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Abstract. We develope a numerical method based on B-spline collocation method to solve
linear Klein-Gordon equation. The proposed scheme is unconditionally stable. The results of
numerical experiments have been compared with the exact solution to show the efficiency
of the method computationally. Easy and economical implementation is the strength of this
approach.
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1. Introduction

We consider the following linear Klein-Gordon equation with a ⩾ 0,

∂2u

∂t2
− c2

∂2u

∂x2
+ au = h(x, t), a ⩽ x ⩽ b, t ⩾ 0 , (1)

with the initial conditions,

u(x, 0) = f0(x), a ⩽ x ⩽ b, (2)

∂u(x, 0)

∂t
= f1(x), a ⩽ x ⩽ b, (3)
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and subject to the boundary conditions,

u(a, t) = g0(t), u(b, t) = g1(t), t ⩾ 0 , (4)

where a and c are constants and h(x, t) is called the source term. It is interesting to
point here that if a = 0, equation (1) becomes the inhomogeneous wave equation.
The Klein-Gordon equation is considered one of the most important mathemath-
ical models in quantum field theory. The equation appears in relativistic physics
and is used to describe dispersive wave phenomena in general [15].
The Klein-Gordon equation has been extensively studied by using traditional
methods such as finite difference method, finite element method, or collocation
method. The methods investigated the concepts of existance, uniqueness of the
solution and the weak solution as well.

B-spline functions have some attractive properties. Due to the being piecewise
polynomial, they can be integrated and differentiated easily. Since they have com-
pact support, numerical methods in which B-spline functions are used as a ba-
sic function lead to matrix system including band matrices. Such systems can be
handled and solved with low computational cost [2]. Spline solutions of partial
differential equations are suggested in many studies [1, 3–5, 7, 10, 12, 13, 16, 17].
This paper is arranged as follows. In section 2, we present a finite-difference ap-

proximation to discretize the equation (1) in time variable. In section 3 we apply
cubic B-spline collocation method to solve the problem in space direction. The
stability analysis of the method is given in section 4. In section 5, numerical ex-
periments are conducted to demonstrate the efficiency of the proposed method
computationally.

2. Temporal Discretization

We consider a uniform mesh ∆ with the grid points λj,n to discretize the region
Ω = [a, b] × (t0, T ]. Each λj,n is the vertices of the grid points (xj , tn), where
xj = a + jh, j = 0, 1, 2, . . . , N and tn = t0 + nk, n = 0, 1, 2, . . . and h and k are
mesh sizes in the space and time direction respectively.
At first we discretize the problem in time variable using the following finite

difference approximation with uniform step size k.

untt
∼=

un+1 − 2un + un−1

k2
, (5)

un ∼=
un+1 + un

2
, (6)

and

unxx
∼=

un+1
xx + unxx

2
. (7)

Substituting the above approximations into equation (1), we have,

un+1
j − 2unj + un−1

j

k2
+ a

un+1
j + unj

2
= c2

(uxx)
n+1
j + (uxx)

n
j

2
+ h(xj , tn), (8)
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thus, we obtain,

(1+
ak2

2
)un+1

j −c2k2

2
(uxx)

n+1
j =

c2k2

2
(uxx)

n
j+k2h(xj , tn)+(2−ak2

2
)unj−un−1

j , (9)

after some simplifications, the above equation can be written in the following form,

(1 +
ak2

2
)u∗ − c2k2

2
(uxx)

∗ = r(x), (10)

where,

r(x) =
c2k2

2
(uxx)

n + k2h(x, tn) + (2− ak2

2
)un − un−1, (11)

with the boundary conditions,

u∗(a) = g0(tn), u∗(b) = g1(tn). (12)

In order to start any computations using the above formula we need the values of
u at the nodal points at the zero and first time levels.

To compute u1 we may use the initial conditions u(x, t0) = f0(x) and ut(x, t0) =
f1(x). Using Taylor series for u at t = t0 + k following [14] we have,

u1 = u0 + ku0t +
k2

2!
u0tt +O(k3), (13)

u0 and u0t are known from initial conditions exactly thus we need to compute the
term u0tt. By using Eq. (1) we obtain,

u0tt = [c2uxx + h(x, t)− au]t=0. (14)

Now substituting (14) and initial conditions into (13) we can obtain an approx-
imation for u at t = t0 + k ,

u1 = f0(x) + kf1(x) +
k2

2!
[c2uxx + h(x, t)− au]t=0 +O(k3).

3. B-spline Collocation Method

In this section we use the B-spline collocation method to solve equation (1) with
the boundary conditions (12). Let ∆∗ = {a = x0 < x1 < ... < xN = b} be the
partition in [a, b]. We define the cubic B-spline for j = −1, 0, ..., N + 1 by the
following relation in [11] as,

B3,j =
1

h3


(x− xj−2)

3, x ∈ [xj−2, xj−1],
h3 + 3h2(x− xj−1) + 3h(x− xj−1)

2 − 3(x− xj−1)
3, x ∈ [xj−1, xj ],

h3 + 3h2(xj+1 − x) + 3h(xj+1 − x)2 − 3(xj+1 − x)3, x ∈ [xj , xj+1],
(xj+2 − x)3, x ∈ [xj+1, xj+2],
0, otherwise.

(15)
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Table 1. Values of Bj(x) and its derivatives at the

nodal points.

x xj−2 xj−1 xj xj+1 xj+2

Bj(x) 0 1 4 1 0
B′

j(x) 0 3/h 0 −3/h 0

B′′
j (x) 0 6/h2 −12/h2 6/h2 0

Our numerical treatment for solving equation (1) using the collocation method

with cubic B-splines is to find an approximate solution Ŝ(x) to exact solution
u(x, t)
in the form,

Ŝ(x) =

N+1∑
j=−1

ĉj(t)Bj(x), (16)

where ĉj(t) are unknown time dependent parameters to be determined from the
boundary conditions and collocation of the differential equation.
Using approximate function (16) and cubic B-spline (15), the approximate val-

ues at the knots of Ŝ(x) and its derivatives are determined in terms of the time
dependent parameters ĉj(t) as,

Ŝ(x) = ĉj−1 + 4ĉj + ĉj+1, (17)

hŜ′(x) = 3(ĉj+1 − ĉj−1), (18)

h2Ŝ′′(x) = 6(ĉj−1 − 2ĉj + ĉj+1). (19)

Let Ŝ(x) satisfies the equation (10) plus the boundary conditions, thus we have,

LŜ(xj) = r(xj), 0 ⩽ j ⩽ N, (20)

Ŝ(x0) = g0(tn), Ŝ(xn) = g1(tn),

where Lu∗ = (1+ ak2

2 )u∗− c2k2

2 (uxx)
∗. Substituting (16) into (20) and using (17)

and (19), we have,

(1+
ak2

2
)(ĉj−1+4ĉj+ ĉj+1)−

3c2k2

h2
(ĉj−1−2ĉj+ ĉj+1) = rj , 1 ⩽ j ⩽ N−1, (21)

and after simplification it leads to the following system of linear equations,

(1+
ak2

2
−3c2k2

h2
)ĉj−1+(4+2ak2+

6c2k2

h2
)ĉj+(1+

ak2

2
−3c2k2

h2
)ĉj+1 = rj , 1 ⩽ j ⩽ N−1.

(22)

To obtain a unique solution for Ĉ = (ĉ−1, ĉ0, ..., ĉN+1), we need to use the boundary
conditions. Using the first boundary condition we have,

u(a, tn) = Ŝ(a) = g0(tn) = ĉ−1 + 4ĉ0 + ĉ1, (23)



J. Rashidinia et. al/ IJM2C, 03 - 01 (2013) 25-33. 29

by eliminating ĉ−1 from the above equation and the equation (22) for j = 0 we
have,

18c2k2

h2
ĉ0 = r0 − (1 +

ak2

2
− 3c2k2

h2
)g0(tn). (24)

Similarly, using the boundary condition,

u(b, tn) = Ŝ(b) = g1(tn) = ĉN−1 + 4ĉN + ĉN+1, (25)

and eliminating ĉN+1 from the above equation and equation (22) for j = N we have,

18c2k2

h2
ĉN = rN − (1 +

ak2

2
− 3c2k2

h2
)g1(tn). (26)

Associating (24) and (26) with (22) we obtain a linear (N + 1) × (N + 1) system
of equations in the following form,

AĈ = B̂, (27)

where,

A =



18c2k2

h2 0 0

(1 + ak2

2 − 3c2k2

h2 ) (4 + 2ak2 + 6c2k2

h2 ) (1 + ak2

2 − 3c2k2

h2 )
. . .

. . .
. . .

(1 + ak2

2 − 3c2k2

h2 ) (4 + 2ak2 + 6c2k2

h2 ) (1 + ak2

2 − 3c2k2

h2 )

0 0 18c2k2

h2


,

(28)

B̂ =


r0 − (1 + ak2

2 − 3c2k2

h2 )g0(tn)
r1
...

rN−1

rN − (1 + ak2

2 − 3c2k2

h2 )g1(tn)

 , Ĉ =


ĉ0
ĉ1
...
ĉN

 . (29)

Since a ⩾ 0, it is easily seen that A is strictly diagonally dominant, and hence
nonsingular by Gershgorin’s theorem (see [11] and the reference there in). Since A is
nonsingular, we can solve (27) for (ĉ0, ĉ1, . . . , ĉN ) and substitute into the boundary
equations (23) and (25) to obtain ĉ−1 and ĉN+1. Hence the method of collocation
applied to equation (1) using a basis of cubis B-splines has a unique solution given
by (16).
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4. Stability Analysis

Following [8, 9] we stablished the Von Neumann stability analysis of the proposed
method. For stability analysis we should consider the homogeneous part of equation
(9) as follows,

(1 +
ak2

2
)un+1

j − c2k2

2
(uxx)

n+1
j − c2k2

2
(uxx)

n
j − (2− ak2

2
)unj + un−1

j = 0, (30)

using the properties of B-spline functions which is specified in relations (17)-(19)
and also using equation (30) we can obtain,

r1ĉ
n+1
j−1 + r2ĉ

n+1
j + r1ĉ

n+1
j+1 + r3ĉ

n
j−1+ r4ĉ

n
j + r3ĉ

n
j+1+ ĉn−1

j−1 +4ĉn−1
j + ĉn−1

j+1 = 0, (31)

where,

r1 = 1 +
ak2

2
− 3c2k2

h2
, (32)

r2 = 4 + 2ak2 +
6c2k2

h2
,

r3 =
ak2

2
− 2− 3c2k2

h2
,

r4 = 2ak2 − 8 +
6c2k2

h2
.

Now, It is necessary to assume that the solution of the scheme (31) at the mesh
point (xj , tn) may be written as ĉnj = ξn exp(iθj), where ξ is, in general, complex,

θ is real, and i =
√
−1. Thus using ĉnj = ξn exp(iθj) in (31), we obtain the

characteristic equation,

P (ξ) ≡ Aξ2 +Bξ + C = 0, (33)

where,

p = 3ak2 − 2ak2 sin2
θ

2
+

12c2k2

h2
sin2

θ

2
,

q = 6− 4 sin2
θ

2
,

A = p+ q,B = p− 2q, C = q.

Following [6] using Routh Horwitz criterion and transformation ξ = (1+z)/(1−z)
in equation (32), we get,

(1− z2)P (
1 + z

1− z
) = (A−B + C)z2 + 2(A− C)z + (A+B + C). (34)

The necessary and sufficient condition for |ξ|< 1 is that A−B+C > 0, A−C > 0,
A+B+C > 0. The conditions A+B+C > 0 and A−C > 0 are satisfied for a ⩾ 0
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Table 2. Errors in the solution of Example 4.1.

t L2-error L∞-error RMS

1 2.2459e− 005 2.4487e− 006 2.2348e− 006
2 4.1227e− 005 4.8691e− 006 4.1022e− 006
3 5.5311e− 005 7.2048e− 006 5.5037e− 006
4 6.3805e− 005 9.4362e− 006 6.3488e− 006
5 6.5394e− 005 1.1171e− 005 6.5070e− 006

and for all θ except (θ, a) = (0, 0) or (2π, 0). We can treat this case separately. The
condition A−B + C > 0 is always satisfied.
For θ = 0 or 2π and a = 0, from equation (33), we have,

ξ2 − 2ξ + 1 = 0. (35)

In this case also, |ξ|⩽ 1.
Thus our scheme is unconditionally stable.

5. Numerical Examples

To illustrate the efficiency and applicability of our present method computation-
ally, we consider three examples of linear Klein-Gordon equation, which their
exact solutions are known.

Example 5.1: We consider equation(1) with a = 1, c = 1 and the initial condi-
tions, 

u(x, 0) = 0, 0 ⩽ x ⩽ 1,

ut(x, 0) = cosh(x), 0 ⩽ x ⩽ 1.
(36)

The right hand side function is f(x, t) = 0. The analytical solution is tcosh(x).We
extract the boundary functions from the exact solution. The L∞, L2-errors and
Root-Mean-Square (RMS) of errors are obtained in Table 2 for t=1, 2, 3, 4 and 5,
with the step sizes of k = 0.001, h = 0.01.

Example 5.2: In this example, we consider the linear Klein-Gordon equation
(1) with a = 1 and c = 1 in the interval 0 ⩽ x ⩽ 2. Subject to the initial conditions,u(x, 0) = 0, 0 ⩽ x ⩽ 2,

ut(x, 0) = x, 0 ⩽ x ⩽ 2.
(37)

The right hand side function is f(x, t) = 0. The exact solution is u(x, t) = xsin(t).
We extract the boundary functions from the exact solution. The L∞ and L2-errors
and Root-Mean-Square (RMS) of errors are obtained in Table 3 for t=1, 2, 3, 4
and 5 and values of k = 0.001, h = 0.02.

Example 5.3: We consider the linear Klein-Gordon equation (1) with a = 1,
c = 1 and f(x, t) = 2sin(x) in the interval 0 ⩽ x ⩽ π. Subject to the initial
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Table 3. Errors in the solution of Example 4.2.

t L2-error L∞-error RMS

1 2.7542e− 005 4.7337e− 006 2.7405e− 006
2 1.0614e− 004 1.7842e− 005 1.6561e− 005
3 2.8222e− 004 3.7773e− 005 2.2709e− 005
4 3.8543e− 004 6.2847e− 005 3.8352e− 005
5 5.6880e− 004 9.1424e− 005 5.6597e− 005

Table 4. Errors in the solution of Example 4.3.

t L2-error L∞-error RMS

0.2 7.9077e− 005 9.2072e− 006 6.4352e− 006
0.4 1.6000e− 004 1.8682e− 005 1.3021e− 005
0.6 2.3849e− 004 2.7927e− 005 1.9408e− 005
0.8 3.1450e− 004 3.6935e− 005 2.5594e− 005
1 3.8798e− 004 4.5698e− 005 3.1573e− 005

conditions, u(x, 0) = sin(x), 0 ⩽ x ⩽ π,

ut(x, 0) = 1, 0 ⩽ x ⩽ π.
(38)

The analytical solution is given as u(x, t) = sin(x)+sin(t). We extract the bound-
ary functions from analytical solution. The L∞, L2-errors and Root-Mean-Square
(RMS) of errors are tabulated in Table 4 for t=0.2, 0.4, 0.6, 0.8 and 1, with the
step sizes of k = 0.001 and h = 0.02.

6. Conclusion

For the linear Klein-Gordon equation, a two-level spline-difference scheme was
discussed in this work. This method is based on B-spline collocation. Finite differ-
ence approximations for the time derivatives and spline for the spatial derivative
are used. During the computation, we found that the proposed difference scheme
is stable for the Klein-Gordon equation with a ⩾ 0. To examine the accuracy and
efficiency of the proposed algorithm, we give three examples. These computational
results show that our proposed algorithm is effective and accurate.
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