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Abstract. Using the mean-value theorem for integrals we tried to solved the nonlinear integral
equations of Hammerstein type . The mean approach is to obtain an initial guess with unknown
coefficients for unknown function y(x). The procedure of this method is so fast and don’t need
high cpu and complicated programming. The advantages of this method is that we can applied
for those integral equations which have not the unique solution too.
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1. Introduction

Consider the Hammerstein equations of the form

y(x) = f(x) +

∫ b

a
K(x, t)[y(t)]ndt; x ∈ [a, b], (1)

where f and K are given continuous and y is unknown function to be determined.
Hammerstein integral equations arises in many fields of applied mathematics such
as in study of the electro-magnetic fluid dynamics, reformulation of two-point
boundary value problems with nonlinear boundary conditions [1, 2]. The integral
equation (1) are the special case of the Hammerstein integral equations. Solution
of this equation have been consider by many authors, in [26] the classical method
of successive approximations has been introduced . In [23] rationalized Haar
functions have been developed to approximate of the nonlinear Volterra-Fredholm-
Hammerstein integral equations. Under mild differentiability conditions, the
class of fourth-order iterations method has been developed by [9], the semilocal
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convergence of the method has been analyzed. Spline collocation method for
solution of nonlinear Fredholm integral equations has been studied in [19], and the
collocation method for Fredholm-Volterra integral equations with weakly kernels
has been given in [10]. The method based on converting the given equation to
an optimal control problem and then by using some concepts of measure theory,
finally obtained a linear programming whose solution gives rise to the approximate
solution of the integral equations has been developed in [6].
A variation of the Nystrom method was presented by [18]. A pseudospectral
method was proposed by [8]. A new approach for numerical solution of (1) by using
the globally defined Sinc basis functions has been developed in [25]. Degenerate
kernel scheme developed in [27].
The cubic semiorthogonal compactly supported B-spline wavelets has been used
in [20], and proved that the convergence of method is exponentially with rate of
O(2−4j). The methods based on interpolation suggested in [21]. The Galerkin and
Collocation method are two commonly used methods for the numerical solution of
the Hammerstein equations, many papers have appeared on these methods and a
large part of the results presented in [11,12,15]. The properties of rationalized Haar
function together with the Newton-Cotes nodes and Newton-Cotes integration
method to solution of Volterra-Hammerstein integral equation used in [24]. The
standard collocation method is given in [4]. A new collocation-type method for
solution of (1) presented in [14].
The collocation method based on Daubechies wavelets and combined with the
standard collocation method has been introduced in [22]. The wavelet basis
Petrov-Galerkin method and the iterated Petrov-Galerkin method for a class of
nonlinear Hammerstein equations was considered in [13]. The method in [3] is
based on replacement of unknown function by truncated series of well known
Chebyshev expansion of the function. In [1] by using chebyshev collocation method
the nonlinear integral equation (1) has been solved. A Taylor expansion approach
for solving nonlinear Volterra-Fredholm integral equations has been presented
by [28]. In [5], homotopy perturbation method (HPM) is used to solve nonlinear
integral equation.
In [16,17] a semiorthogonal wavelet generated by a linear B-spline functions
have been used to solve Fredholm integro-differential equations, and nonlinear
Fredholm-Hammerstein integral equations respectively.
In this paper by applying mean value theorem, we developed a scheme which
produced an initial guess with unknown coefficients for unknown function y(x)
in equation (1). The main idea is to reduce the equation (1) to a set of algebraic
equations with unknown coefficients that the equations would solve very easily
and quickly. Finally, by solving several examples we demonstrate the accuracy
and the efficiency of the proposed method.

2. The Presented Method

We consider the nonlinear Fredholm-Hammerstein integral equations in (1), by
using mean value theorem we know that there exists a constant c ∈ [a, b] such
that:

∫ b

a
K(x, t)[y(t)]ndt = (b− a)K(x, c)[y(c)]n; x ∈ [a, b]. (2)
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Substituting (2) in (1) we obtain

y(x) = f(x) + (b− a)K(x, c)[y(c)]n; x ∈ [a, b], (3)

and

y(x) = f(x) + c′K(x, c); x ∈ [a, b], (4)

where (b−a)y(c)n = c′. In the case, when the kernel in the equation (1) is separable
namely in the following form

K(x, t) = k1(x)k2(t), (5)

then by using (5) in (4) we obtain

y(x) = f(x) + c′k1(x)k2(c); x ∈ [a, b], (6)

finally we have

y(x) = f(x) + d1.k1(x) = f(x) + g(x, d1); x ∈ [a, b], (7)

where d1 = c′k2(c) is unknown and by estimate it we can obtain the solution of
the integral equation (1). Now if the kernel is not separable then we can rewrite
the equation (4) in the following form

y(x) = f(x) + g(x, d1, d2); x ∈ [a, b], (8)

where constants d1 and d2 are unknowns and these values can be estimated so that
we can obtain the solution of the integral equation (1). For convenience we consider
the equation (4) in the form equation (8). For estimate the unknown coefficients
we substitute the equation (8) in the equation (1) and we get

y(x) = f(x) + g(x, d1, d2) = f(x) +

∫ b

a
K(x, t)[f(t) + g(t, d1, d2)]

ndt, (9)

then by simplifying we get

g(x, d1, d2) =

∫ b

a
K(x, t)[f(t) + g(t, d1, d2)]

ndt, (10)

where g(x, d1, d2) and K(x, t) and f(x) are known functions and constants d1 and
d2 in both side of equation (10) are unknown.
If n = 1 in the equation (1) then the unknowns can be obtained easily with equation
(10) and If n > 1 and the kernel is separable then the equation (10) lead to the
equation of degree n and if the kernel is not separable then the equation (10) lead
to the system of two nonlinear equations and two unknowns in the following form{

g(a, d1, d2) =
∫ b
a K(a, t)[f(t) + g(t, d1, d2)]

ndt,

g(b, d1, d2) =
∫ b
a K(b, t)[f(t) + g(t, d1, d2)]

ndt,

by solving this system the unknowns d1 and d2 can be determined and by substitute
in (8) we can obtain the solution of nonlinear integral equation (1).
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3. Applications

We consider some examples, to test the method and show the efficiency and accu-
racy of the presented method. The arising nonlinear systems have been solved by
Newton’s Method.
Example Consider the following nonlinear integral equation in [3]

y(x) = x3 − (6− 2e)ex +

∫ 1

0
e(x+t)y(t)dt, 0 ⩽ x ⩽ 1, (11)

where kernel is separable in the form (5) and by using mean value theorem we get

y(x) = x3 − (6− 2e)ex + ecy(c)ex, 0 ⩽ x ⩽ 1, (12)

where c ∈ [0, 1], by substituting ecy(c) = d1, we get g(x, d1) = d1e
x that d1 is

unknown and must be determined, then we have

y(x) = x3 − (6− 2e)ex + d1e
x, 0 ⩽ x ⩽ 1, (13)

and by using the equation (10) we get

∫ 1

0
e(x+t)(t3 − (6− 2e)et + d1e

t)dt = d1e
x, (14)

then we have

9− 3e− 3e2 + e3 +
1

2
(e2 − 1)d1 = d1, (15)

and finally we get d1 = 6 − 2e and by substituting in equation (13) we obtain
the exact solution y(x) = x3 for the integral equation (11). Babolian et al showed
that the maximum absolute errors in Adomion Decomposition and the presented
method in [3] are 1.02 × 10−3 and 0.797 × 10−2 respectively and the minimum
absolute errors are 0.02× 10−9 and 0.145× 10−8 respectively.
Example Consider the following nonlinear integral equation in [5]

y(x) = xln(x+1)− 55

108
x+

1

3
ln2(

8

3
x+2−xln2)− 241

576
+
1

2

∫ 1

0
(x−t)[y(t)]2dt, (16)

where 0 ⩽ x ⩽ 1 and n > 1 with the exact solution y(x) = xln(x + 1), by using
mean value theorem we get

y(x) = xln(x+ 1)− 55

108
x+

1

3
ln2(

8

3
x+ 2− xln2)− 241

576
+

1

2
(x− c)[y(c)]2, (17)

where c ∈ [0, 1], by substituting 1
2(x − c)[y(c)]2 = d1x + d2, we get g(x, d1, d2) =
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d1x+ d2 that d1, d2 are unknowns and must be determined, then we have

y(x) = xln(x+ 1)− 55

108
x+

1

3
ln2(

8

3
x+ 2− xln2)− 241

576
+ d1x+ d2

= xln(x+ 1)− 0.053279436734263903555198x

+ 0.043695342595519095167043 + d1x+ d2, 0 ⩽ x ⩽ 1, (18)

and by using the equation (10) we get

1

2

∫ 1

0
(x− t)[tln(t+1)− 55

108
t+

1

3
ln2(

8

3
t+2− tln2)− 241

576
+d1t+d2]

2dt = d1x+d2,

(19)
then we have

.041329613300250285731960d1 + .078647422579863135157289d2
+.010611012395529242039038 + 1

4d
2
2 +

1
24d

2
1 + .16d1d2 = d1 + d2

−.147078588348273722500250d1 − .188408201648524008232210d2
−.044035502213481952045408− 1

3d1d2 −
1
4d

2
2 − 1

8d
2
1 = d2

and by solving this nonlinear system with the Newton’s method we get

d1 = 0.053279436734263903555223,

d2 = −0.043695342595519095167064,

(20)

by substituting (20) in equation (18) we obtain

y(x) = xln(x+ 1) + 2.50713× 10−23x− 2.07035× 10−23, (21)

hance the coefficients of the second and third term in (21) is very small and can
be neglected then we obtain the exact solution y(x) = xln(x + 1) of the integral
equation (16). In [5] the best result is reported in the following form

y∗5 = xln(x+ 1) + 8.600785× 10−8x− 2.667965× 10−8, (22)

and the minimum absolute error is 1.8073 × 10−7, this shows that our method is
more effective than the method on [5].
Example Consider the following nonlinear integral equation of Hammerstein

type in [25]

y(x) = 1− 5

12
x+

∫ 1

0
xt[y(t)]2dt, 0 ⩽ x ⩽ 1, (23)

where kernel is separable in the form (5) and by using mean value theorem we get

y(x) = 1− 5

12
x+ xc[y(c)]2, 0 ⩽ x ⩽ 1, (24)

where c ∈ [0, 1], by substituting c[y(c)]2 = d1, we get g(x, d1) = d1x that d1 is
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unknown and must be determined, then we have

y(x) = 1− 5

12
x+ d1x, 0 ⩽ x ⩽ 1, (25)

and by using the equation (10) we get∫ 1

0
xt(1− 5

12
t+ d1t)

2dt = d1x, (26)

then we have

1

2
+

1

4
(d1 −

5

12
)2 +

2

3
(d1 −

5

12
) = d1, (27)

and finally we obtain two constants d1 = 3
4 and d′1 = 17

12 that by substituting in
equation (25) we obtain two solutions of the equation (23) in the following forms:

y1(x) = 1 +
x

3
, and y2(x) = 1 + x. (28)

But in [25] just y(x) = 1 + x
3 has been reported and the maximum and minimum

absolute errors in the solution are 4.79192×10−3 and 6.52101×10−10 respectively.
Example We Consider the following nonlinear integral equation of Hammerstein

type in [1]

y(x) = x2 − 8

15
x− 7

6
+

∫ 1

0
(x+ t)[y(t)]2dt, 0 ⩽ x ⩽ 1, (29)

by using mean value theorem we get

y(x) = x2 − 8

15
x− 7

6
+ (x+ c)[y(c)]2, 0 ⩽ x ⩽ 1, (30)

where c ∈ [0, 1], by substituting (x + c)[y(c)]2 = d1x + d2, we get g(x, d1, d2) =
d1x+ d2 that d1, d2 are unknowns and must be determined, then we have

y(x) = x2 − 8

15
x− 7

6
+ d1x+ d2, 0 ⩽ x ⩽ 1, (31)

and by using the equation (10) we get∫ 1

0
(x+ t)[t2 − 8

15
t− 7

6
+ d1t+ d2]

2dt = d1x+ d2, (32)

then we have 
2897
5400 − 29

45d1 −
46
45d2 +

1
4d

2
1 +

2
3d1d2 +

1
2d

2
2 = d2

9559
5400 − 5

3d1 −
29
9 d2 +

7
12d

2
1 +

5
3d1d2 +

3
2d

2
2 = d1 + d2

by solving this nonlinear system we get d1 =
8
15 and d2 =

1
6 and by substituting in

(31) we obtain y(x) = x2 − 1 that it is the exact solution of integral equation (29).
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Example By Considering the following nonlinear integral equation in [28]

y(x) =
5

6
x2 − 8

105
x− 1 +

∫ 1

0
(x2t+ xt2)[y(t)]2dt, 0 ⩽ x ⩽ 1, (33)

and using mean value theorem we have

y(x) =
5

6
x2 − 8

105
x− 1 + (cx2 + c2x)[y(c)]2, 0 ⩽ x ⩽ 1, (34)

where c ∈ [0, 1], by substituting (cx2 + c2x)[y(c)]2 = d1x
2 + d2x, we get

y(x) =
5

6
x2 − 8

105
x− 1 + d1x

2 + d2x, 0 ⩽ x ⩽ 1, (35)

and by using the equation (10) we get∫ 1

0
(x2t+ xt2)[

5

6
t2 − 8

105
t− 1 + d1t

2 + d2t]
2dt = d1x

2 + d2x, (36)

we have 
1
6d

2
1 +

1
4d

2
2 − 398

1575d1 −
13
35d2 +

2
5d1d2 +

59779
264600 = d1

1
7d

2
1 +

1
5d

2
2 − 59

315d1 −
398
1575d2 +

1
3d1d2 +

77593
661500 = d2

By solving we obtain d1 = 1
6 and d2 = 8

105 and by substituting in (35) we obtain
y(x) = x2 − 1 that it is the exact solution of integral equation (33).
Example In continuance we consider n = 3 in the equation (1) and the

following integral equation [21,22,25]

y(x) = e(x+1) −
∫ 1

0
e(x−2t)[y(t)]3dt, 0 ⩽ x ⩽ 1, (37)

by using mean value theorem for this equation we have

y(x) = e(x+1) − e(x−2c)[y(c)]3dt, 0 ⩽ x ⩽ 1, (38)

where c ∈ [0, 1], by substituting e(x−2c)[y(c)]3 = d1e
x, we get

y(x) = e(x+1) − d1e
x = ex(e− d1), 0 ⩽ x ⩽ 1, (39)

and we use to the equation (10) that we get∫ 1

0
e(x−2t)[et(e− d1)]

3dt = d1e
x, (40)

then we obtain

(e− d1)
3(e− 1) = d1, (41)
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this equation has unique real solution d1 = e − 1 and by substituting in (39) we
obtain y(x) = ex that it is the exact solution of integral equation (37). you can
see that this method is accurate and efficient toward different reference. however,
this integral equation considered by several references. In [21,22,25] the minimum
absolute errors are reported 4.8593 × 10−12, 0.71385 × 10−9 and 4.85529 × 10−8

respectively.
Example we consider the following nonlinear integral equation in [5]

y(x) = sin(πx) +
1

5

∫ 1

0
cos(πx)sin(πt)[y(t)]3dt, 0 ⩽ x ⩽ 1, (42)

then there is a c ∈ [0, 1] that

y(x) = sin(πx) +
1

5
cos(πx)sin(πc)[y(c)]3, 0 ⩽ x ⩽ 1, (43)

and by substituting sin(πc)[y(c)]3 = d1, we get

y(x) = sin(πx) +
1

5
d1cos(πx), 0 ⩽ x ⩽ 1, (44)

and we use to the equation (10) that we get∫ 1

0
cos(πx)sin(πt)[sin(πt) +

1

5
d1cos(πt)]

3dt = d1cos(πx), (45)

then we obtain

3

200
d21 +

3

8
= d1, (46)

then by solving this equation we obtain two solutions d1 = 100+5
√
391

3 and d′1 =
100−5

√
391

3 then by using equation (44) we obtain two solution for the nonlinear
integral equation (42) in the forms:

y1(x) = sin(πx) +
20 +

√
391

3
cos(πx), (47)

and

y2(x) = sin(πx) +
20−

√
391

3
cos(πx). (48)

But in [5] just y(x) = sin(πx) + 20−
√
391

3 cos(πx) has been considered. In [5] the
minimum absolute errors of approximation is 3.6765 × 10−7 and the error just in
the point x = 0.5 is zero.

4. Conclusions

Solution of nonlinear integral equations are usually difficult, therefore many authors
seek to obtain the approximate solution. In the present work, the approach based
on mean value theorem has been developed for solving nonlinear integral equations
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of the Hammerstein type. The problem has been reduced to solving a system of
nonlinear algebraic equations. The advantages of our method is that the arising
nonlinear system is at most 2 × 2, by solving the several examples we obtain the
exact solution and in comparison with references [1,3,5,21,22,25,28] our method is
highly accurate.
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