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Abstract. The collocation method based on cubic B-spline, is developed to approximate
the solution of second kind nonlinear Fredholm integral equations. First of all, we collocate the
solution by B-spline collocation method then the Newton-Cotes formula use to approximate
the integrand. Convergence analysis has been investigated and proved that the quadrature
rule is third order convergent. The presented method is tested with four examples, and the
errors in the solution are compared with the existing methods [1, 2, 3, 4] to verify the accuracy
and convergent nature of proposed methods. The RMS errors in the solutions are tabulated in
table 3 which shows that our method can be applied for large values of n, but the maximum
n which has been used by the existing methods are only n = 10, moreover our method is
accurate and stable for different values of n.
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1. Introduction

We consider the numerical solution of nonlinear Fredholm integral equations of the
second kind in the following general form

f(x) = y(x) +

∫ b

a
k(x, t, f(t))dt, a 6 x 6 b. (1)

And we assume that the solution is required over a finite interval [a, b] that y and
k are continuous on [a, b] and k satisfies a uniform Lipschitz condition in unknown
f . Under the above conditions will ensure that there exists a unique continuous
solution to the problem (1). The numerical solutions of (1) have been investigated
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by several authors who rely on the approximation of the integral appearing by
using various methods and quadratures. Nonlinear phenomena that appear in many
applications in scientific fields, such as fluid dynamics, solid state physics, plasma
physics and mathematical biology can be modeled by partial differential equations
and by integral equations as well. In [5], a comparative study between the modified
decomposition method and two of the traditional methods for analytic treatment of
nonlinear integral and integro-differential equations has been conducted. In [6], the
numerical solution of integral equation by using combination of spline-collocation
method and Lagrange interpolation has been derived. Using a global approximation
to the solution of a nonlinear integral equation of the Hammerstein is constructed
by means of the Sinc basis function in [7]. In [3], a Chebyshev approximation has
been used to solve the nonlinear integral equations of Hammerstein type. In [8], a
numerical method for solving the nonlinear Volterra-Fredholm integral equations
that is based upon Legendre wavelet approximations is presented. In this paper,
we will use cubic B-spline collocation to approximate the unknown function and
the Newton-Cotes rules to approximate the integrand of the nonlinear Fredholm
integral equations of second kind.

2. The method

2.1 Cubic B-spline method

To develop the collocation method based on cubic B-spline for the solution of
Volterra integral equations, let π be a uniform partition of the interval [a, b] such
as π : a = t0 < t1 < · · · < tn+2 = b, where

h = (b− a)/(n+ 2), ti = a+ ih, i = 0, 1, · · · , n+ 2. (2)

We introduce the spline space

S3(π) = ν ∈ C2[a, b]; ν|[ti,ti+1] ∈ P3, i = 0, 1, · · · , n+ 2, (3)

where P3 is the class of cubic polynomials. By introducing adjacent knots

t−2 < t−1 < t0 < · · · < tn+2 < tn+3 < tn+4, (4)

and the functions Bi(t), S(t) which are defined in the following form

Bi(t) =



(t− ti−2)
3/h3, if t ∈ [ti−2, ti−1]

(h3 + 3h2(t− ti−1) + 3h(t− ti−1)
2 − 3(t− ti−1)

3)/h3, if t ∈ [ti−1, ti]

(h3 + 3h2(ti+1 − t) + 3h(ti+1 − t)2 − 3(ti+1 − t)3)/h3, if ∈ [ti, ti+1]

(ti+2 − t)3/h3, if t ∈ [ti+1, ti+2]

0, otherwise.

(5)

S(t) =
n+2∑
i=−2

ciBi(t). (6)
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In the case of second kind integral equation (1), by using cubic B-spline (5)
we can approximate the solution and also we can approximate the integrand by
Newton- Cotes type methods. When n is even then the Simpson rule can be used
and when n is odd we have to use the three-eighth rule,

n+2∑
i=−2

ciBi(xj) = y(xj) + h

n+1∑
i=−1

[wi,jk(xj , ti,

n+2∑
k=−2

ckBk(ti))], j = −1, . . . , n+ 1. (7)

By solving the system (7) we obtain the vector ci and also we suppose c−2 =
cn+2 = 0 in order to have the cubic B-spline relations, then by substituting ci in
(6) we can obtain an approximate solution for (1).

3. Error analysis: convergence of the approximate solution

To study the convergence analysis, first we need to recall the following basic
theorem in [9].

Remark 1. The most immediate error analysis for spline interpolant S to a given
function f defined on an interval [a, b] follows from the second integral relations.
Throughout our discussion
π : a = t0 < t1 < . . . < tn+2 = b, is partition in [a, b] and h = (b− a)/(n+2) is the
mesh of our partition.

If f ∈ C4[a, b], then ∥Dj(f − s)∥∞ 6 γh4−j , j = 0, 1, 2, 3, 4 where

∥f∥∞ = max06i6n+2 supti−16t6ti |f(t)| andDj the j−th derivative (see [10], P.112).

The numerical method is said to be convergent if the solution of the approximating
set of equations converges to the solution of the exact problem as the step length
h tends to zero. Consider the equation

f(x) = y(x) +

∫ b

a
k(x, t, f(t))dt, a 6 x 6 b. (8)

And suppose that at x = xi, where zj = a+jh, j = 0, . . . , n+2, xi = ti = zi+1, i =
−1, . . . , n+ 1. We know the quadrature formula at x = xi, i = 0, . . . , n+ 2 is

∫ b

a
k(xi, t, f(t))dt = h

n+1∑
j=−1

wijk(xi, tj , f(tj)) + Ei,t(k(xi, t, f(t)), i = −1, . . . , n+ 1.

(9)

By substituting (9) in (8) we have

f(xi) = y(xi)+h

n+1∑
j=−1

wijk(xi, tj , f(tj))+Ei,t(k(xi, t, f(t)), i = −1, . . . , n+1. (10)
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And the corresponding approximating function equations are

S(xi) = y(xi) + h
n+1∑
j=−1

wijk(xi, tj , S(tj)), i = −1, . . . , n+ 1. (11)

Thus we have

f(xi)− S(xi) = h

n+1∑
j=−1

wij [k(xi, tj , f(tj))− k(xi, tj , S(tj))]

+ Ei,t(k(xi, t, f(t)), i = −1, . . . , n+ 1.

(12)

Now if the kernel function k satisfies a Lipschitz condition in its third argument
with Lipschitz constant L and ei = f(xi)− S(xi), it follows that

|ei| 6 hL

n+1∑
j=−1

|wij ||ej |+ |Ei,t(k(xi, t, f(t))|, i = −1, . . . , n+ 1. (13)

let w = maxi,j |wi,j | and e = max06i6n+2 |ei|, then for sufficiently small h (see [9]).

|ei| 6 {(hLw)
n+1∑
j=−1

|ej |+ |Ei,t(k(xi, t, f(t))|}/(1− hLw), i = −1, . . . , n+ 1. (14)

|ei| 6
[
{|Ei,t(k(xi, t, f(t)))|+ hLw(n+ 3)e}

exp{wLih/(1− hLw)}
]
/(1− hLw), i = −1, . . . , n+ 1.

(15)

Since by assumption both the quadrature error and the function approximate
error are zero in the limit, it follows that limh|ei| = 0. We may write equivalently
|ei| = O(hp+1) + O(hq+1), where the error in the quadrature rule is O(hp+1) =
O(h4) and the error in the function approximate is O(hq+1) = O(h5).

If we set

r = min(p, q) = min(3, 4) (16)

then we say the quadrature rule is convergent of the order r = 3.

4. Numerical examples

To compare our computed results and justify the accuracy and efficiency of our
presented method we consider the following examples which are considered by [1,
2, 3, 4]. The solution of the given examples are obtained for different values of n.
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The RMS errors in the solutions,

E = ((

n+1∑
i=−1

[f(xi)− S(xi)]
2)/(n+ 2))1/2, (17)

are computed by our purposed method where f(x) is the exact solution and S(x)
is the approximated solution of integral equation.

Example 1. Consider the problem

f(x) = ex+1 −
∫ 1

0
ex−2tf(t)3dt, 0 6 x 6 1. (18)

with the exact solution f(x) = ex.

Example 2. Consider the problem

f(x) = e× x+ 1−
∫ 1

0
(x+ t)ef(t)dt, 0 6 x 6 1. (19)

with the exact solution f(x) = x.

Example 3. Consider the problem

f(x) = sin(πx/2)− 2xln3 +

∫ 1

0
(4xt+ πx sin(πt))(1/(f(t)2 + t2 + 1))dt, 0 6 x 6 1

(20)
with the exact solution f(x) = sin(πx/2).

Example 4. Consider the problem

f(x) = 1− 5x/12 +

∫ 1

0
xtf(t)2dt, 0 6 x 6 1 (21)

with the exact solution f(x) = 1 + x/3.

We solved these examples by our presented method (7). We solved example 1
with h = 1/10 to compare our results with results in [2, 4].The absolute errors in
particular points are tabulated in table 1 which shows that our method is more
accurate in comparison with [2, 4]. And we solved example 2 with n = 3. The
absolute errors in particular points are tabulated in table 2 which shows that our
method in comparison with method in [1, 3] is more accurate. And we solved
examples 3, 4 with h = 1/10. The absolute errors in particular points are tabulated
in table 3. And also we solved problems 1, 2, 3, 4 with different values of n =
10, 30, 50, 100, 150, 200. The RMS errors in the solutions are tabulated in table 4
which shows that our method can be applied for large values of n, but the maximum
n which has been used by the existing methods are only n = 10, moreover our
method is accurate and stable for different values of n.
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Table 1. The errors |E| in solution of examples 1 at particular points for

h = 1/10.

x Method 0f [2] Method of [2] Method of [4] Our Method

0 1.80(-5) 3.04(-7)
0.1 5.92(-3) 2.04(-3) 1.30(-5) 3.40(-7)
0.2 1.15(-3) 3.29(-3) 1.20(-5) 3.79(-7)
0.3 1.00(-2) 8.69(-3) 1.01(-5) 4.24(-7)
0.4 1.98(-2) 1.69(-2) 2.34(-5) 4.74(-7)
0.5 1.92(-1) 1.86(-2) 1.89(-5) 5.29(-7)
0.6 9.77(-3) 1.17(-2) 2.80(-5) 5.92(-7)
0.7 1.81(-3) 2.92(-3) 1.81(-5) 6.61(-7)
0.8 1.58(-2) 8.08(-3) 1.90(-5) 7.39(-7)
0.9 3.27(-2) 2.16(-2) 3.03(-5) 3.81(-7)
1 4.92(-5) 8.26(-7)

Table 2. The errors |E| in solution of examples 2 at particular points for

n = 3.

x Method of [3] Method of [1] Our Method

0 0.10(-5) 0.2(-2) 0.72(-4)
0.2 0.32(-3) 0.1(-1) 0.62(-4)
0.4 0.25(-3) 0.2(-1) 0.52(-4)
0.6 0.20(-3) 0.1(-1) 0.42(-4)
0.8 0.17(-3) 0 0.32(-4)
1 0.17(-3) 0.1(-3) 0.22(-4)

Table 3. The errors ||E|| in solution of example 3 and 4 at particular

points of h = 1/10.

x Example 3 Example 4

0 0 0
0.1 1.35697(-5) 0
0.2 2.71394(-5) 2.22045(-16)
0.3 4.07091(-5) 2.22045(-16)
0.4 5.42788(-5) 2.22045(-16)
0.5 6.78485(-5) 2.22045(-16)
0.6 8.14182(-5) 4.44089(-16)
0.7 9.49879(-5) 2.22045(-16)
0.8 1.08558(-4) 4.44089(-16)
0.9 1.22127(-4) 4.44089(-16)
1 1.35697(-4) 6.66134(-16)

Table 4. The RMS errors for examples 1, 2, 3, and 4 for different values of n.

n 10 30 50 100 150 200

Example 1 6.9(-14) 4.1(-17) 1.1(-18) 6.7(-21) 3.4(-22) 4.0(-23)
Example 2 3.5(-12) 2.1(-15) 5.5(-17) 3.5(-19) 1.7(-20) 2.0(-21)
Example 3 5.2(-09) 2.7(-12) 6.9(-14) 4.3(-16) 2.1(-17) 2.5(-18)
Example 4 1.6(-31) 1.1(-31) 5.2(-31) 2.1(-31) 5.0(-31) 1.9(-31)

5. Conclusions

We have shown that the approximations to Fredholm integral equations of the
second kind can be obtained by using certain simple numerical quadrature rule and
collocation spline. Our computed results by the suggested method are compared
with the methods in [1, 2, 3, 4] and also we verified that the presented method
can be applied with large number of n. Our method is stable because when h is
decreasing the error in the solution for our method is also decreasing.
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