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Abstract. Spectral approximations for ODEs in unbounded domains have only received
limited attention. In many applicable problems, singular initial value problems arise. In solving
these problems, most of numerical methods have difficulties and often could not pass the
singular point successfully. In this paper, we apply the sinc-collocation method for solving
singular initial value problems. The ability of the sinc-collocation method in overcoming the
singular points difficulties makes it an efficient method in dealing with these equations. We
use numerical examples to highlight efficiency of sinc-collocation method in problems with
singularity in equations.
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1. Introduction

While spectral approximations for ordinary differential equations (ODEs) in
bounded domains have achieved great success; and popularity in recent years,
spectral approximations for ODEs in unbounded domains have only received
limited attention. Several spectral methods for treating unbounded domains
have been proposed by different researchers. Direct approaches using Laguerre
polynomials were investigated by Maday et al. [14], Funaro [4] and [8, 19]. Indirect
approaches, e.g. Guo [5–7] have proposed a method that proceeds by mapping the
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original problem in an unbounded domain to a problem in a bounded domain, and
then using suitable Jacobi polynomials to approximate the resulting problems.

Sinc methods for the numerical solution of ODEs and PDEs have been exten-
sively studied. This method is a very effective technique, particularly for problems
with singular solutions and those on unbounded domains. Sinc methods have
many applications in mathematics and engineering which include heat transfer
[10, 16, 18], population growth [1], fluid mechanics [28], optimal control [22],
inverse problems [12, 13, 15, 20] and medical imaging [24].

Sinc functions were first analyzed in [27] and [21]. The books [22] and [11]
provide excellent overviews of existing methods based on sinc functions for
solving ODEs, PDEs, and integral equations. For solving differential equations,
two methods based on sinc approximation were presented by sinc-Galerkin and
by sinc-collocation. The first sinc-Galerkin method was presented in [21] to
solve two-point boundary-value problems for second-order differential equations
with Dirichlet boundary conditions. Ref. [2] applied the sinc-Galerkin method
to solve a certain class of singular two-point boundary value problems and
expressed the exact solution of the differential equations via the use of Greens
functions as an integral type. Sinc-collocation procedure for the numerical
solution of the initial value problem is developed in [3] and its proven that
sinc procedure converges to the solution at an exponential rate. In [22], it is
shown that both sinc-collocation and sinc-Galerkin converge with exponential rate.

In this article, we apply the sinc-collocation method to solve initial value prob-
lems:

L(y) = p(x)y” + q(x)y′ + u(x)y = f(x, y),
y(0) = a0, y

′(0) = b0, (1)

where p(x), q(x), u(x) and f(x, y), are analytic functions that in examples p(x) has
a zero in (0,∞) then differential equation has singular point. We demonstrate some
problems which the sinc-collocation method is applicable.

2. Preliminaries

Sinc function is defined on −∞ < x <∞ by

sinc(x) =

{
sin(πx)

πx , x ̸= 0,
1, x = 0.

(2)

This function is translated with evenly spaced nodes are given as [3, 23]

S(k, h)(x) = sinc(
x− kh

h
), k = 0,±1,±2, . . . , h > 0. (3)

If f(z) is analytic on a strip domain

|Imz| < d, (4)
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in the z-plane and |f(z)| → 0 as z → ±∞ then, the series

C(f, h) =
∞∑

k=−∞
f(kh)sinc(

z − kh

h
), (5)

converges, we call it whittaker cardinal expansion [26, 27].From [25] we can write

f(z) = C(f, h) + Esinc, Esinc(h) = O

(
exp

(
−πd
h

))
, (6)

where d is half width of strip domain (4).
If f(x) be a real function, sinc expansion (5) is defined on −∞ < x < ∞, while

the equation that we want to solve is defined a < x <∞, and hence we need some
transformation which the given interval transform on to −∞ < x < ∞. In many
of applications, the sinc method transformation

ϕ(z) = ln(sinh(z)), (7)

has been used. The map ϕ carries the eye-shaped region

DE =
{
z = x+ iy :

∣∣arg (sinh(z)) | < d <
π

2

}
, (8)

on to

Dd = {ζ = ξ + iη : |η| < d < π/2} . (9)

Define h by

h =

√
πd

αN
, 0 < α ⩽ 1. (10)

The h is the mesh size in Dd for the uniform grids {kh}, −∞ < k < ∞. The base
functions on (a,∞) are given by

S(j, h)oϕ(x) = sinc

(
ϕ(x)− jh

h

)
. (11)

The sinc grid points z ∈ (a,∞) in DE will be denoted by x because they are real.
The inverse images of the equispaced grids in the SE transformation are

x = ϕ−1(t) = ψ(t) = ln(ekh +
√
e2kh + 1). (12)

If y(x) be a solution of (1) and we use sinc expansion for numerical solution over
(a,∞) and y(ψ(t)) is analytic in a strip domain |Imt| < d, then from (5) and (6)
we have

y(x) =
∞∑

j=−∞
y(xj)S(j, h)(ψ

−1(x)) + Esinc(h).

xj = ψ(jh), Esinc(h) = O

(
exp

(
−πd
h

))
. (13)
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In (13) xj = ψ(jh), j = 0,±1,±2, . . . are called sinc points. By replacing y(xj)
with its approximation yj , we obtain

ỹh(x) =
∞∑

j=−∞
yjS(j, h)(ψ

−1(x)). (14)

In practical calculations we use finite terms of (14). Suppose that we truncate sum
(14) at j = N from [25], we have

|y(x)−
N∑

j=−N

yjS(j, h)(ψ
−1(x))| ⩽ c

√
Nexp(−

√
πdαN), (15)

that c depends only on f, d, α.

For solving problem (1) with sinc methods, we need following lemma.

Lemma 2.1 Let ϕ be the conformal one-to-one mapping of the simply connected
domain DE to Dd Given by (8) and (9). Then

δ
(0)
jk = [S(j, h)oϕ(x)]x=xk

=

{
1, j = k,
0, j ̸= k,

(16)

δ
(1)
jk = h

d

dϕ
[S(j, h)oϕ(x)]x=xk

=

{
0, j = k,
(−1)k−j

k−j , j ̸= k,
(17)

δ
(2)
jk = h2

d2

dϕ2
[S(j, h)oϕ(x)]x=xk

=

{
−π2

3 , j = k,
−2(−1)k−j

(k−j)2 , j ̸= k,
(18)

Proof Ref [22]. ■

3. Sinc-Collocation Method

For initial conditions in (1), the sinc basis functions in (11) does not have derivative
when x tends to zero. Thus, we modify the sinc basis functions as

xSj(x). (19)

Now the derivative of the modified sinc basis functions are defined as x approaches
to zero and they are equal to zero [17]. In order to approximate the solution of
(1) with initial conditions, we construct a polynomial p(x) that satisfies (1). This
polynomial is given by

p(x) = λx2 + b0x+ a0. (20)

The approximate solution for y(x), in (1) with initial conditions in (1) is represented
by

yN (x) = uN (x) + p(x). (21)
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where

uN (x) =
N∑

j=−N

cjxSj(x). (22)

In (20), λ is constant to be determined. It is noted that the approximate solution
yN (x), satisfy initial conditions in (1), since uN (0) = u′N (0) = 0. Furthermore, we
have p(0) = α0 and p′(0) = b0. The 2N +1 coefficients {cj}Nj=−N and the unknown

λ are determined by substituting yN (x) into (1) and evaluating the result at the
Sinc points

xj = ln(ejh +
√
e2jh + 1), j = −N − 1, . . . , N. (23)

Obviously by using (16)-(18) and (21), we have

uN (x−N−1) = 0, (24)

uN (xj) = cjxj , j = −N, . . . , N,
(25)

u′N (x−N−1) =
N∑

k=−N

ckx−N−1ϕ
′(x−N−1)δ

(1)
k(−N−1), (26)

u′N (xj) =
N∑

k=−N

ck{xjϕ′(xj)δ
(1)
kj + δ

(0)
kj }, j = −N, . . . , N,

(27)

u”N (xj) =
N∑

k=−N

ck{2ϕ′(xj)δ
(1)
kj + xjϕ”(xj)δ

(1)
kj + xjϕ

′2(xj)δ
(2)
kj }, j = −N, . . . , N,

(28)

Substituting (21), (23)-(28) in (1), we obtain

p(xj)y”(xj) + q(xj)y
′(xj) + u(xj)y(xj) = f(xj , y(xj)), j = −N − 1, . . . , N(29)

If (1) is linear then (29) gives 2N +2 linear algebraic equation. If (1) is nonlinear
then (29) gives a nonlinear algebraic equation which can be solved for the unknown
coefficients ck and λ by using the Newton’s method. Consequently, y(x) given in
(1) can be calculated.

4. Numerical Examples

In this section, we present some examples to show the efficiency and capability of
the sinc-collocation method. The problems are solved with Matlab on a personal
computer. In these examples, the exact value and approximate value of solutions
is given at sinc points with d = π/3, α = 1/2 .
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Table 1. Using sinc-collocation method for

4.1

Exact solution Present method

0.1 0.9983375 0.9983366
0.5 0.9607689 0.9607069
1 0.8660254 0.8663028
5 0.3273268 0.3273718
10 0.1706640 0.1709176

Table 2. Using sinc-collocation method for 4.2

xi Exact solution Present method error

0.000000000013133 0.000038792791897 0.000038792778765 0.000038792778881
0.000000003279900 0.000706495379473 0.000706492099573 0.000706492804839
0.000000273783368 0.006227587696481 0.006227861479849 0.006228344665708
0.000000106522446 0.018479282597956 0.018479389120402 0.018492027362223
0.000001267283816 0.154195725467932 0.154194458184116 0.162319802471533
0.000338713134380 0.352604792701003 0.352266079566623 0.649184213505005
0.016201212959128 0.200536409538704 0.184335196579576 2.513526255765731
0.012623280863273 0.109797656089339 0.097174375226066 5.046307039667219
0.035729808572526 0.104297628562742 0.068567819990216 7.222825424320359

Example 4.1 Consider standard Lane-Emden equation

y” +
2

x
y′ + ym = 0, x > 0,

y(0) = 0, y′(0) = 1,

with m = 5. Table 1 shows the approximations of y(x) for solving our problem
with the sinc-collocation method with N = 19. We can find exact solution from
[9].
This problem is a nonlinear second order initial value problem that has singularity
at x = 0.

Example 4.2 Consider

x(2x2 + 1)3y” + 2(2x2 + 1)3y′ − 2(x2 + 1)3y = −2(4x5 + 4x3 + 6x2 + x− 1),

y(0) = 0, y′(0) = 1,

with exact solution

y =
x

2x2 + 1
.

This problem is a linear second order initial value problem that has singularity at
x = 0. Table 2 shows the approximations of y(x) for solving our problem with the
sinc-collocation method with N = 100.

Example 4.3 Consider the equation

(x− 1)(x2 + 1)3y” + (x2 + 1)3y′ − 2(x2 + 1)3y2 = −2(x4 + 2x3 + 8x2 − 6x− 1),

y(0) = 0, y′(0) = 1,

with exact solution

y =
x

x2 + 1
.
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Table 3. Using sinc-collocation method for 4.3

xi Exact solution Present method error

0.000000000954633 0.000341994963467 0.000341994008834 0.000341994048834
0.000000007929786 0.003014968367572 0.003014960437786 0.003014987844234
0.000000062417924 0.026558108480370 0.026558046062446 0.026576804715466
0.000000346256007 0.220349834576572 0.220349488320565 0.232233460718585
0.000000184284696 0.383345610995369 0.383345795280065 0.466921020663844
0.000009935624534 0.456718729640720 0.456708794016186 0.649184213505005
0.000032009651565 0.496008042067412 0.496040051718977 0.881373587019543
0.000543787132348 0.494032603977756 0.494576391110104 1.159467339645706
0.000921987149662 0.463823446840111 0.464745433989774 1.472682704370908
0.009983343628579 0.194219033394465 0.204202377023045 4.683591269426189

This problem is a nonlinear second order initial value problem that has singularity
at x = 1. Table 3 shows the approximations of y(x) for solving our problem with
the sinc-collocation method with N = 75

5. Conclusion

In this article we cannot use sinc bases functions for our initial value problems.
Thus, we modified the sinc basis functions in our research. Then we applied sinc-
collocation method for solving singular initial value problems. Numerical examples
highlight the efficiency of sinc-collocation method in problems with singularity in
equations.
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