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Abstract.In this work, we study a unilateral contact problem with non local friction of
Coulomb between a locking material and a rigid foundation. In the first step, we present the
mathematical model for a static process, we establish the variational formulation in the form
of a variational inequality and we prove the existence and uniqueness of the solution. In the
second step, using the penalty method we introduce the penalty numerical problem in the form
of variational equality where we replace the law behavior and the law contact of Signorini.
Then we show the convergence of the continuous penalty solution as the penalty parameter
tends to infinity. Then, the analysis of the finite element discretized penalty method is carried
out.
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1. Introduction

Locking material is material which is deformed under the effect of an external force
and the deformation stops once it reaches a certain value ” M”. After that, the ma-
terial can’t be deformed any further whatever the force. As long as the deformation
remains bounded, the material is elastic. That’s to say once we stop exercising any
external force on it, it returns back to its initial physical shape. The variational
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problems encountred in theory of locking materials introduced by Prager and de-
veloped on 1985 by F. Demengel and P. Suquet ([3, 4]). In a first step, they are
interested in the dual principles governing the equilibrium state of an elastic-locking
material. They established the inf-sup equality by means of a penalty method. In
a second step, they introduced and discussed the locking limit analysis problem.
This problem allows one to determine which displacements can be imposed on a
locking body before complete locking. Locking materials are hyperelastic materials
for which the strain tensor is constrained to stay in some convex set. We denote by
B this convex set (B(x) in the case of a nonhomogeneous material) and we assume
that a normality rule holds true in the strain space. The resulting constitutive law
reads as follows [11-13]. In this work, we study a problem for a static process of
unilateral contact with non local friction of Coulomb between a locking material
and a rigid foundation. Here, we consider a mathematical model which describes
the contact with non local friction (Coulomb) between a locking material and a
rigid foundation, within the framework of small deformations theory. The mate-
rial’s behavior is modeled with a non-linear elastic-locking constitutive law. The
contact is described with the Signorini contact conditions. In the first step, we have
formulated the mathematical problem as a variational inequality and we show the
existence of a unique solution. In the second step, we try to estimate the solution.
Because of a nonlinear contact condition and non differentiable behavior law, the
penalty method is employed and the convergence analysis of the method in this
case of non-linear elastic-locking is established. Using the numerical approximation
of the solution, we analyze both the continuous and discrete problems. We limit
the analysis to a conformal discretization with piecewise linear finite elements. We
show the theoretical convergence of the penalty method.

2. Setting of the problem

2.1 The contact problem

In this section we describe the problem of unilateral contact with Coulomb’s fric-
tion between a locking body and a rigid foundation.

The physical setting is the following : we consider a locking body which initially
occupies an open bounded domain Q C R? d = 2,3 with a sufficiently smooth
boundary 02 = I'. The body is acted upon by a volume forces of density fy. It is
also constrained mechanically on the boundary. To describe these constraints we
decompose I' into three mutually disjoint open parts I'p, I'y and I'¢, on the one
hand, and a partition of I'p U T'y on the other hand, such that meas(I'p) > 0.
The body is clamped on I'p and a surface tractions of density fs act on I'yy. On
I'c the body may come into contact with a rigid obstacle, the so called founda-
tion. The indices i, j, k, [ run between 1 and d. The summation convention over
repeated indices is adopted and the index that follows a comma indicates a partial
derivative with respect to the corresponding component of the spatial variable, e.g.,
u;j = Ou;/O0x;. Everywhere below we use S? to denote the space of second order
symmetric tensors on R? while “-” and || - || will represent the inner product and
the Euclidean norm on R% and S¢, that is Vu, v € R%, Vo, T € S¢,

u-v=u-v, |v|=(-v)z, and o-1=04- 7 |7]|=(7-7)2.
We denote by u : © — R? the displacement field, by o : @ — S o = (0y))

the stress tensor. We shall adopt the usual notations for normal and tangential
components of displacement vector and stress : v, = v-v, vV; =0V —v,V, 0, =
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(ov)-v, o;=ov—o,v,where v denote the outward normal vector on I'. Moreover,
let e(u) = (g4j(u)) denote the linearized strain tensor given by &;;(u) = 3 (u; j+u;;).
Under the previous assumption, the classical model for this process is the following:

Problem P. Find a displacement field u : Q@ — R%, a stress field o : © — S¢ such
that

o(u) € As(u) + 0(Ipr(e(u))) in €, (1)
Divo(u)+ fo =0 in €, (2)
u=0 on I'p, (3)
ov=yg on I'y. (4)
On the contact surface I'¢, we consider
o, (u) <0, uy, <0, oyu, =0, on I'¢, (5)

o7 ()] < pa([ur )| R ()
0w ()] < pul[fur )| Rov ()| = u- =0.  onTe. (6)
o (u) = —p(ur )| Roy ()| oy = ur £ 0

With Iy, is the indicator function of the set B = {¢ € R¥ /|¢| < M}

Iv(€)=0 if¢eB
I (&) = 400 otherwise.

Here and below, in order to simplify the notation, we do not indicate explicitly the
dependence of various functions on the spatial variable z € Q. Equation (1) repre-
sents the behavior law of the material in which A denotes the elasticity operator.
Equation (2) represents the equilibrium equation for the stress displacement fields.
Relations (3) and (4) are the displacement and traction boundary conditions, re-
spectively. The unilateral boundary conditions (5) represent the Signorini law and
the (6) represents the Coulomb’s friction of the unilateral contact.

2.2 Weak formulation of P

To present the variational formulation of Problem P we need some additional
notation and preliminaries. We start by introducing the spaces

H=1*Q)¢ H, =H(Q)

H={r=(mj)|mj=15i € L*(Q)}, Hi={oce€H|Divo e H}.

These are real Hilbert spaces endowed with the inner products

(u,v)g = /Quivi dr, (u,v)mg, = (u,v)g + (e(u),e(v))n,

(o,7)y = / oijTijdz, (0,7)y, = (0,7)y + (Dive,Div 1)y
Q
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and the associated norms || - ||z, || - [|m,, || - [l% and || - |3, , respectively. Let Hp =
H'Y2(T')% and let ~: H; — Hr be the trace map. For every element v € Hj, we
also use the notation v to denote the trace yv of v on I'. Let HF be the dual of Hp
and let (-,-)p denote the duality pairing between HF and Hr. For every o € Hi,
ov can be defined as the element in Hy which satisfies

(ov,yu)r = (0,e(v))y + (Dive,v)g, Vv e Hj. (7)

Moreover, If o is continuously differentiable on €2, then

(ov,yv)r = /FO'V v da (8)

for all v € Hy, where da is the surface measure element. Let (-, -) denote the duality
pairing between V' and V.

Keeping in mind the boundary condition (5), we introduce the closed subspace
of Hy defined by

V={veH |v=0onTp},
and K be the set of admissible displacements
K={veV|v, <0onTl¢},
and the closed convex
K'={veV| ,le(w)] <M ae. onQ}.
Since meas(I'p) > 0 and Korn’s inequality (see, e.g., [10]) holds, then
le@)lln = crllvllm, YveV 9)

where ¢, > 0 is a constant which depends only on 2 and I'p. Over the space V we
consider the inner product given by

(,0)y = (), e(@)ge, [ully = (u, )3, (10)

and let || - ||y be the associated norm. It follows from Korn’s inequality (9) that
the norms || - ||, and || - ||y are equivalent on V. Therefore (V.| -||y) is a Hilbert
space. Moreover, by the Sobolev trace theorem, (9) and (10) there exists a constant
co > 0 which only depends on the domain €2, I'c and I'p such that

[0l z2rye < collvllv, Vo eV (11)

As usual, we denote by (H*(2))%,s € R,d = 1,2,3, the Sobolev spaces in one, two
or three space dimensions. The Sobolev norm of (H*(2))¢ (dual norm if s < 0)
is denoted by | -|ls.o and we keep the same notation when d = 1,2 or 3. In the
study of problem (1)-(5) we will need to suppose that:

o (h1) The elastlclty operator A is the fourth order and symmetric;

o (h2) A& = (asjrém);

° (hg) amkl € L (Q)

o (hy) there exists o > 0 such that a;jp(z)&k& > al/€]]?, V€ € 8%, ae. x € Q.
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The coefficient of friction p satisfies:

(a) p:Te x RT — RT:
(b) There exists L, > 0 such that for all u,v € RT, a.e. z € I'¢;
(. w) = (e )] < Lyllu =1 )
(c) The mapping x — p(z,u) is Lebesgue measurable on I'c, Vu € R™;
(d) There exists p* > 0 such that
p(r,u) < p* Yu e RT ae xele.

N

Next, we use Riesz’s representation theorem, consider the elements f € V, given
by

(f,v)vz/ﬂf()‘vdx—i—/F g-vda YveV. (13)

We suppose that the mapping R : Hp — L>(T'¢) is linear and continus.
We define the mapping j:V xV — R by

j(u,v) :/r wllur DRoy (u)l|[or]] da Yo € V. (14)

Keeping in mind assumption (h) it follows that the integral in (13) is well-defined.
Using Grenn’s formula (7) and (8) it is straightforward to see that if (u, o) are
sufficiently regular functions satisfying (1)-(6), then

(o(w),e(0)n = (ou(w), v)re = {or(u), vr)re = (fiv)v, Yo €V, (15)

(Ae(u),e(0))p + (Z(2(w)), £(v)) = (00(u), v)re — (o7 (W), ve)re = (f,0)v, Yo %’)
with

Z(e(u)) € oI (e(u)).

We define
a(u,v) = (Ae(u),e(v))y Yu,v e V.
From the previous assumptions, we obtain that a(.,.) is bilinear, symmetric,
V —elliptic and continuous on V x V.
From convexity of In; we get :
Ywe K (Z(e(u)),e(v—u)) < In(e(v) — In(e(u) =0 (17)
and

Voe K (o,(u),v,)r. = 0. (18)

Using (5), (17) and (18) we obtain the weak formulation as a variational inequality.
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Problem PV. Find a displacement field u : © — R? that:

{uEKﬂK’,

a(u,v—u)+j(u,v) _j(u7u) = (f,U—U)V,VUEKﬁK/. (19)

3. Setting the penalty problem

3.1 The penalty problem

Applying the penalty method consists on replacing the behavior law and the
Signorini condition. We define:

Vne N, e>0 uy, =u,v.

In the penalty problem, we replace Ins(e(us)) by n[(Je(us)] — M)*]? and

n

o,(us) by —i[ug ,]T, with n € N* and e >0 the penalty parameters.

n e lYn,v

We recall also that for all a € R, a™ =aifa>0 and at =0if a <0.
Because j isn’t differentiable, we regularize j by j. given by:

Je(u,v) = /FC u(llu-[))|Roy(u)|¥e(v) da,  Vu,v €V (20)
where
|v]|2+ € YveV. (21)
‘We denote :
(L, ), w) = / ) u(Hu;Tn)maV(u;)erﬁ waweV.  (22)
We denote
R(7) = 2n[(]7| — M)*]’:—‘ vr e s (23)
and
(]t vdre = [ [l vda (24)

Using the Green’s formula we obtain the variational formulation:

Problem PV, Find a displacement field u;, € V' such that :

a’(u%’ U) + (Rn(E(U%)), E(U))H + <%[U§L,V]+7 vl/)FC + <]n/(u%a U%), U> = (f, U)V, (VQE)E V.
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3.2 Finite element setting

We suppose that 2 is a polygonal domain (d = 2) or polyhedral (d = 3). We
approche the space V by the finite dimension V" where h > 0 is a spatial dis-
cretization parameter

vh = {v ec()? v, € P (Q)4, v=0sur I'p}

with T = {T},} is the triangulations set of Q and P;(€)? is the set of polynomials
of degree less than 1.

In this subsection we suppose that € = % and j, = Je.

The discrete problem of PV, is given by:

Problem PV, Find the displacement u” € V" such that:

aluy, o)+ (Ra(e(up)), e(0™)a(nlug, ), 00 ) v+ (ug, ul), ) = (f,0")v V(vh)e v’
26
4. Main results and proofs

4.1 Existence and uniqueness of the solution

THEOREM 4.1 Assume that (hy) — (hyg) hold. There exists L* > 0 such that if
L‘Z’f < L*, then the Problem (PV) has a unique solution u.

Proof

The mapping af(.,.) is bilinear, symmetric, continuous and V —elliptic and we
know that K N K’ is a closed convex and not empty.
The functional j satisfies: in one hand Vu € V, j(u,.) is convex and l.s.con V
and in the second hand Yui,us € V and we have

|j(u1,u2) — j(u1, ur) + j(ug, ur) — jlug, ug)| =

\/ (lluar D Roy ()] = pllluzr DI Roy (u2) ) (Juzr| — [urr]]) da| =
\/F (ulluar]l) = u(lluze (D) Row (un)] + p(lluzl) (|1Row (ur)| = |Roy (u2)]) (luze || = Jur-[l) daf <

/F Ly(lluar |l = llutr[)* + u*| Row (u1) — Roy (u2) | [uzr || — [us-|l| da.

Applying the continuity of R and (11), we get

|j(ur,u2) — jur,ur) + j(ug, ur) — jluz, u)| < G(Ly + crpx)||ug — w3

where ¢ is a positive constant depending of R and o,. Then there exists co > 0
such that

|7 (u1, uz) — jur,ur) + jluz,ur) — jluz,uz)| < co(Ly + px)|lug — w3
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Let L* = é If % < L* then c¢o(Ly + p*) < o In this case the problem has

a unique solution. [ ]

4.2 Existence and uniqueness of penalty problem
THEOREM 4.2 Assume that (h1) — (ha) hold. For any n € N* and € >0

1) the penalty problem (PV,S) has at least one solution.
2) there exists L* > 0 such that if W < L*. Then the Problem (PV,) has a

unique solution ug,.
To prove this theorem,
we simplify the problem by defining the following operators T, S¢ and By, by:

(T, w)y = (Rn(e(v)),e(w))n  Vo,w € V.
(Sv,w)y = +([v]" w)re = £ [1 vfw.da Vo,weV.

(Bv,w)y = a(v,w) + (Thv,w)y + (Sv,w)y  Yo,w e V.

The problem PV, is written as follow:

Problem PV¢. Find the displacement us, : © — R? such that:

n-n’

(BEUE U)V + <je( Up, n) > (f7 )V Vv eV (27)

The following lemmas will be useful

LEMMA 4.3
(1) Ty is the Lipshitz continuous :
(Thur — Toug,v)v < 4nllur —ually vl Vur,ug,v €V
(28)
(2) Ty is monotone :
(Thur — Thug,ur —ug)y 20 Vui,us €V
Proof
1)
R = (Tyuy = Tyuz, v)y = 2n fo, ([le(un)] = MIFERS = [le(ua)| = MTFER ) £(v) da
_ [le(un)|=M]*e(ua)e(uz)|—[le(uz) | —M]" e(uz)|e(ul)]
= 20 o ( Q)T un) ) ev) da

There are three cases:
- If le(ur)| < M, |e(uz)] < M then R=10
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- If |e(w)] > M, |e(uz)] < M hence

|R| = 2n
Q

m
—~
<
—
~—

< 2n /Q (Je(ua)| — M)
— 20 /Q (Ie(un)| — M)|e(v)] da

< 2n /Q (Je(un)| — |e(u2)) ()] da
< 2n /Q (1) — e(us)|e(v)] da

< 2n |lug —usl|y vy -

- If |e(wr)| > M and |e(ug)| > M then

/ (<re<u1>r o ) o) — a2 )e<v> dal .

|R| = 2n

Een] o(us)

=2 [ (o) = etua)) - MEE, - 22 ) o)

<2 [ letun) ~ stundli(e(w)] + 20| [ ~m(EE - S )e(w)
e(u)  e(up)

< 2nfur —waly ol +2n [ 2| S - S o)

< 20y — ually o]}y + 20 /Q o) — (uz)]| |(w)

< Anflur —uslly ol -
For all cases we find:
|R| < 4nflur — ually o]y -

2) The mapping ¢ : ST — R; & — n((|¢] —M)"’)2 is convex function and
continuously differentiable and

Ve S {gh(E),0) = 2n (€] — M)Y) é.w.

Hence the mapping F : V — R; u — ¢(e(u)) is also convex function and
continuously differentiable
and

Vi) € V2 (d(e(w).e)) = 2n (Je(w)] — 10)7) S o).

From convexity property of ¢, we obtain that ¢/, is monotone, then (¢ (e(u))—

¢, (e(v)), e(u) —e(v)) > 0.
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|
LEMMA 4.4
(1) S€ s the Lipshitz :
|(Su = S, w)y| < Elu—vllvlwllv Yu,v,weV. (29)
(2) S¢ is monotone : (S°v —Su,v—u) >0 Vv,weV.
Proof
1)

(8% — S w)v| = ~ |l — (] wr |

using the inequality ![vy]+ — [ul,]ﬂ < ‘vy — ul,‘ we obtain:
€ € CO
(5 = Sy ] < Lo~ uly fuly.
2) We remark that for all a,b € R

([a]™ = [BI")(a = b) = ala] ™ + b[b]" — alb]" — bla]”

|
Let & be a real positive number, we set
G ={he L*(T¢); (h,u) >0 and ||| 2y < £}
where is GG is a closed convex. _
For h € G, we define the function j, on K by:
}h(v) :/ hv, da. (30)
]

From the Riesz’s representation theorem and the fact that V is a real Hilbert

space, there exists f* € V such that (f*,v)y = (f,v)v — ju(v) Vv € V.
For any h € G we associate the following intermediate problem :

Problem PV, Find a displacement field u¢ : Q — R? such that:

a(up®,v) + (Ru(e(un)), e(v))u + %([Uﬁihavﬁrc = ("o eV. (31)
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LEMMA 4.5

i) For any h € G, the problem PV." has a unique solution ul*

ii) The function h € G — ul® is the Lipshitz.
iii) 3> 0, luply < el flv-

Proof

i) We show that B is strongly monotone and the Lipshitz continuous:
e Yu,v € V we have

71

(Bfv—Biu,v—u)y = a(v—u,v—u)+ (Tphv—Thu,v—u)y + (S —SUv—u)y.

Using lemma (4.3) and lemma (4.4) we obtain

(Bpv — Bru,v —u)y > a(v —u,v — u).

From the ellipticity of a(.,.) we deduce that Bf, is strongly monotone.

o We show next that By, is the Lipshitz continuous.

From the Lipshitz continuity of T,, S¢ and a(.,.) is bilinear continuous, we

deduce that B is the Lipshitz continuous.
Thus, PV, has a unique solution wu/**.
ii) We show now that the function h — uff is the Lipshitz
Let hi,he two elements of G,

(Brup'sv —up )y =(f", v —up) YoeVv

n n 7

(B;L ul? v — hze)v :(fhz _UZQE) Vo e V.

We replace in the first inequality v by w!2 and in the second v by u/

obtain

we sum the last equalities:

(Bul — Baulz ult — ul2)y = (M — fhe e — ule)y.

nn’

Using PV/€¢ and PV™¢ we obtain:

(B = Byl =)y = [ (e = )l — ul)da
I'e

<Nt = hall e oyl = ul|l 2 (r e

<collhy = hallpar oyl = u|lv-.

We know that

ol — i} <a(ulp — ul, ulp — ul)
g(B;uZle B¢u hoe Zle _uZQG)

n Tl ’

Vs

we
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then

<o
lun® = up=ellv < i = hall ey (32)

We show now that 3¢ > 0, ||ul||y < c||f"|v.
Using (BSule, ul)y = (f", ul€), we obtain

nn7

ollupfll} <a(upS,uy)

(Be Uh uhe)v

n-n’

<M lule)lv,

thus |Jul|ly < é”thV

|
LEMMA 4.6 The mapping h — u?f 18 weakly continuous.
Proof
Let (hg)x be a sequence converging weakly in LQ(F ) to h.
Using (32) we get [Jul*€||y < “flhllr2(re), then (ul€);. is bounded in V.
It implies that it exists a subsequence (u*€); converging weakly to u,
We have in one hand:
(" 0 = upe) = (f,0 = upt)v = fn, (v — up™) (33)
[ (=) = G (@) < Mokl 2o e = Tl (e (34)
In other hand, the Sobolev’s trace v : V — L?(I'¢) is compact.
Then (ul*€);, — uS as k — oo and
(FM 0 =g — (fo—13). (35)

We take v = BSul*¢ in the equality (Bu¢ v)y = (f,v)y, we find that
1Bl < [y,
it implies that there exists L > 0 verifying
|BEu || < L, Vke N.
From
(B, ule — W)y = (Bguh, ult — o)y + (Bl v — v
we obtain that
(B, up =g )y < (f™,up = o)y + Lo =g |y
It results that

lim sup(BSul, ulte — a8y < (f,u, — v)v + Lllv — 3 ||lv

k——+o0
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Taking v = uf, we obtain that lim sup(Bul*¢, u/*¢ — 7€)y < 0 and then
k—ro0

(BEUS, S, — v)y < liminf(BSul*c ulc — v)y. (36)

nUns Up s Up
k—o0

We combine (35) and (36) to get

u, €V
{(szuﬁﬂn—v) < (f,u —v) Ywev. (37)

For any v € V we change v by v = 4, + v and v = uf — v in (37) to obtain
that w5, is a solution of PV.

We deduce that u = u!* and (u*€), — ul* as k — +oo and finally, the
function h — ul*® is weakly continuous on L?(T'¢).

]
LEMMA 4.7 The mapping A : h — p(|ulS])|Ro, (ul€)|——2:—  has a fived
|| e re
point.
Proof

Let h e G, werecall that (h,ul) >0 and [|h]|[2ry) < &
Using (h, uh5> 0 we obtain that (f", /)y < (f,ul€)y, and applying (4.3)
we get [[uncllv < Zllfllv-

Now we have. [[Ahl () < sl | Ron (ul)| =l paqre .

We know that R is linear continuous, then there exists ¢ > 0 such that
e
AR z2(re) < copt EHfHV-

If we choose k= cop* S| flly then A: G — G.

Because G is a closed convex not empty of L?(I'c) and A is weakly continuous
and using the Schauder’s theorem of fixed point, we deduce that A has a fixed
point.

|
Now, we are ready to prove theorem (4.2).
Existence:
Let g¢g* be a fixed point of A. Using Ag* = g* we deduce that ud ¢ is a

solution of PV.

Uniqueness:
Let wui, and uj, be two solutions of PV.
We have for any v € V

{ (Beui n?v)V + (j%(u‘ijn,uin),v) = (f?v)V
: €

Then

(B = Brus s 0)v = (e 15 0)0) = (e(ul o ug ), v). (38
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Taking v = uf,, —u5, in (39) we obtain

(B:Luin_szug,n’ ui,n_ug,n)v = <je (ua,nv ug,n)v uin_ug,n>_<je(ui,nv ui,n)’ ui,n_ua,n>'

Since je(u,.) is convex we obtain
Jelu,v) = je(u,u) = (jo(u,u),v —u) Vu,v € V. (39)

Thus

(Bfluin - Bﬁzugnw ui,n - U’E n)V < j€(ui,n7 u;,n) - j6(ui,n7 ui,n) + j6(u§,n7 uin) - jn(ug,nv u;,n>

)

= [ )R )] VR DG P € i 24
I'c

+ /F R0y (uy ) (01 e | = 10 D3 10 12 + €2 = 4l 1 + €2)
C

< (were + Lyl Row (uh )|l oo (o)) i — us ol

where ¢y is a positive constant.
Then, there exist a positive constant C such that

alluf = ugnlly < C(Lu+ p)llul, — ugally-

Let L*= L. If 280 < I* then uf, = uj,.

4.3 Convergence of penalty method

In this subsection, we suppose that ¢ = + Bf, = By, S, =5 and jc = jn.

n’
The problem PV} becomes:

Problem PV,,. Find the displacement u,, : Q@ — R% such that:

(Bnun,v)y + (j;z(un,un),v) = (f,v)y YweV (40)

The following lemma will be useful

LEMMA 4.8 Let (fn)n a sequence of positives functions which converge to f
weakly in L*(Q), and L > 0.

For n € N, we define A, ={x € Q/ fo(x) = L} a measurable set .

If meas(An)n — 0, then f € L>®(Q) and || f|lr~ < L.

Proof We consider ¢ € Cg°(€2) and € > 0.
For n large enough we have

}A&qﬂh—fﬂ<e

|/ <pf|<e+|/ wfn\<e+L/ o]
Q\A, Q\A, O\A,
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From meas(A,) — 0, then pfxa, — 0aein Qand |pfxa,| < |fe| € LY(Q).

Using the dominate convergence theorem, we obtain

!/AncprHO'

When ¢ — 0, we find

[eni<e [l

We deduce that f € L*(Q) and || f||z~ < L. [ |
THEOREM 4.9 Assume that (h1) — (ha) hold and there exists L* > 0 such that
L,+p* *
Lt

Let u, be the solution of PV,. Then the sequence (u,) converges strongly to wu.
Proof

a) We show that (u,) converges weakly:
We have

(Bnun7un>v + <];L(umun>aun> - (f7 un)V-
From  (j,,(tn, un),u,) = 0, the V—ellipticity of B, and Cauchy-shwartz in-
equality we get allu, || < [|fllv]unllv and [Junlly < 2] f]lv-.

Then the sequence (uy,) is bounded in V' and there exists a subsequence
denoted (u,) converging weakly to u € V.

b) We show that u € K:
Since the Sobolev’s trace on L?(I'¢) is compact, we find that

() — @ strongly on L*(T'¢) (41)
and
lim ot 2 rey = 1 e(re)-

We remark that (Tnun, un)v < (Bpun, un)v < (f,un)v < || fllv|unllv, then

11
+ < = 2
[ v < ISR
and
1
llunlZere) < EHfH%/- (42)
Thus

E£‘|UZ,VHL2(FC) = 0.
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It results that [|%, ]| 2r.) = 0 and %) =0 a.eon'c and %, <0 onT¢c. Then
ue K.
By Lemma(4.8) we have u € K'.

We take f, =e(u,) and K =M +nwith 0<n<1 and 4, = {z €
Q/|e(upn)| > M + n}. We show that meas(4,) — 0.

We have  7?[An| < [, (le(ua)l = M)? < fol(le(un)] = M)T? < & — 0.
Applying (4.8), we get [|e(w)|{p~ oy < M +n and |e(u)| € L>(Q).

Finally, |le(@)|{pe e < M.
Let n € N* and v € KN K', we show that (T,u,,v —uy,)y < 0.
If |e(un)| < M, then Ry,(e(uyn) =0, then (Thun,v — uy)y = 0.
If |e(un)| = M, so using the Cauchy-Schwartz inequality we obtain

(Tt = wa)y =2 [ ()] = M) S (o(0) = ()

_ Qn/ﬂ Mg(un)(g(v) — (un))

l(un)]

< | Ut 1= M) @) — [eun)

e (un)]

P /Q Ut = M) 1 (1e@)] — letun)])

l(un)]

(eCun) = M)
<o [ B0 )0 = leua)) < 0.

We deduce that
Voe KNK'  (Thun,v —uyp)y <0 (43)

We show that (Spun,v—1u,)y <0 Yve KNK'

(Sptn, v — up)y = n/ u,tl,(vy — Upy) = n/ (u;{’yvy — u;{’yun,y).
Fc FC

Since u,; v, <0 and .} 1y, > 0 we obtain (S,un,v — up)y < 0. Then
Voe KNK'  (Sptn,v —uy)y <0 (44)

From (43) and (44) we find that

Aty v = tn) + Gy (s Un )y 0 — 1) = (f,0 —upn)y Yoe KNK'
Using (39) we deduce that

a(tn, v —up) + Jn(tn,v) = jn(tUn,un) = (f,v —up)y Yve KNK'.
We apply (41) to obtain
a(u,v—u) + j(u,v) —j@u) = (fv—u)y Yve KNK'.

Thus % = v and @ is unique and all subsequences of (u,) converge weakly to
u.
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f) We show that (u,) — u as n — +o0.
We have

al|uy, — u||%/ < alup — uyuy — )

a(tp, up —u) — a(u, uy — u)

= —a(Up,u — up) — a(u, u, —u)

= (Tnumu - Un)V + (Snumu - un)V + <];L(Um un)7U - 'Um> - (fa U — Un)
— a(u, up — u)

< ](u)u) - j(uaun) - a(u’un - U),

and then, (u,) — u strongly as n — +o0o by (41).

4.4 Theorem3./

In this subsection, we treat the case of the finite element discretized penalty

method, we suppose also that € = %

THEOREM 4.10 Assume that (h1) — (ha) hold. For any n € N* we suppose that
h = 2. Then

n?-

1. there exists L* > 0 such that # < L* then the problem PV has a
unique solution ul in VM.
2. the sequence (ul') — u strongly in V as h — 0.

Proof We apply theorem (4.2) to deduce that the problem (26) has a unique
solution u? in V. Let U= {veC>®(Q)% v =0 on one neighborhood of I'p}
and R":U — V" such that for v € U, RMv is the linear interpolate of v.

We recall that U is dense in V' and Vv € U
IR0 = vllv < Chljv]| g2(g)a
IR — | z2(ry < Chlfv[lv
(RM);, — v strongly in V as h — 0.
We take v = u in (26) and using
(Tpulyup)v = 0,
(Snuly, ul)v > 0,

Gh(ul,ul), uly > 0,

we find

auy, un) < (fup)v
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Using the V —ellipticity of a(.,.) we find

1fllv
lulllv < —
a(up,up) = 0,
From (Spul ul)y > 0, we get
<]/ (“Zauﬁ),u@ = 0,
2
(Toul, ul)y < (F,ul)y < |If|lv]u?|lv < Hfaftv’
Then 2n [;,(|e(ul)| — M)*|e(ul)] < ||ch$/_
It follows
2
%/W(”_Mygwm
Q «
Then
T uh <ﬁ||f||v Vh >0 15
H nunHV\ n \/a > 0. ( )

From continuity of a(.,.) there exists m, > 0 such that
0w, )| < mallwlvlolly, Vo,we V.

Hence

Hva

a(uy,v) < [olly, VveV. (46)

There exists a subsequence of (u) denoted also (u”) which converges weakly to

u*.

We follow the same steps with (4.9) to show that (u?) — u* on L?(I'¢) and
we KNK'.
For all v € U, we have

a(uﬁ,uz — R™ )+ (T, un,un — RM % (Snun,un — RM )%
+ (jn( Ups Z) un - Rh/U)V - (f, UZ - RhU)V.

and

(Thul, ul — Rh)y = (Thul, ul —v)y + (Thul, v — Rh)y.

From (43) and (44) we have for all ve KNK'NU
(Thult,v —ult)y <0

(Spul v —ul)y <.

n
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Then
(Tpul,ul — Rh)y > (Tul v — RMw)y
(Spul,ul — Rhv)y > (Thoul,v — Rh)y.

From one side we have

a(uz, uz —u*) = a(uz, uz — th) + a(uz, RM — u™) (48)
then
alu = ') = —(Tou, ufy = R'0)y — (Suouf, i — R0}y
<] ( Uy, n) un - th> + (fv n Rh’U)V + a(UZ, Rh’U — u*)
—(Tpul v — Rh)y — (Spul, v — RM)y
( X ( Up,s n) UZ - th> + (f7 Z - RhU)V + CL('UJZ,R}L’U — ’LL*)
Then
a(uﬁ,uﬁ —u*) < —(Ty u ,U — th)v — (Snufl,v — R%)V
<]n( Up s 2) ’LLZ - th> + (f7 UZ - Rh'U)V + a(uZ,th — u*)
(49)

For the other side, we use (46) to obtain

lim sup a(u?, R'v — u*) glimsupmaHfHVHRh u* ||y
h—0 h—0
v
a
and
lim 5y, (ug, up ), gy — R'0) = j(u*, u*) = j(u*,v)
h—0
hm(fu —Rh v =(f,u" —v)y

|<Tnun,v—th>v| vanlZle o — Rho|ly

Chv/2n ”g'guvum(md.

//\ N

Using h = 2 in (50) we get hm (T ul,v — R")y = 0. Then

|(Snug, v — R"0)y| = | g nuyt (v = R'),| < Cnhl|ug gz reyllollv.

Using (42) we find

1
(S, v = R*)v| < Ceohn—||f|lv [[vllv-
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Because h = #, we deduce that

lim (Spu, v — R'v)y =0 (51)
h—0

From (49),(50) and (51) we deduce that

limsup a(u?, ul —u*) < j(u*, v)—j(u*, u*)+(f, v —v)y+mq I 7llv |lo—u*|ly Vv e KNK'NU.
h—0 a
(52)
Since KNK'NU is dense in K N K’ then (53) is also valid in K N K.
We take v =u* in (53) we get
limsup a(u?, u —u*) <0 (53)

h—0

and for any v € K N K’ we have

auh, v —up) = a(up,v—u*) + a(ul,u” —up)

= (Tnuﬁwv - U*)V + (Snufmv - U*)V + <Jé(uz7uﬁ)vv - U*> + a(“?m“’* - un)’

that leads by (53), after passing to the limit, to

a(u* ;v —u*) > —j(u*,v) + j(u u*) + (f,o—u*)y Yve KNK',
then w* is a solution of a variational inequality. Finally, we deduce that wu* is
unique and u* = u.
Now, we show now that (u) — u strongly.
Let v € KN K' NU, we have

offuyy = ully < alu; —u,upy — w)
= a(uy, uy, —u) — a(u, uy, — u)
= a(ul,ul — R") + a(u, R — ) — a(u,ul — u)

h — Rh)y — (Thul,u? — RM)y — (Spul, ul — RM)y

n’ “n n’» -'n
- <]7/1(u2 uh)?“z - th> - a(%uﬁ - u)

= (f,ul — RM)y + (Toul, v — uP)y — (Tl v — RM)y

n

+ (Spul v — ul)y — (Spul, v — RM)y — (5 (ul, ul), ul — R™M) — a(u, ul — u).

n)»n n

I
s
S

Using (47) we find that

alluy, = ullf < (f,uy = RM0)y — (Tuug,v — RMo)y

- (S’nuﬁu v = th)V - <j111(uh uh)a U’Z - RhU) - a(uv U?L - U)

n» -'n

Now, we pass to the limit using (50), we obtain

}llirrbozHuZ —ull¥ < (f,u—v)y —j(u,u) +jlu,v) Ywe KNK' NU. (54)
—
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Since KN K'NU is dense in K N K’ we deduce that (54) is valid in K N K.
If we take v = u we find that (u) — u strongly. [ |

5. Conclusion

In this paper, we consider a classical penalty method applied to the unilateral
contact problem with Coulomb friction for locking material. We obtain various es-
timates depending on the mesh h and on the penalty parameters €; n. We show
that the theorical convergence of the penalty method gives the best results when
€= % and h = # We note that any choice € = % and h = ng with C' a positive
constant and s > 1 would give the same theoretical convergence.

The next work we are interested in will be to study the theoretical and the numer-
ical penalty method in order to find the error estimate for the unilateral contact
problem.
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