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Abstract.Data Envelopment Analysis (DEA) cannot provide adequate discrimination among
efficient decision making units (DMUs). To discriminate these efficient DMUs is an interesting
research subject. The purpose of this paper is to develop the mix integer linear model which
was proposed by Foroughi (Foroughi A.A. A new mixed integer linear model for selecting the
best decision making units in data envelopment analysis. Computers & Industrial Engineering
60 (2011) 550-554) to present new alternative mix integer programming DEA (MIP-DEA)
models which can be used to improve discrimination power of DEA and select the most BCC-
efficient decision making unit (DMU). We will demonstrate that proposed model is able to
select DMU throughout the real data sets.
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1. Introduction

Data Envelopment Analysis (DEA), as developed by Charnes et al. [5] measures
the relative efficiencies among the decision making units (DMUs) with multiple-
input and multiple output as a linear programming formulation. The procedure
does not require a priori weights on inputs and outputs. On the other hand, as
DEA applications increase, several variants of the original DEA model called the
CCR model, which assumes a constant returns-to-scale, have also been proposed.
CCR model are extended to BCC model by Banker et al. [4], which admits the
Variable Returns to Scale (VRS) and distinguishes between technical and scale
inefficiencies.
A range of DEA models have been developed that measure efficiency and capac-

ity in different ways. These largely fall into the categories of being either input-
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oriented or output-oriented models. With input-oriented DEA, the linear program-
ming model is configured so as to determine how much the input use of a DMU
could contract if used efficiently in order to achieve the same output level. For the
measurement of capacity, the only variables used in the analysis are the fixed fac-
tors of production. As these cannot be reduced, the input-oriented DEA approach
is less relevant in the estimation of capacity utilization. Modifications to the tra-
ditional input-oriented DEA model, however, could be done such that it would be
possible to determine the reduction in the levels of the variable inputs conditional
on fixed outputs and a desired output level.
In contrast, with output-oriented DEA, the linear programming is configured to

determine a DMU’s potential output given its inputs if it operated efficiently as
DMUs along the best practice frontier. Output-oriented models are “...very much in
the spirit of neo-classical production functions defined as the maximum achievable
output given input quantities” (Fre et al. [7], p. 95).
Whilst DEA has generated a good deal of attention it does have revealed some

drawbacks. One of drawbacks is that it produces plural decision making units
(DMUs) having the full efficient status denoted by unity (or 100%). To discriminate
between these efficient DMUs is an interesting research subject. Tone [14] calls this
problem the “super-efficiency problem”. This problem becomes more serious if the
number of inputs or outputs is increased. This lack of discrimination is because
specialized DMUs may have the efficient status due to a single input or output, even
though that input or output may be seen as relatively unimportant. Previously,
various efforts have been devoted to develop methods without a priori information
to improve discrimination in DEA. Sexton et al. [12] first introduce the concept
of cross-efficiency in DEA by using peer evaluation instead of a self-evaluation.
Andersen and Petersen [3] present the procedure referred to Super Efficiency-CCR
(SE-CCR) model for ranking efficient units. Their basic idea is to compare the
unit under evaluation with all other units in the sample, i.e., the DMU itself is
excluded. Doyle and Green [6] further extend the work by Sexton et al. [12] by
introducing aggressive and benevolent cross-efficiency referred to Cross-Efficiency
Model (CEM). Tofallis [15] addresses the discrimination problem by presenting the
profiling method. He uses the original DEA but taking one input at a time and
only with related outputs. Seiford and Zhu [11] develop a supper-efficiency DEA
model referred to SE-BCC model. Li and Reeves [9] propose a multiple criteria
approach to DEA referred to MCDEA. Recently, Tone [14] proposes the super-
efficiency model (referred to SE-SBM model) using the slacks-based measure of
efficiency. However, all of these research works in DEA literature must be run n
times, once for each unit, to get the relative efficiency of all DMUs.
DEA provides weights that are DMU-specific, and therefore it allows for indi-

vidual circumstances of operation of the DMUs. Aside from the factors affecting
performance considered in the efficiency analysis, there are often considerable vari-
ations in goals, policies, etc., among DMUs, which may justify the different weights
for the same factor. The variation in weights in DEA maybe thus justified by the
different circumstances under which the DMUs operate, and which are not captured
by the chosen set of inputs and outputs factors (see Roll et al. [10] for discussions).
There are, however, situations in which the different DMUs experience similar

circumstances and, therefore, using input and output weights that differ substan-
tially across DMUs may not be warranted. When that is the case, both the inputs
and the outputs should be aggregated by using weights that are common to all the
DMUs. Common set of weights (CSW, as first denoted in Roll et al. [10]) is the
usual approach in engineering and in most economic efficiency analyses. It has the
appeal of a fair and impartial evaluation in the sense that each variable is attached
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the same weight in the assessments of all the DMUs. Nevertheless, the choice itself
of such weights often raises serious difficulties, and in many cases there is no uni-
versally agreed-upon the weights to be used as pointed out in Doyle and Green [6].
It should also be noted that, unlike DEA, CSW allows us to rank the DMUs. The
fact that DEA uses different profiles of weights in the assessments of the different
DMUs makes impossible to derive an ordering of the units based on the resulting
efficiency scores.
Recently, Amin and Toloo [2] proposed an integrated MILP model that evaluated

all units by common set of weights for performance attributes which converged to
the most efficient DMU without solving the LP n times. Toloo and Nalchigar [16]
extended it to variable return to scale situation for finding the best BCC-efficient
DMU. The proposed models eliminated the requirement of using a parameter in the
objective function which is used by Ertay et al. (2006) and all units are evaluated
by the common set of optimal weights. Amin [1] explained a drawback of the
MILP model of Amin and Toloo [2] and proposed an improved integrated model
to overcome it. Foroughi [8] illustrated that in some cases this improved model
could be infeasible and proposed a new mix integer model for selecting the most
CCR-efficient DMU which is useful just for constant return to scale situations. In
this paper, new alternative model is presented to determine most BCC-efficient
DMU for some situations that return to scale is variable.
The paper unfolds as follows. Section 2 we describe the output-oriented BCC

model and the model proposed by Foroughi [8] as background models. Sections
3 introduce a new output-oriented model for finding most BCC-efficient DMU.
Illustrative example and conclusion are discussed in Section 4 and Section 5, re-
spectively.

2. BCC Model

Consider n DMUs that are to be evaluated in terms of m inputs and s outputs. Let
xij (i = 1, . . . ,m) and yrj (r = 1, . . . , s) be the input and output values of DMUj

(j = 1, . . . , n), vi (i = 1, . . . ,m) and ur (r = 1, . . . , s) be the input and output
weights for the n DMUs, the output-oriented type of model that attempts to max-
imize output while using no more than the observed amount of any input. Banker
et al. [4] (BCC), extended the earlier work of Charnes et al. [5] by providing for
variable returns to scale (VRS). The BCC input oriented (BCC-I) model evaluates
the efficiency of DMUo, DMU under consideration, by solving the following linear
program:

max
s∑

r=1
uryro − uo

s.t.
m∑
i=1

vixio = 1

s∑
r=1

uryrj −
m∑
i=1

wixij − uo ⩽ 0 j = 1, . . . , n

uo free
ur ⩾ ε r = 1, . . . , s
wi ⩾ ε i = 1, . . . ,m

(1)

According to Banker et al. [4], the best output-oriented BCC-efficiency (BCC-
Oo) of each DMU can be measured by the following BCC model, which was named



80 M. Toloo & Z. Khoshhal Nakhjiri/ IJM2C, 02 - 01 (2012) 77 -85.

by the acronym of the three authors:

θ∗ = min
m∑
i=1

vixio − vo

s.t.
s∑

r=1
uryro = 1

s∑
r=1

uryrj −
m∑
i=1

vixij + vo ⩽ 0 j = 1, . . . , n

wo free
ur ⩾ ε r = 1, . . . , s
wi ⩾ ε i = 1, . . . ,m

(2)

where DMUo refers to the DMU under evaluation, and vi (i = 1, . . . ,m) and ur (r =
1, . . . , s) are decision variables also varepsilon is the positive non-Archimedean
value. In order to determine the output-oriented BCC-efficiency of all DMUs, BCC-
Oo and BCC-I models must be solved for each DMU, respectively. As a result, the
optimal weights will vary from one DMU to another and more than one DMU
will be evaluated as DEA efficient. How to distinguish between these DEA efficient
DMUs has been a hot research topic and attracted considerable research interest
in the DEA literature.
The following mix integer linear model, which was firstly proposed by Foroughi

[8] that can select the most CCR-efficient DMU and produced a full ranking for
the DMUs on the same basis:

d∗ = max d
s.t.
s∑

r=1
uryrj −

m∑
i=1

wixij − tj ⩽ 0 j = 1, . . . , n

−
s∑

r=1
uryrj +

m∑
i=1

wixij + tj ⩽ 1 j = 1, . . . , n

m∑
i=1

wixij ⩽ 1, j = 1, . . . , n

n∑
j=1

tj = 1

tj ∈ {0, 1} j = 1, . . . , n
ur ∈ U
wi ∈ W

(3)

Where W , U are assumed as the set of all acceptable multipliers which the
simple sets of these are as follows: W (ε) = {{wi}|wi ⩾ ε, i = 1, . . . ,m} & U(ε) =
{{ur}|ur ⩾ ε, r = 1, . . . , s}. Where ε ∈ [0, ε∗]. It have been improved that ε∗ is
always positive and the maximum non-Archimedean epsilon, ε∗, is obtained from
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the following LP:

ε∗ = max ε
s.t.
m∑
i=1

wixio ⩽ 1

s∑
r=1

uryrj −
m∑
i=1

wixij − uo ⩽ 0 j = 1, . . . , n

uo free
ur − ε ⩾ 0 r = 1, . . . , s
wi − ε ⩾ 0 i = 1, . . . ,m

(4)

Nevertheless Foroughi [8] proposed model is feasible even if Amin, Toloo [2]
model is infeasible and can be selecting the best DMU from the set of DMU that
DM preferred, it is based on constant return to scale.

3. Proposed Model

The model proposed by Foroughi [8] is based on CCR model and is not appropriate
for situations in which DMUs operating in variable return to scale. In this paper
we propose two new MIP-DEA models which are useful for these situations. The
input-oriented model proposes as:

d∗ = max d
s.t.
s∑

r=1
uryrj − uo −

m∑
i=1

wixij + d ⩽ 0 j = 1, . . . , n

−
s∑

r=1
uryrj + uo +

m∑
i=1

wixij + tj ⩽ 1 j = 1, . . . , n

n∑
j=1

tj = 1

uo free
tj ∈ {0, 1} j = 1, . . . , n
{ur} ∈ U
{wi} ∈ W

(5)
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Similarly, we can also construct an output-oriented MIP model for finding the most
BCC-efficient DMU under VRS, which can be formulated as:

d∗ = max d
s.t.
s∑

r=1
uryrj + vo −

m∑
i=1

wixij − tj + d ⩽ 0 j = 1, . . . , n

−
s∑

r=1
uryrj − vo +

m∑
i=1

wixij + tj ⩽ 1 j = 1, . . . , n

s∑
r=1

uryrj = vo ⩾ 0 j = 1, . . . , n

n∑
j=1

tj = 1

vo free
tj ∈ {0, 1} j = 1, . . . , n
{ur} ∈ U
{wi} ∈ W

(6)

where W and U are the set of all acceptable weights. It is also assumed that
W (ε) = {{wi}|wi ⩾ ε, i = 1, . . . ,m} and U(ε) = {{ur}|ur ⩾ ε, r = 1, . . . , s} where
ε ∈ [0, ε∗].
The main idea of proposed Model is trying to find only one most efficient DMU,

but in situations in which return to scale is variable and maximizing input (out-
put) whereas consuming no more than the observed amount of any output (input).
Wherein added free variable are vo and uo, enhance the capability of model for act-
ing in variable return to scale and the

∑s
r=1 uryrj+vo ⩾ 0, j = 1, . . . , n constraints

are imposed to ensure that the total output for each DMU is always nonnegative
since negative outputs make no sense at all. Therefore DMUj is most BCC-efficient
if and only if tj = 1.
The following theorems prove the validity and some properties of the proposed

model.

Theorem 3.1 Model (5) is always feasible.

Proof Suppose that DMUp is documented as strong BCC-efficient units by
Model (1) and (w∗

p, u
∗
p, u

∗
o) be the optimal solution corresponding it and u∗yp = 1

(it can be easily proved that such index exists, ties are broken arbitrary).Let

d̄ = 1, ū = u∗p, w̄ = w∗
p, uo = u∗o

t̄j =

{
1, j = p

0, j ̸= p

Clearly (d̄, w̄, ū, uo, t̄) is a feasible solution of Model (5). ■

Theorem 3.2 Model (6) is always feasible.

Proof The proof is similar to that of Theorem 1. Let DMUp is recognized as strong
Bcc-efficient units by Model (2) and (w∗

p, u
∗
p, v

∗
o) be the optimal solution correspond-

ing it and u∗yp = 1 (it can be easily proved that such index exists, ties are broken
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arbitrary).Let

d̄ = 1, ū = u∗p, w̄ = w∗
p, vo = v∗o

t̄j =

{
1, j = p

0, j ̸= p

Clearly (d̄, w̄, ū, vo, t̄) is a feasible solution of Model (6). ■

Theorem 3.3 d∗ ∈ [0, 1].

Proof
Assume that, in optimal solution of Model (5) or (6) corresponding to one j, say

j = p, we have t∗j ̸=p = 0 and t∗p = 1 hence from the first type of constraints for

j = p, u∗yp − uo −w∗xp − 1+ d∗ ⩽ 0 (u∗yp + vo −w∗xp − 1+ d∗ ⩽ 0) on the other
hand from second type of constraint

−u∗yp + uo +w∗xp ⩽ 0 ⇒ u∗yp − uo +w∗xp ⩾ 0

(−u∗yp − vo +w∗xp ⩽ 0 ⇒ u∗yp + vo +w∗xp ⩾ 0)

Consequently, it is shown d∗ ⩽ 1.
In addition, hence is a feasible point of Model (5) or (6), we have d∗ ⩾ 0.

Therefore it can be concluded d∗ ∈ [0, 1].
■

Indeed, the new proposed BCC-MILP model is an extension of Foroughi (2011)
for VRS situation in output-oriented and input-oriented view. The output (input)-
oriented linear programming is constructed to determine a DMU’s potential output
(input) given its inputs (outputs) if it operated efficiently as DMUs along the best
practice frontier .In next section, the usefulness of this model is shown by a real
data set.

4. Illustrative Examples

In this section we illustrate the performance of the proposed approach. We first
use the data set that is taken by Shang & Sueyoshi [13]. It consists of Twelve
flexible manufacturing systems (FMSs) are evaluated in terms of two inputs: annual
operating and depreciation cost measured in units of $100,000 as input 1, and floor
space requirements of each specific system measured in thousands of square feet as
input 2; and four outputs: improvements in qualitative benefits, work in process
(WIP), average number of tardy jobs, and average yield. The data with the BCC
efficiency scores are recorded in Table 1. We can see that ten DMUs are efficient,
and two DMUs, DMU8 and DMU12, inefficient.
To find the most efficient FMS are applied Model (4) for the data of Table 1

which the optimal value is: ε∗ = 0.006113. There also exists a polynomial time
algorithm, Epsilon algorithm, which introduced by Amin and Toloo [2]. Applying
this algorithm resulted in same value as received from solving Model (5). Using
this value, DMU4 is identified as most BCC-efficient DMU by the both proposed
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Table 1.

Data of FMSs BCC-Efficiency BCC-Efficiency
DMUs Inputs Outputs Input-oriented Output-oriented

Input1 Input2 Output1 Output2 Output3 Output4

1 17.02 5 42 45.3 14.2 30.1 1.00 1.00
2 16.46 4.5 39 40.1 13 29.8 1.00 1.00
3 11.76 6 26 39.6 13.8 24.5 1.00 1.00
4 10.52 4 22 36 11.3 25 1.00 1.00
5 9.5 3.8 21 34.2 12 20.4 1.00 1.00
6 4.79 5.4 10 20.1 5 16.5 1.00 1.00
7 6.21 6.2 14 26.5 7 19.7 1.00 1.00
8 11.12 6 25 35.9 9 24.7 0.99 1.00
9 3.67 8 4 17.4 0.1 18.1 1.00 1.00
10 8.93 7 16 34.3 6.5 20.6 1.00 1.00
11 17.74 7.1 43 45.6 14 31.1 1.00 1.00
12 14.85 6.2 27 38.7 13.8 25.4 0.89 1.00

mix integer output and input-oriented models. Table 2 records the results of the
approach proposed in the present paper and Foroughi’s Model which should be
noted that the optimal solution of Model (3) is indicated DMU5 is most CCR-
efficient unit.

Table 2.

Variables Model (5) Model (6) Model(7)

v∗1 0.2198 0.22 0.0485
v∗2 0.1234 0.123 0.0197
u∗
1 0.0060 0.006 0.0061

u∗
2 0.0060 0.006 0.0061

u∗
3 0.0465 0.047 0.0061

u∗
4 0.1517 0.152 0.0061

u∗
o 1.861 —– ——

v∗o —– -1.861 ——
t∗j t∗j=4 = 1, t∗j ̸=4 = 0 t∗j=4 = 1, t∗j ̸=4 = 0 t∗j=5 = 1, t∗j ̸=5 = 0

5. Conclusions

Ranking of DMUs is a very significant topic in DEA research. Many methods, each
with its own strategy or logic in ranking the DMUs have been proposed; some
studies have been develop to generate common weights for fully ranking DMUs
and identifying the unique DMU as the best efficient unit ranking efficient DMUs
and selecting the best DMU. In this paper, we presented alternative mix integer
models for selecting BCC-efficient DMU. Finding the most BCC-efficient DMU
with the proposed method is performed based on common set of weight. It was
shown that the proposed model is always feasible. Moreover, the model has finite
optimal solution and can determine the most BCC-efficient DMU by solving only
one problem, which shows the advantages of the model in comparing with the
traditional DEA ranking model such as super efficiency and cross efficiency which
solves n problems and may not have finite optimal solution in some cases.
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