed theory and methodology
on the global optimal solution to a general reverse logistics inventory model for
deteriorating items. In this model he presents a unified general inventory model for
integrated production of new items and remanufacturing of returned items for an
infinite planning horizon.
The motivations for this work came from some reality issues. As we know short-

ages may occur during any manufacturing and remanufacturing life cycle of the
product and a product life cycle, the demand rate at growth and/or ending stage
of the product life cycle can be well approximated by a linear demand function,
the assumptions that all returned items that are collected in the returned stock
facility can be remanufactured, and that newly produced and/or remanufactured
items are perfect are nearly unattainable. In fact, the variation of demand and/or
product deterioration with time is a quite natural phenomenon. For instance, sea-
sonal variations (e.g., summer, winter), occasions (e.g., new years, festivals) may
cause an increase or a decrease in the demand of a certain commodity. Also, the
increase of time storage as well as the changes in the environments of storage may
also result in an increase or a decrease in the deterioration rate of certain items.
Therefore, it is necessary to consider the variation of production, remanufacturing,
demand, return, and product deterioration with time and also need to consider the
fact that the shortages is to be occurred during production and remanufacturing
time period, which may enhance this line of research. In this paper, we made the
paper of A. A. Alamri (2011) more realistic by considering the fact that the short-
ages may occur during manufacturing and remanufacturing cycle and salvage value
incorporate to the deteriorated items. The aim of this model is to find an optimal
order quantity which minimizes the total inventory cost.

2. Assumptions and Notations

The mathematical model is based on the following assumptions and notations.
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2.1 Assumption

Demand, deterioration, production, remanufacturing and return rates are
time dependent and arbitrary function of time.
Shortages are allowed and completely backlogged.
The salvage value is associated to deteriorated units during the cycle time.
The deteriorated units cannot be repaired or replaced during the period
under review.

2.2 Notations

Qm(t), Qr(t), QR(t) are inventory level at time t in the manufacturing
stock, remanufacturing stock and returned stock respectively.
D(t), θ(t), Pm(t), Pr(t), PR(t), β(t) are demand, deterioration, production,
remanufacturing return and backlogging rates respectively.
Km , Kr, are set up cost per cycle of production and remanufacturing stock
respectively.
KR is ordering cost per cycle of return stock.
hm, hr, hR are holding cost per unit per unit time of manufacturing stock,
remanufacturing stock and returned stock respectively.
sm , sr are per unit manufacturing and remanufacturing cost, which in-
cludes the cost components like labor, energy and machinery.
Cm is the per unit material cost.
γm, γr are shortages cost during manufacturing and remanufacturing cycle.
cR is the per unit purchase cost of returned item.
Qb,p, Qb, r are backordered inventory during production and remanufactur-
ing life cycle.

3. Mathematical Formulation

If Q(t) is the inventory level at any instant of time t then the states of inventory
level without shortages and with shortages are governed by the following differential
equations and changes in the inventory level is depicted in Figure 1.

dQm(t)

dt
+ θm(t)Qm(t) = Pm(t)−D(t) (T0 ⩽ t < T1), Qm(T0) = 0 (1)

dQm(t)

dt
+ θm(t)Qm(t) = −D(t) (T1 ⩽ t ⩽ T2), Qm(T1) = 0 (2)

dQm(t)

dt
= −D(t)β(T3 − t) (T2 ⩽ t ⩽ T3), Qm(T2) = 0 (3)

dQr(t)

dt
+ θr(t)Qr(t) = Pr(t)−D(t) (T3 ⩽ t ⩽ T4), Qr(T3) = 0 (4)

dQr(t)

dt
+ θr(t)Qr(t) = −D(t) (T4 ⩽ t ⩽ T5), Qr(T5) = 0 (5)

dQr(t)

dt
−D(t)β(T6 − t) (T5 ⩽ t ⩽ T6), Qr(T5) = 0 (6)
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dQR(t)

dt
+ θR(t)QR(t) = R(t) (T0 ⩽ t ⩽ T4), QR(T4) = 0 (7)

dQR(t)

dt
+ θR(t)QR(t) = −Pr(t) +R(t) (T4 ⩽ t ⩽ T6), QR(T4) = 0 (8)

The realization of the inventory level for this inventory model is depicted in Figure 1

Figure 1. Inventory level for the model.

The solutions of the above differential equations are:
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Qm(t) = e−gm(t)

t∫
T0

[Pm(u)−D(u)]egm(u)du (T0 ⩽ t < T1) (9)

Qm(t) = e−gm(t)

T2∫
t

D(u)egm(u)du (T1 ⩽ t ⩽ T2) (10)

Qm(t) =

t∫
T2

−D(u)β(T3 − u)du (T2 ⩽ t ⩽ T3) (11)

Qr(t) = e−gr(t)

t∫
T3

[Pr(u)−D(u)]egr(u)du (T3 ⩽ t ⩽ T4) (12)

Qr(t) = e−gr(t)

T5∫
t

D(u)egr(u)du (T4 ⩽ t ⩽ T5) (13)

Qr(t) =

t∫
T5

−D(u)β(T6 − u)du (T5 ⩽ t ⩽ T6) (14)

QR(t) = e−gR(t)

t∫
T0

R(u)egR(u)du (T0 ⩽ t < T4) (15)

QR(t) = e−gR(t)

T6∫
t

[Pr(u)−R(u)]egR(u)du (T4 ⩽ t ⩽ T6) (16)

where gx(t) =

∫
θx(t)dt. (17)

The cumulative inventory in the respective class interval is as follows:
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Qm(T0, T1) =

T1∫
T0

e−gm(t)(

t∫
T0

[Pm(u)−D(u)]egm(u)du)dt (18)

Qm(T1, T2) =

T2∫
T1

e−gm(t)(

T2∫
t

D(u)egm(u)du)dt (19)

Qm(T2, T3) =

T3∫
T2

(

t∫
T2

−D(u)β(T3 − u)du)dt (20)

Qr(T3, T4) =

T4∫
T3

e−gr(t)(

t∫
T3

[Pr(u)−D(u)]egr(u)du)dt (21)

Qr(T4, T5) =

T5∫
T4

e−gr(t)(

T5∫
t

D(u)egr(u)du)dt (22)

Qr(T5, T6) =

T6∫
T5

t∫
T5

−D(u)β(T6 − u)dudt (23)

QR(T0, T4) =

T4∫
T0

e−gR(t)(

t∫
T0

R(u)egR(u)du)dt (24)

QR(T4, T6) =

T6∫
T4

e−gR(t)(

T6∫
t

[Pr(u)−R(u)egR(u)]du)dt (25)

Now using integration by parts, Eqsuations (18)-(25) reduce to
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Qm(T0, T1) =

T1∫
T0

[Gm(T1)−Gm(u)][Pm(u)−D(u)egm(u)]du (26)

Qm(T1, T2) =

T2∫
T1

[Gm(u)−Gm(T1)][D(u)egm(u)]du (27)

Qm(T2, T3) =

T3∫
T2

[T3 − u][−D(u)β(T3 − u)]du (28)

Qr(T3, T4) =

T4∫
T3

[Gr(T4)−Gr(u)][Pr(u)−D(u)egr(u)]du (29)

Qr(T4, T5) =

T5∫
T4

[Gr(u)−Gr(T1)][D(u)egr(u)]du (30)

Qr(T5, T6) =

T6∫
T5

[T6 − u][−D(u)β(T6 − u)]du (31)

QR(T0, T4) =

T4∫
T0

[GR(T4)−GR(u)][R(u)egR(u)]du (32)

QR(T4, T6) =

T6∫
T4

[GR(u)−GR(T4)][Pr(u)−R(u)egR(u)]du (33)

where Gx(t) =

∫
e−gx(t)dt. (34)

4. Analytical Solution of the Model

The total cost is the sum of item cost, production cost, deterioration cost, holding
cost, shortages cost, remanufacturing cost and salvage values and is given by TC=
Holding cost + Production cost + Remanufacturing cost + Shortages cost + Item
cost (Salvage value and deterioration cost included in the item cost) + Set up cost.
where
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Holding cost = hm(Qm(T0, T1) +Qm(T1, T2)) + hr(Qr(T3, T4)

+Qr(T4, T5)) + hR(QR(T0, T4) +QR(T4, T6))

Production cost = sm

T1∫
T0

P −m(u)du

Remanufacturing cost = sr

T4∫
T3

Pr(u)du

Shortages cost = −γmQm(T2, T3)− γrQr(T5, T6)

Item cost = cm

T1∫
T0

Pm(u)du+ cR

T6∫
T0

R(u)du

Set up cost = Kr +Km +KR

Now if we set T0 = 0, then the total cost per unit of time of this inventory
system during the cycle [0, T6], as a function of T1, T2, T3, T4, T5, and T6 say
TC(T1, T2, T3, T4, T5, T6) is given by

TC(T1, T2, T3, T4, T5, T6) =
1

T6
(35)

Kr +Km +KR + hm(
∫ T1

0 [Gm(T1)−Gm(u)][Pm(u)−D(u)egm(u)]du+
∫ T2

T1

[Gm(u)−Gm(T1)][D(u)egm(u)]du) + hr(
∫ T4

T3
[Gr(T4)−Gr(u)]

[Pr(u)−D(u)egr(u)]du+
∫ T5

T4
[Gr(u)−Gr(T4)][D(u)egr(u)]du)

+hR(
∫ T4

0 [GR(T4)−GR(u)][R(u)egR(u)]du

+
∫ T6

T4
[GR(u)−GR(T4)][Pr(u)−R(u)egR(u)]du) + (Sm + Cm)

∫ T1

0 Pm(u)du

+Sr

∫ T4

T3
Pr(u)du+ CR

∫ T6

0 R(u)du

−γm
∫ T3

T2
[T3 − u][−D(u)β(T3 − u)]du− γr

∫ T6

T5
[T6 − u][−D(u)β(T6 − u)]du


Where gx(u) and Gx(u) are given by the equation (17) and (34) respectively.
Our objective is to find the value of T1, T2, T3, T4, T5, and T6 that Minimize
TC(T1, T2, T3, T4, T5, T6) given by equation (35). Subject to the following con-
straints

0 = T0 < T1 < T2 < T3 < T4 < T5 < T6 (36)

Qm(T0, T1) = Qm(T1, T2) at t = T1 (37)

Qr(T3, T4) = Qr(T4, T5) at t = T4 (38)

(QR(T0, T4) at t = 0) = (QR(T4, T6) at t = T6) (39)

Thus our goal is to solve the above optimization problem which is restated as
follows, which we shall call problem p1
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P1 =

[
Minimize TC(T1, T2, T3, T4, T5, T6)
subject to (36), q1 = 0, q2 = 0, q3 = 0

]
(40)

where

q1 =

T1∫
0

[Pm(u)−D(u)]egm(u)du−
T2∫
t

D(u)egm(u)du (41)

q2 =

T4∫
T3

[Pr(u)−D(u)]egr(u)du−
T5∫

T4

D(u)egr(u)du (42)

q3 = e−gR(u)

T4∫
T0

R(u)egR(u)du− e−gR(T6)

T6∫
T4

[Pr(u)−R(u)]egR(u)du (43)

If we ignore the monotony constraint of p1 and state the resulting problem as p2,
then as a result from Kuhn-Tucker necessary condition relation (36) do satisfy a
solution of p2. Hence we conclude that the problem p1 and p2 are equivalent.
Suppose the total returned quantity of used item in the interval [0, T6] is

Q =

T6∫
0

R(u)du (44)

Also suppose that, q be the sum of amount produced and remanufactured in the
interval [0, T6] .i.e.

q = qm + qr

where

qm =

T1∫
0

Pm(u)du (45)

qr =

T4∫
T3

Pr(u)du (46)

From equation (44) we note that the T6 can be expressed as function of Q i.e.

T6 = f6(Q) (47)

From (47) and (39), T4 can also be as function of Q. i.e.

T4 = f4(Q) (48)
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Similarly with the help of (36) to (37) and (47) to (48), we obtain T1, T2, T3, and
T5 in term of Q. i.e.

T1 = f1(Q) (49)

T2 = f2(Q) (50)

T3 = f3(Q) (51)

T5 = f5(Q) (52)

Thus, if we substitute the value of T1, T2, T3, T4, T5, and T6 in problem p1 then
problem p1 will be converted into the following unconstrained problem with the
variable Q.

W (Q) =
1

f6



Kr +Km +KR + hm(
∫ f1
0 [−Gm(u)][Pm(u)−D(u)egm(u)]du+

∫ f2
f1

[Gm(u)][D(u)egm(u)]du) + hr(
∫ f4
f3
[−Gr(u)]

[Pr(u)−D(u)egr(u)]du+
∫ f5
f4
[Gr(u)][D(u)egr(u)]du)

+hR(
∫ f4
0 [−GR(u)][R(u)egR(u)]du

+
∫ f6
f4
[GR(u)][Pr(u)−R(u)egR(u)]du) + (Sm + Cm)

∫ f1
0 Pm(u)du

+Sr

∫ f4
f3

Pr(u)du+ CR

∫ f6
0 R(u)du

−γm
∫ f3
f2
[f3 − u][−D(u)β(f3 − u)]du− γr

∫ f6
f5
[f6 − u][−D(u)β(f6 − u)]du


(53)

We will call the above problem as problem (p3). Now necessary condition for having
a minimum for problem (p3) is

dW

dQ
= 0 (54)

To find the solution of (54), suppose W = wQ

f6
then

dW

dQ
=

wQf6 − f6wQ

f2
6

(55)

from (54)

wQ =
wQf6
f6,Q

; where wQis obtained from(53) (56)

and

W =
w

f6
=

wQ

f6
(57)

Now from equation (56) , we find the optimal value of Q after that we can obtain
the optimal values of T1, T2, T3, T4, T5, and T6 from (47)-(52) and minimum total
cost can be determined from (57).
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5. Conclusion

In this paper a Production inventory model for deteriorating items with shortages
and salvage value under reverse logistics is presented and give analytical solution
of the model that minimize the total inventory cost. The model is very practical for
the industries where the manufacturing as well as remanufacturing unit is working
for new and returned items separately. The proposed model can further be extended
by considering multiple production and remanufacturing batches.
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