International Journal of
Mathematical Modelling & Computations
Vol. 04, No. 01, Winter 2014, 25- 36

Numerical Solutions of Second Order Boundary Value Problem by
Using Hyperbolic Uniform B-Splines of Order 4
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Abstract. In this paper, using the hyperbolic uniform spline of order 4 we develop the classes
of methods for the numerical solution of second order boundary value problems with Dirich-
let, Neumann and Cauchy types boundary conditions. The second derivative is approximated
by the three-point central difference scheme. The approximate results, obtained by the pro-
posed method, confirm the convergence of numerical solutions. Numerical results are given to
illustrate the efficiency of our methods.
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1. Introduction

Second order two-point boundary value problems are encountered in many engi-
neering applications including the study of beam deflections, heat flow, and various
dynamic systems. Much attention have been given to solve the second-order bound-
ary value problems (2VBP) with Dirichlet, Neumann and Cauchy types boundary
conditions, which have application in various branches of applied sciences. These
problems are generally arise in the mathematical modeling of viscoelastic flows [4].
A spline has been widely applied for the numerical solutions of some ordinary and
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partial differential equations in the numerical analysis. Many authors have used
numerical approaches and approximate methods to solve second and third BVPs.
In [6] Bhatti and Bracken solved linear and non-linear differential equation numer-
ically by Galerkin method in a Bernstein polynomials basis. Lima and Carpentier
in [11] have obtained a numerical solution of a singular boundary value problem in
non-Newtonian fluid mechanics. Recently in [13] Feng and Li solved a second order
Neumann boundary value problem with singular nonlinearity for exactly three pos-
itive solutions.Khan in [7] have obtained a parametric cubic spline solution of two
point boundary value problems. In a series of paper by Caglar et al. [2, 3], BVPs
of order two, three, four and five were solved using third, fourth and sixth-degree
splines. Lamnii et al. [8-10] discussed a boundary-value problems based on spline
interpolation and quasi-interpolation with second order convergence. Generally in
solving boundary value problems we use the polynomial splines, but if the solution
is hyperbolic, this approximation is non effective. This motivates us to use hyper-
bolic B-splines of order 4 (lower order) to solve these problems.

In this paper, where the second derivative is approximated by the three-point cen-
tral difference scheme, we study a method based on the hyperbolic B-splines of
order 4 for constructing numerical solutions to second-order boundary value prob-
lems (2BVPs) of the form:

Y@ (0) + £(8)y'(6) + g(B)y(6) = p(6), (1)

Subject to the three types boundary conditions:

Dirichlet : y(a) = ag, y(b) = bo, (2)
Neumann : y'(a) = a1, y'(b) = by, (3)
Cauchy : y(a) = ag, y'(b) = by, (4)

where f(6), g(0) and p(f)) are given continuous functions defined in the bounded
interval [a, b, a;(i = 0,1), and b;(i = 0,1) are real constants.

The structure of this paper is organized as follows: in Section 2, we give a explicit
representation of B-splines of order 4. The interpolation hyperbolic B-splines is
developed in Section 3. Solutions of (2VBP) with Dirichlet, Neumann and Cauchy
types boundary conditions are presented in Section 4. To illustrate our algorithm,
various numerical examples are presented in Section 5 and a conclusion is given
that summarizes the theoretical and numerical results.

2. Hyperbolic B-splines of Order 4

In this section, we briefly give a explicit representation of Uniform Algebrique
Hyperbolic B-splines of order 4 and we give the interesting properties of UAH B-
splines of order 4, for more details see [1, 12]. To do this, we need the following
notations. Suppose k one intergre such that k& > 1. Let m; = 4 x 2¥ + 3 and
hy = %. We consider the nodal points 6% on the interval I = [a,b] where

OF =a+ix hg,i=1.mp —4, (5)

k _ pk _ pk — —
emkf?) - emk72 - emkfl - emk - b7
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The hyperbolic B-splines space of order 4 is defined as follows

Vi = {s e C*(I): Sior 0%, ) € L'a} where I'y = {1, 6, cosh(6), sinh()}.

The dimension of Vi is my and the fourth-order Uniform Algebrique Hyperbolic
B-splines for i = 0,1, ...,mg — 7 are given by :

—0 + 0F + sinh(0 — 6F), 0F <0 <0F,;

6 —0F 5 +2(0 — 6F, ) cosh(hy) + 2sinh(6F,; — 0) +sinh(0F,, — 0), 6F, <O <OF,;
vip(0) =Cr s —0 +ko9§+2 +.2(0%3 — 0) cosh(hy,) — sinh(6F,, — 0) — 2sinh(0F, 5 — 6), 9;}2 <0< 0%3;

0 — 07,4 + sinh(67,, — 6), 073 <0 <07 4

0, otherwise.

1

Where = -
Ch 4Ry sinh( )2

And the respective left and right hand side boundary hyperbolic B-splines are
_hk+9—a+sinh(hk—9—a), 0]3 g 0 < 01{;

V73,k(9) — { —hy+sinh(hy)

)

otherwise.

0—a—sinh(hy)+sinh(h;—0+a)
hkfsinh(hk) +
a—6—20sinh(hy)+2asinh(hy)+2 sinh(hg)—2sinh(hy —60+4a)+sinh(0—a) ok < 0 < oF
V_g k(o) = ] 2hy, cosh(hy)—2sinh(hy) » 70 N 1
’ 0—2hy —a+sinh(2h;, —0+a) ok <9 < ok
2hy, cosh(hy)—2sinh(hg) 1= 2

)

otherwise.

0—a—sinh(6—a)
—2h+2hg COSh(hk)+
0—a+2(0—a) cosh(hy)—2sinh(hy)+2sinh(hy —0+4a)—sinh(6—a) Gk <9<9k
2hy, cosh(hy)—2sinh(hy) » Y0 1
2hk79+afsinh(2hk70+a)+

hkfsinh(hk)
I+ —2hy+2hy cosh(hy) + 2hy, cosh(hy)—2sinh(hy)

Vfl,k(e) = 2(hy —6+a) cosh(hy,)—sinh(hy)+sinh(hy —0+4a)+sinh(2hy —0+a) ok < 0 < gk
b7k )2 OISO < 0
4hy, sinh(=£)
—3hy+0—a+sinh(3h,—60+a) ek <0 k
< 0
4hy, sinh( )2 ’ 2= 3
0, otherwise.
b—60—3h+sinh(3h, —b+6) ok <0 k
<0
4hy, sinh( 2k )2 ’ mE—6 = mE—5
hkfsinh(hk) . b*Qhk79+Slnh(2hk7b+0)+
2hj,—2hy, cosh(hy) 2hy, cosh(hy)—2sinh(hy)
2(b—2hy,—0) cosh(hy)+sinh(hy)+sinh(—b+0+hy)+sinh(2h,+60—b) ek <0< ek
V. —6 k‘(e) o 4hk'sinh(hk)2 ? me—5 my—4
A hy, (b—0) cosh(2hy)+2hy, cosh(2ak —b40) sinh( "k )42k, sinh(hy)
2hy, (—1+cosh(hy))(hy cosh(hy)—sinh(hyg)) +
—bsinh(hg)+0 sinh(hy)—hy sinh(2hg)+sinh(hy) sinh(b—6)—hy, sinh(hr+b—0) ek <0< ek
2h (—1+cosh(hg))(hy cosh(hy)—sinh(hy)) P Vmp—4 S mE—3
0, otherwise.
b—0—2hy, +sinh(2hy, —b+0) k k
2hy, cosh(hy)—2sinh(hg) omk—S < 0 < omk—4
— sinh(hy ) (b—0—2h;+2(h;+0) cosh(hy)+sinh(—60+b)) +
= 2(hg—sinh(hg))(hg cosh(hy)—sinh(hy))
mGis’k(a) hi (b4+60)+bsinh(2hy ) —hy (2 sinh(—b+60+hy )+sinh(2h,+60—b) ok <0< ok
2(hy —sinh(hg))(hy cosh(hy)—sinh(hg)) ) Ymp—4 S mE—3
0, otherwise.
hi+6—b+sinh(—h,—0+b) 9;.3 <0 9;.3
mG74,k(0) = hy—sinh(hg) > Ymy—4 \ < mi—3
) otherwise.
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The hyperbolic B-splines of order 4 are continuous and are normalized to sum
My —4
to one, i.e. Z vi () = 1. The hyperbolic B-splines of order 4 are linearly inde-
i=—3
pendent on I = [a,b] and satisfying the following properties

(2

e Positivity : v;,(0) >0, V6 € [0F,0F, ).

e v;1(0) is supported on the interval [0F, Ofﬂ];

According to the formulas of hyperbolic B-splines of order 4 given above, the
values of v; 1, V; ;. and 1/;' ;. at the nodal points Gf are given according to the following
table:

Table 1. The values of v; 1 (0), V;Yk(G) and 1/7”,‘(0) at the knots

k k k k k
0; 01‘+1 0i+2 9i+3 9i+4 else
—hy+sinh(hy, hy, cosh(hy)—sinh(hy —hy,+sinh(hy,
Vi x(0) 0 otsin h<k k2) ) COS (-k> Z;ﬂ 2( k) potsin h(kkz) 0 0
4hy sinh(—5%) 2hy sinh(5%) 4hy sinh(—5%)
v, (0) 0 L 0 =L 0 0
ik 2hy 2hp
1"
(0 0 [ S —1 [ S 0 0
Z‘k( ) 2tanh(h'7k) tanh(th) 2tanh(h'7k)

3. Interpolation Method

In this section, we present the interpolation method using hyperbolic B-splines of
order 4 is presented for the numerical solution of the second-order boundary value
problems (2BVPs) given in (1)-(4). To construct such an approximate solution, we
will give an approximate of y(?) (0;“) and 7/ (9;“) by using Taylor series expansion.

According to Schoenberg-Whitney theorem (see [5]), for a given function y(6)
sufficiently smooth there exists a unique hyperbolic spline

mk—4
s(0) = Y pivig(0) € Vg,
1=—3

satisfying the interpolation conditions:
ky _ k - .
s(0) =y(07), J=0,1,--- ,my —3; (6)
s'(a) =y'(a), s'(b) =1y(b). (7)
The p;’s are unknown real coefficients.

For j =0,1,--- ,mp — 3, let

and for 7 =0,1,--- ,my — 3, let

Y R e
! 2hy, tanh(%)
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By using the Taylor series expansion we have:

b

j hiy® (65) + O(hY); (8)

1

" 1

hiy© (%) + O(h); (9)

From Table 1 and equations (8)-(9), the approximation values of y, y and 3 at
the nodal points 9;? are given according to the following table :

Table 2. The approximation values of y(G;‘), y/(ﬁf) and y”(ef)

y(0%) v () y (05)
Approximate value 8(9;@) m; M;
. . . PR p— S - 72 - -
Representation in p;  Ck(—hy + sinh(hy))(uj—1 + vn, pj—2 + pj—3) 2 12}1:] S A 2’Jtr:J :
2hy, tanh( %)

Error order O(h}) O(h}) O(h2)

_ 2(hy cosh(hi)—sinh(hy))
where vy, = Snh(hx)—hr .

4. Hyperbolic B-splines Solutions of 2 BVP

4.1 Hyperbolic solution with Dirichlet boundary condition

Let s(0) and s(#) be shape functions that satisfy the equation (1) and the boundary
conditions (2). Then s(f) and s(6) are written as a linear combination of my, shape
functions given by

my—4
s(0) = > pivix(0) (10)
j=-3
and
mr—4
50)= > mwir(0), (11)
j=-3

where p;’s and fi;’s are unknown real coefficients.

In order to solve the problem (1), hyperbolic B-spline in (10) is presumed to be
its solution. Since the problem is defined on interval [a,b] let 65 = a and 6%, =1b,
where my, is the number of partition. Thus, (1) becomes

y@OF) + f(05)y'(0F) + 9(67)y(0F) = p(6}), §=0,1,--- ,my—3. (12)

Now, by using Table 1 and 2, the equation (12) becomes

-3 = 252 + i1 . Hj-3 = fij—1
B +i
2hy, tanh(7") 2hy
(13)

+;Cr(—hg+sinh(hy)) (—3+vn, pj—a+pj—1) = pj+O(h)
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where f; = f(O;?) , 95 = g(@f) and p; = p(ﬂf).
Consequently, by replacing Cy = L ~ in the equation (13), we obtain

4hy, sinh(h'Tk)
hu

(j—3 — 25— + pj—1) + (i3 — pi—1) + Bir(j—1 + vng fj—2 + pj—3) = vk + O(2h3 tanh(?)%

(14)

where o, = fjtanh(%%), B = gji(fh:;}ii(?i()h")) and v, = 2hy, tanh(%)p;.

By elimination O(2h3 tanh(%)) from (14), we obtain a linear system with
my, — 2 linear equations in my, unknowns uj, j = —3,—2,--- ,my — 4. So two more

equations are needed.

The Dirichlet boundary conditions (2) are simplified using (14) resulting (15).

y(a) = ao; fi—3 = ao;
Thus, 15
{y(b) = by. s {Mmk4 = bo. (15)
Take (14) , we get my — 2 linear equations with p;, i = —2,—=1,0,--- ,mp — 7, m —

6, my — 5, as unknowns since p—3, and fi,, —4 have been yielded from (15).

Let C = [M—27 H—15""" 5 bmy—6, Mmk—5]T7 C= [/7—27 ,E—h U 7ﬁmk—67 ﬁmk—5]T7

D = [dy,d2, - ,dpm, 2]" and E = [e1, €2, ,em,_2]’. In matrix form, the equa-
tion look like this (14):

hp, (—hk + sinh(hk)) . .
(A1 + tamh(—2 VF A + Sinh () GB)C = D + E; (16)
hi. (*hk + Sinh(hk)) ~
(A1 + tanb (5 F Az + = 2o S GB)C = D, (17)

where A; and Aj are the following (my — 2) x (my — 2) matrix:

fo 90
f1 g1

fmk—3 gmk_3
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vp, 1
1 o, 1
1 o, 1
B =
loy, 1
1 o,
2h tanh (" )po -+ fo tanh (' )y — g0 TN — g

2hy tanh(%4)py

2hy, tanh(%)pmk,zl
and e; = O(2h} tanh(%)),i =1,2,--- ,my — 2.
After solving the linear system (17), i, i = —=2,—1,0,--- ,mp—7,, mp—6, ,mg —

D, fi—3 = p—3, , and [y, —4 = fim,—4 Will be used together to get the approximation
mk—4

spline solution 5(6) = Z fivi i (6).
i=—3

4.2 Hyperbolic solution with Neumann boundary condition

The same reasoning that led us to consider the Dirichlet boundary conditions (2)
can also be applied to Neumann boundary conditions (3) as well.

Y (a) = ay; p—1 — p—3 = 2hpay;
Th 18
{y/(b) = bl. us, {/’Lmk—4 — Umy—6 = thbl ( )

Take (14) and (18), we yield :

hk (—hk + Sinh(hk)) N .
(Ar+ tanh () F Ay + =SS GBIC = D + (19)
@ (—hk + Sinh(hk)) ~
(Av+ tanh () F Ay 4+ == SR GB)C = D, (20)

where A; and Aj are the following (my) X (my) matrix:
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and where F', G ,B ,C~' and D are the following matrix

0 0
fo 90
fi 9
F = 5 G - )
fmk_3 9my,—3
0 0
0
1 Uh,, 1
1 Uh,, 1 ~ _ _ _ _ T
B = .. ) C= [,U'—37/’L—27"‘ 7Mmk—57,ufmk—4] 3
lop, 1
0
2hia1
2hy, tanh (% )po
D= :

2hy, tanh(%)pmk,g
2h.by

4.3 Hyperbolic solution with Cauchy boundary condition

By a similar technique used in previous sections and by using Cauchy boundary
condition (4) we get:

y(a) = ao; H—3 = aop;
Thus 21
{y/(b) = bl' s {/’Lmk_4 — Mm,—6 = 2hkb1 ( )

Take (14) and (21), we yield :

—hy, + sinh(hy))
sinh(hy)

(—hg + sinh(hz)) GB)C =D (23)

GB)C =D + E; (22)

(A + tanh(%)FAg 4

D,
(Al +tanh(?)FA2 + Slnh(hk)

where A; and Aj are the following (my — 1) x (my — 1) matrix:
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and where F', G ,B ,C~' and D are the following matrix

fo %
bil a
P g
F = . G = ’
fmki:} gmka
0 0
'Uhk 1
1 (% 1
1 Uh, 1 . _ _ B N
B = k . , C= [,u_27 L1, 7/'Lmk—57:umk,—4]T7
1 Vh,, 1
0
: —h inh(hy,
2hy, tanh(%)po + fo tanh(%’“)u_g — QO%’CSR) — s
2hy tanh (% )py
D = .

2hy, tanh(%)pmrg
2h1.b1

5. Numerical Examples

In this section, seven numerical examples will be presented to assess the efficiency of
the interpolation hyperbolic B-spline method for solving the second-order boundary
value problems (2BVPs) of the form ((1),(2)), ((1),(3)) and ((1),(4)). For the sake
of comparison, We will use the absolute error defined as

Errors = |exact solution — approzimate solution|se

to verify the accuracy.

Ezxample 5.1 We consider the following Dirichlet boundary-value problem

{y(2) (x) = —2sinh(z) + (1 — z) cosh(z), z € [0, 1]; (24)
y(0) =1, y(1) = 0.

The exact solution is y(x) = (1 — x) cosh(z).

Result has been shown for different values of k£ in Table 3.

Table 3. Maximum absolute error for Problem (24).

k 3 4 5 6 7 8

Error  9.475e-003  4.688e-003  2.332e-003  1.163e-003  5.807e-004  2.901e-004

Example 5.2 We consider the following Dirichlet boundary-value problem

Yy (x) + 4/ (z) = —zsinh(z) — (1 + ) cosh(z)), z € [0,1];
Lo L) 2 >
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The exact solution is y(x) = (1 — z) sinh(x).
Result has been shown for different values of £ in Table 4.

Table 4. Maximum absolute error for Problem (25).

k 3 4 5 6 7 8
Error  3.255e-002  1.529e-002  6.714e-003  2.435e-003  7.695e-004  2.983e-004

Ezxample 5.3 We consider the following Dirichlet boundary-value problem

{ Yy (2) + zy(x) = (=3z — 2*) exp(), x € [0, 1]; (26)
y(0) =y(1) =0
The exact solution is y(x) = (1 — z) exp(z).
Result has been shown for different values of & in Table 5.
Table 5. Maximum absolute error for Problem (26).
k 3 4 5 6 7 8
Error  6.495¢-002  3.179e-002  1.572e-002  7.821e-003  3.900e-003  1.947¢-003
Example 5.4 We consider the following Neumann boundary-value problem
Dw) = (2~ 42}y, € [0,1] o
(0)20, y(1) = i
The exact solution is y(z) = cosh(z?) — sinh(z?).
Result has been shown for different values of & in Table 6.
Table 6. Maximum absolute error for Problem (27).
k 3 4 5 6 7 8
Error  5.610e-003  2.845¢-003  1.528¢-003  7.625¢-004  3.807¢-004  1.902¢-004
Example 5.5 We consider the following Neumann boundary-value problem
{y(2)(l‘) + y(z) = cos(x), z € [0, 5]; (28)
y'(0) =0, y'(5) =0.

The exact solution is

(—6cos?(5) + 2 4 10 cot(5) sin(10) + 2 cos(10)) cos(z) + 2 cos?(x)
4

y(z) =

2x sin(x) + sin(x) sin(2z)
+ 4

Result has been shown for different values of k£ in Table 7.

Table 7. Maximum absolute error for Problem (28).

k 3 4 5 6 7 8

Error 6.192e-002  2.412e-002  1.033e-002  4.732e-003  2.258e-003  1.101e-003
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Example 5.6 We consider the following Neumann boundary-value problem

y @ (z) + y(z) = 22 exp(—z), z € [0,10]; (20)
y'(0) =0, ¥'(10) = 0.

The exact solution is y(x) = —Cos(loét;%gi)(_m) cos(x) —

Result has been shown for different values of k£ in Table 8.

in(x xp(—z)(1—x)?
sine) | exp(oe)(1x)?.

Table 8. Maximum absolute error for Problem (29).

k 3 4 5 6 7 8
Error  2.559e-001  6.775e-002  2.310e-002  9.130e-003  3.984e-003  1.849e-003

Example 5.7 We consider the following Cauchy boundary-value problem

{9(2)(55) +y(z) = -z, 2 €[0,2]; (30)
y(0) =0, ¥/(2) = 0.
The exact solution is y(x) = %(ég — .

Result has been shown for different values of k£ in Table 9.

Table 9. Maximum absolute error for Problem (30).

k 3 4 5 6 7 8
Error 3.677e-001  1.964e-001  1.016e-001  5.176e-002  2.612e-002  1.312e-002

6. Conclusion

The objective of this paper is to present a new simple numerical method, suitable
and accurate to solve (2VBP) boundary value problem with Dirichlet, Neumann
and Cauchy conditions. In particular, the approach is simple and efficient and
can be extended to other classes of systems of boundary value problems. The
numerical examples indicates that our method can be also applied to solve higher
order boundary value problems by using the hyperbolic (tension) B-splines of higher
order.
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