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1. Introduction

We shall use the following notations all through this paper. We always assume
that H is a real Hilbert space with inner product (.,.) and norm ||.||. We use the
symbols — and — to denote strong convergence and weak convergence respectively.
ww(zy) = {x : Jx,, — x} denotes the weak w-limit set of {x, }. We assume that C
is a nonempty closed convex subset of H and T : C' — C' a mapping. In this paper,
we denote the fixed point set of T' by F(T).

In the sequel, we give the following definitions of some of the concepts that will
feature prominently in this study.
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Definition 1.1. Let T': C' — C be a mapping. T is said to be
(1) L-Lipschitzian [4] if there exists an L > 0 such that
[Tz — Tyl| < Lllz =y, Va,y€C, (1.1)

(2) pseudocontractive [4] if for any =,y € C, there exists j(z —y) € J(z —y) such
that

(Tz =Ty, j(z —y)) < |z -y (1.2)
and it is well known that condition (1.2) is equivalent to the following:
[z =yl < [l =y +s[(l = Tx) = (I =Ty)lll,Vs > 0,2,y € C, (1.3)

(3) strongly pseudocontractive [4] if there exists a constant k € (0,1) and
j(x —y) € J(x —y) such that for any z,y € C,

(Tx — Ty, j(x —y)) < kllz —y*, (1.4)

(4) A-strictly pseudocontractive [4] in the terminology of Browder and Petryshyn
(A-strictly pseudocontractive, for short) if there exists A > 0 and

jlx—y) € J(x—p)
such that for any =,y € C,

(Tx =Ty, j(z —y)) < llz —yl> = AL = Tz — (I - )y, (1.5)

(5) A-demicontractive [4] if F(T) # () and there exists a constant A > 0 and
j(x —p) € J(x — p) such that for any z € C, p € F(T),

(Tx = p,j(z - p)) < o —pl* = Mz - Tz|*. (1.6)
(6) nonexpansive [32] if
[Tz = Tyl < [l —yll, Ve, y € C. (1.7)
(7)asymptotically nonexpansive [32] if there exists a sequence {k,} C [1,0)
with &, — 1
as n — oo such that

Tz — T™y|| < knl|lz —y|,¥n = 1,2,y € C. (1.8)

(8) asymptotically nonexpansive in the intermediate sense [24] if T is continuous
and the following inequality holds:

lim sup sup (|7 — T"y|| - o — yll) < 0. (L9)

n—o0 m,yEC

Observe that if we define

(o = max {o, sup (|77 — Ty — |1z — y||>}, (1.10)
z,yeC
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then ¢, — 0 as n — oo. Hence, (1.9) can be reduced to
|T"x — T"y|| < ||z — y|| + ¢,V = 1,2,y € C. (1.11)
(9) strictly pseudocontractive [24] if there exists a constant k € [0,1) such that
IT2 = Tyll < llz — gl + k(T = T)o — (I - Thy|2Vay e C. (112)

(10) asymptotically strict pseudocontraction [24] if there exist a constant k € [0,1)
and a sequence {k,} C [1,00) with k, — 1 as n — oo such that

1Tz — T y||? < kpllz —y||> +E||(I =Tz — (I -=T")y||*>,Vn > 1,z,y € C. (1.13)
(11) asymptotically strict pseudocontraction in the intermediate sense [24] if there
exist a constant k € [0,1) and a sequence {k,} C [1,00) with k, — 1 as n — oo

such that

tim sup sup (|77 =Ty~ ol —y]* = kl| (= T")a— (1= T")y|) 0. (114
n—oo z,y€

Put

(n = max {0, sup (|77 — Ty = knllz — yl® = KII(I = T")a — (I = T™)yl) 5.
T,y
(1.15)
It follows that ¢, — 0 as n — oo. Then, (1.14) is reduced to the following:
[Tz —T"y||* < kp|lz—y||>+k||(I-T™)z—(I=T")y||*+C0, V0 > 1,2,y € C. (1.16)

(12) asymptotically pseudocontractive [24] if there exists a sequence
{kn} C [1,00) with k,, — 1 as n — oo such that

(T'x — Ty, x —y) < knllz —y|*, Yn>1,2,y€C. (1.17)
Observe that (1.17) is equivalent to
Tz —T"y|* < 2kn—1)||lz—y|*+|z—y— (T2 —T"y)||>,Vn > 1,2,y € C. (1.18)

(13) asymptotically pseudocontractive mapping in the intermediate sense [24] if
there exists a sequence {ky} C [1,00) with k, — 1 as n — oo such that

lim sup sup ((T"x — T™y,x — y) — knllz — y||*) <O. (1.19)
n—oo z,yGC
Put
Ty = max {0, sup ((I"x = T"y,z — y) — knllz — y|l2)} - (1.20)
z,yeC

It follows that 7, — 0 as n — co. Hence, (1.19) is reduced to the following:

(T — Ty, x —y) < knllz — y||? + 70, V0 > 1,2,y € C. (1.21)
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In real Hilbert spaces, we observe that (1.21) is equivalent to

1T =T"y||* < (Zkn—D)llz =yl + (I =Tz — (I =T")y||* + 27, ¥n > L2,y € C.

(1.22)
Definition 1.2. [4] A Banach space E is said to satisfy the Opial condition if for
any sequence {x,} C E with z,, — z, the following inequality holds:

lim sup ||z, — x| < lim sup ||z, — y/|
n—oo n—oo

for any y € F with y # =.

Definition 1.3. [28] Let H be a real Hilbert space with inner product (.,.)
and norm ||.||, respectively and let C' be a closed convex subset of H. For every
x € H, there exists a unique nearest point in C, denoted by Pgox, such that

[ — Poz|| < [z =yl VyeC.

Pe is called the metric projection of H onto C.

Goebel and Kirk [7] introduced the class of asymptotically nonexpansive map-
pings as a generalization of the class of nonexpansive mappings. They established
that if C' is a nonempty closed convex and bounded subset of a real uniformly con-
vex Banach space and T is an asymptotically nonexpansive mapping on C, then T
has a fixed point. The class of asymptotically nonexpansive mapping in the inter-
mediate sense was introduced by Bruck et al. [3] in 1993. In 1974, Kirk [11] proved
that if C is a nonempty close convex subset of a uniformly convex Banach space
FE and T is asymptotically nonexpansive in the intermediate sense, then 7" has a
fixed point. We remark that the class of mappings which are asymptotically non-
expansive in the intermediate sense contains properly the class of asymptotically
nonexpansive mappings. The class of strict pseudocontractive maps was introduced
by Browder and Petryshyn [2]. Marino and Xu [13] established that the fixed point
set of strict set of strict pseudocontractions is closed convex, and they obtained a
weak convergence theorem for strictly pseudocontractive mappings by Mann iter-
ative process.

The class of asymptotically strict pseudocontractive mappings was introduced
by Liu [12]. Sahu et al. [28], introduced the class of asymptotically strict pseudo-
contractive mappings in the intermediate sense in 2009. The class of asymptoti-
cally nonexpansive mapping was introduced by Schu [29]. Rhoades [27] produced
an example to show that the class of asymptotically pseudocontractive mappings
contains properly the class of asymptotically nonexpansive mappings. The class
of asymptotically pseudocontractive mappings in the intermediate sense was in-
troduced by Qin et al. [24]. They obtained some convergence results of Ishikawa
iterative processes for the class of mappings which are asymptotically pseudocon-
tractive mappings in the intermediate sense. Olaleru and Okeke [21] introduced the
class of asymptotically demicontractive mappings in the intermediate sense and the
class of asymptotically hemicontractive mappings in the intermediate sense. We es-
tablished some interesting fixed points results for this class of nonlinear mappings
(see, [21]).

Noor et al. [18] gave the following three-step iteration process for solving non-
linear operator equations in real Banach spaces. Let T': C' — C be a mapping. For



G. A. Okeke & J. O. Olaleru/ IJM2C, 05 - 01 (2015) 15-28. 19

an arbitrary zo € C, the sequence {z,}5°, C C defined by

Tn+l = (1 - an)$n + o, Tyy
Yn = (1 = Bn)xn + BnT 2y (1.23)
zn = (1 —v)xn + WmTxn,n >0,

where {an}02 o, {Bn}olo and {y,}72, are three sequences satisfying o, B, vn €
[0, 1] for each n.

It was established by Bnouhachem et al. [1] that three-step method performs
better than two-step and one-step methods for solving variational inequalities.
Glowinski and P. Le Tallec [6] applied three-step iterative sequences to finding the
approximate solutions of the elastoviscoplasticity problem, eigenvalue problems and
in the liquid crystal theory. Moreover, three-step schemes are natural generalization
of the splitting methods to solve partial differential equations. What this means
is that Noor three-step methods are robust and more efficient than the Mann
(one-step) and Ishikawa (two-step) type schemes for solving problems in pure and
applied sciences.

The following results will be useful to us in this study.

Lemma 1.4. [24]. Let {r,},{sn}, and {t,} be three nonnegative sequences
satisfying the following condition:

T'n+1 < (1 + Sn)rn + tnavn =2 no, (124)

where ng is some nonnegative integer. If "> | s, < oo and )~ t, < oo, then
lim,, o 7y, exists.

Lemma 1.5. [24]. In a real Hilbert space, the following inequality holds:
laz+(1=a)y|? = al|z[|*+(1—a)|ly|* ~a(1—a)|z—y|*,¥Ya € [0,1],2,y € C. (1.25)

We will always use M to denote (diam C)? henceforth.

Lemma 1.6. [24]. Let C be a nonempty close convex subset of a real Hilbert space
H and T : C' — C a uniformly L-Lipschitz and asymptotically pseudocontractive
mapping in the intermediate sense with sequences {k,} and {7,} as defined in
(1.21). Then F(T) is a closed convex subset of C.

Lemma 1.7. [24]. Let C be a nonempty close convex subset of a real Hilbert space
H and T : C' — C a uniformly L-Lipschitz and asymptotically pseudocontractive
mapping in the intermediate sense such that F(7T) is nonempty. Then I — T is
demiclosed at zero.

In 2009, D. R. Sahu et al. [28] proved the following theorem on the modified
Mann iteration process.

Theorem SXY. Let C' be a nonempty closed convex subset of a Hilbert
space H and T : C — C a uniformly continuous asymptotically k-strict pseu-
docontractive mapping in the intermediate sense with sequence {v,} such that
F(T) # 0 and ) 7, < oco. Assume that {a,} is a sequence in (0,1) such that
0<dé<a,<1l—k—-0<land) -7, anc, <oo.Let {z,}5°; be a sequence in C



20 G. A. Okeke & J. O. Olaleru/ IJM2C, 05 - 01 (2015) 15-28.

generated by the modified Mann iteration process:
Tny1 = (1 —ap)zn + a2, Vn € N. (1.26)

Then {z,,} converges weakly to an element of F(T).
Qin et al. [24] proved the following theorem:

Theorem QCK. Let C' be a nonempty closed convex bounded subset of a
real Hilbert space H and T : C' — C a uniformly L-Lipschitz and asymptotically
pseudocontractive mapping in the intermediate sense with sequences {k,} C [1, c0)
and {7,} C [0,00) defined as in (1.21). Assume that F'(T") is nonempty. Let {z,}
be a sequence generated in the following manner:

x1€C,

Yn = 5nTnxn + (1 - Bn)wm (*)
Tpt1 = T"yp + (1 — ap)xn,n > 1,

where {a,,} and {f3,,} are sequences in (0, 1). Assume that the following restrictions
are satisfied:
(a) Y000 1 T < 00,300 (g2 — 1) < oo, where g, = 2k, — 1 for each n > 1;
(b) a < ay < By < b for some a > 0 and some b € (0, L72[v1 + L2 — 1]),
then the sequence {x,} generated by (%) converges weakly to fixed point of T
Consider the following modified Noor iterative scheme:
Let C be a nonempty closed convex bounded subset of a Hilbert space H and
T : C' — C a uniformly L-Lipschitz and asymptotically pseudocontractive mapping
in the intermediate sense with sequences {k,} C [1,00) and 7, C [0, 00) defined as
in (1.21) such that F(T) # 0. Let {z,}52, be a sequence in C' generated by the
following Noor iterative process:

Tnt1 = (1 —ap)xy + anT"yp
Yn = (1 = Bp)Tn + BT 2 (1.27)
Zn = (1 = )T + T wy, n >0,

where {an, }0% 0, {Bn}o2 and {7, }22,, are three sequences satisfying oy, B, 1n €
[0, 1] for each n.

In this paper, we study the convergence of the modified Noor iterative scheme
(1.27) for the class of asymptotically pseudocontractive mappings in the interme-
diate sense. Our results improve and extend many others previously announced by
other authors.

2. Main Results

Theorem 2.1. Let C' be a nonempty closed convex bounded subset of a Hilbert
space H and T : C — C a uniformly L-Lipschitz and asymptotically pseudo-
contractive mapping in the intermediate sense with sequences {k,} C [1,00) and
Tn C [0,00) defined as in (1.21) such that F(T) # (0. Let {z,}°2, be a sequence in
C generated by the following Noor iterative process:

Tnt1 = (1 — ap)zy + anT"yp
Yn = (1 - Bn)fn + ﬁnTnZn (2~1)
Zn = (1 - ’Yn)xn + ’VnTnfL'nan = 0,
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where {an}02 o, {Bn}oly and {7,}72,, are three sequences satisfying o, B, vn €
[0,1] for each n. Assume that the following restrictions are satisfied:

(1) Y200 T < 00, D02 (g2 — 1) < oo, where ¢, = 2k;, — 1 for each n > 1;

(ii) a < ap < B <y < b for some a > 0 and some b € (0, L~2[v/1 + L2 — 1)),
then the sequence {x,} generated by (2.1) converges weakly to fixed point of 7.

Proof. Fix p € F(T). From Lemma 1.5, (2.1) and (1.22), we obtain
120 = I = (1 = W) (20 = p) + Y0 (T"@n — p)|I?
=1 =) llzn — pH2 + Yl T"xy — pH2 = V(L = )| Ty — xn”Q
<(1 _(’Yn)Hxn)‘_ pH2 + vn{ﬁg\lwn — p”2 + [|lzn — TnanQ + 27, }
—Tn 1-— Tn Tnxn — ITn
< Qonn - P||2 + 7n||xn - TnanQ + 2’Yn7_n - 'Yn(l - 'Yn)”Tnxn - anQ
< (Ionn_pHQ‘f‘%%HTnxn_xn‘|2+27'n- (2.2)
[ Tnzn”2 = |(1 = v)(@n —T"20) + yu(T" 2y — Tnzn)HZ
=1 _(%L)Hxn)’_ Tnzn||2 +H')én||Tnxn - TnZnH2
V(1 — v ) [Ty, — 2,
<(1 _(’Yn)Hxn)’_ T" 2| +H’§L2H$n = Ty |? 23)
—Tn 1- Tn Tnxn — Tnfl”- 2.3
Using Lemma 1.5, (1.22), (2.1), (2.2) and (2.3), we obtain:
o — 2 = (1= Bu)(n — ) + Ba(T"2 — D)2
= (1= Bu)llzn = plI> + Bal| T 2 — pl|> = Ba(1 = Bn) I T2 — xn|®
< (1/8_(570”;”)[ pH2 + Bn{"ﬁt”zn _pH2 + [l2n — TnanQ + 27}
—Bn(1 = BTz, — T,
< (1= Bn)llzn —pl? + gn{%(qgnxn —pl*+ ’2772L”Tnxn — zn|? + 275)+
(1 =) l|lzn — T2 ]* + 'Y;LL |Zn — T2y ||
V(1 = )| T"vn — 0 ||* + 270}
< ngZL‘n - p||2 + ﬁnQn’Yr2L||Tn$n - fL‘nHQ + 2qn
+Bn (1 — vn)l|wn — TnZnH2 + 5n72L2‘|13n - TnanQ_
Bnyn (L =) | T2y, — anQ + 27,
< q721||xn - p||2 — Bn¥n (1 = Yn — YnGn — V%Lz)‘|Tn$n - xn||2
+Bn(1 =) |2n — T2 ||% + 270 (1 + qn). (2.4)
Using Lemma 1.5, (1.22), (2.1) and (2.3), we have
|l yn — TnynH2 = [|(1 = Bn)(@n — T"yYn) + Ba(T"2n — Tnyn)”2
=(1 _(ﬁn)”xn)ﬁ T”ynH2 +||€n||Tnzn - Tnyn||2
_6n 1-—- ﬁn T"zp —
< (1/8_(@1)”;”)[ T”ynHQ +H€2L2H2n - Tnan2
—Bn(1 = Bo)||T" 2y, — 2y,
< (é_Qﬁnwxn - Tn%nHQ + BELQ{O — o) |7 _2Tnan2+
YL ||z — T xn|* — ’7712(1 — W) T2y — 20 ||*}
Brn(1 = Ba)|T" 20 — 20|l
= (1= Bn)lln — T”ynH2 + 62L2(1 — Y)llTn — T”zn|]2—
IBTSLLQ/yn(]‘ —Tn — '7%L2)"Tn$n - $n||2_
Brn(L = BT 20 — l‘nHQ. (2.5)
Using (1.22), (2.4) and (2.5), we have
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1Ty — plI> < qullyn — pII> + lyn — T"ynl* + 27
< Qn{<q721‘|xn )_Hp”2 - /Bn’Yr’L‘(Ql - ’Yn(_ 'YHQn); 7721L2)‘|Tnxn - xn”2+
Brn(1 —vu)||lxn — T72n]|* + 270 (1 + gn) }+
(13—2571)(”3371 - Tn?lg”é)‘ﬂ 52[,2(1 - ’ﬁg)“xn - TnanQ_
BnL (1 =y — v L) | T" @y — x| —
/Bn(l - ﬁn)”TnZn - an2 + 27,
= C]fi”ﬂfn _pH2 - 5n’}/nQn(1 _Q'Yn — Yn4n — 772LL2)HTnxn - $n||2+
BnQn(l - 'Yn)HfEn - T;LZnH +2QQnTn(1 + Qn)+ )
(g_zﬂn)(nxn - T”yZH Q;h ngL (1- 'ﬁg)”xn = T" 2z ||*~
B Ly (1 — v — 5 L) [Ty — o |7 —
Bn(l - Bn)HTnZn - xn”z + 27,
< ((]§L||xn _)|1’0||2 - ﬁn'}/n(ﬁg(l - 77(L — Tnqn — ;;21L2)’|Tnl,n - 1'n||2(+ )
1—06n)||len — T yn||” + 270 (1 + qn + q;)- 2.6
Using Lemma 1.5, (1.22) and (2.6), we obtain:
st — pI? = (1 — @n)(@n — p) + (T — p)
< (I —an)l|zn —p||” + ani @, ||2n — P||"—
BnYntn (1 = Yn — YnGn — V%LQ)Hann - wnHQ"'
(1= Bn)llzn — TnynHz +27,(1 + g + quL)}_
an (1 — o) || T"yn — xn”2 (2.7)
< Q?LH‘TTL - pH2 - an/Bn'an%(l — Yn — Yndn — ;Y?LLQ)HTnl'n - $nH2+
angl — Bn))||]|a:n — Ty, ]|]|2 + 27,1+ qn +q;)—
an(l —an Tnyn — Tn
< (J%Hxn - p”2 - anﬁn%ﬂ]n(l —Yn — Tndn — ’772LL2)HTn$n - $n||2+
27 (1 + gn + ¢3)- (2.8)
From condition (b), we observe that there exists ng € N

I

1—2b— L%?
anﬁn'YnQn(l —TYn — Tndn — ’72112) = f > 0,Yn = ng. (2.9)

We note that
st = pl2 < [14+ (@ = D] llon = pl2 + 27 (1 + u + @2V 2 . (2.10)

Using Lemma 1.4, we see that lim, . ||z, — p|| exists. For each n > ng, we
i
ST = wnl? < (4 = p)llen — Pl + e — )P~

[Znt1 — Pl + 27 (1 + gn + ¢2), (2.11)
Hence,
lim ||T"z, —z,||> = 0. (2.12)
n—oo
Note that

[Znt1 = Znl| < anl|T"yn — 20|l < an(1T"yn — T @0l + (| T2 — 20|

< an(Lllyn — zpl| + | T" 20 — z0|))

< (14 BpL) || Tz — x4 (2.13)
Hence, from (2.12) we obtain

lim || T"z, — z,||> = 0. (2.14)

n—oo

By triangle inequality, we have
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20 — Tapll < |20 — Tl + [2ns1 — T an |
T i = T g | + 17, — T
< (U4 L)z — tpiall + 2nsr — T g
+L|T" %y, — x4 (2.15)
From (2.12) and (2.14), we have

lim ||T"z, —z,||> = 0. (2.16)
n—oo
But {z,} is bounded, hence we observe that there exists a susequence {x,,} C {z,}
such that z,,, — z*. From Lemma 1.7, we have that «* € F(T).

We now prove that {z,} converges weakly to z*. Next, we prove that z* is
unique. Suppose that there exists some subsequence {z,,} C {z,} such that {z,,}
converges weakly to 2/ € C and z* # 2/. From Lemma 1.7, we can show that
' € F(T). Put d = limy, o ||zn — 2*||. Since H satisfies Opial property, we see
that
d = limy,, o0 inf ||z, — 2*|] < limy,, o0 inf ||, — 2|

= limy,, oo inf ||z, — 2'[] < limy, o0 inf ||z, — 2*||

= limy,, o0 inf ||z, — 2*|| = d. (2.17)
Which is a contradiction. It follows that z* = 2/. The proof of the theorem is
complete.

Next, we establish the hybrid Noor algorithm for L-Lipschitzian asymptotically
pseudocontractive mappings in the intermediate sense to obtain a strong conver-
gence theorem without any compact assumption.

Theorem 2.2. Let C' be a nonempty closed convex bounded subset of a
real Hilbert space H, Po the metric projection from H onto C, and T : C — C
a uniformly L-Lipschitz and asymptotically pseudocontractive mapping in the
intermediate sense with sequences {k,} C [1,00) and 7, C [0,00) defined as in
(1.21). Let g, = 2k,, — 1 for each n > 1. Assume that F'(T) # 0. Let {2, }5°, be a
sequence in C generated by the following hybrid Noor algorithm:

yn = (1 —ap)xp + anT"z,
Zn = (1 - ﬂn)xn + BnTnsn
Sp= (1 =)@y + YT xn,n >0, (2.18)

Cpn={ueC: |y —ul® < ||zn — ul|®> + anbp
+anﬁn7n%z(’7n + YnQn + ’7721142 - 1)HTn$n - :UVLHQ}

Qn={ueC:(x)—zp,z, —u) >0},

\ Tn41 = PCTLI"IQ,,:Ula

where {a,}5%,, {Bn}%, and {7}, are three sequences satisfying
Qs B, Y € [0,1] for each n and 0,, = ¢, ([1 + Bn(gn —1)] = 1)M + 27, (1 + g, + ¢2)
for each n > 1. Assume that the control sequences {a,,}, {8, } and {v,} are chosen
such that a < oy, < By < Yo < b for some a > 0 and some b € (0, L=2[v/1 + L2—1]).
Then the sequence generated by (2.18) converges strongly to a fixed point of T.

Proof. The proof is divided into seven steps.
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Step 1. We must show that C,, N @, is closed and convex for all n > 1.
By definition of @, it is clear that it is closed and convex and C), is closed for
each n > 1. We, therefore, only need to show that C,, is convex for each n > 1.
Observe that
Cn={uecC:l|ly,—ul?*<||lzn —ul|? + anbn+

O‘nﬁn’}’nQn(%’L + Yngn + '772LL2 - 1)”Tnxn - an2} (2-19)
is equivalent to
Cr={u € C: 2apn — yn,u) < [[2]* = ynll® + cnbp+

anﬁn'}’n‘]n(’)/n + VYnQn + '7721[/2 - 1) ”Tnxn - anQ} (2'20)
Clearly, we see that C/, is convex for each n > 1. This implies that C,, N @, is
closed and convex for each n > 1. This completes Step 1.
Step 2. We must show that F(T') C C, N Qy, for each n > 1.

et p € . From Lemma 1.3 and the algorithm (2.18), we observe that
L F(T). F L 1.3 and the algorithm (2.18 b h
lyn — p||2 = [|(1 = an)(@n —p) + an(T"2n — p)”2
= (1 —an)l|zn — plI* + anll Tz — pl|* — an(1 — an) | T2, — zp?
< (1 —an)zn _pH2 + anganzn - pH2 + [l2n — TnZnH2 +27)—
an(l —ap)|T"zn — xn||
= (1—ay)lzy _pH2 + angnl|zn _pH2 + anllzn — T"zn”2+
200, — (1 — )| T2, — 0 ||% (2.21)
s = Bl = (1 = 20)(n = p) + 30T — ) 2
= (1= w)lln - pll2 + Wl T"zn — pl| L Yn(l — %)HT;% — Ty |
<(1 (* %Z)Hfﬁ —pll* + 'W|L|(QQH||5U7Z —plI* + |20 — T"@n||* + 27,) —
(L = )| T" Ty — T
= (L= y)llzn = pI? + Wmgnllzn — plI* + wmllzn — T 20|+
2970 — (1 — ) | T" 2 — an2 (2.22)
2 = Bl = 1= ) = ) + BT — )| 2
= (1= B)llzn — plI* + BallTsn — plI* — Bn(1 = Bl T" 80 — n |
< (1= Bn)l|lzn — p”2 + ﬂng%”sn _pH2 + [Isn — T”an2 +27)—
/Bn(l - Bn)HTnSn - an
= (1= B)llwn — p||2 + Bngnllsn — p”2 + Bullsn — Tn5n||2+
2BnTn — Bn(1 = Bn) | T™sn — ). (2.23)
[E— TnSnH2 = (T = v )(@n — T"sp) + (T 0 — Tnsn)||2
=(1 (_ 'Yn)Ha)jﬁ - Tnan2 ﬂ;%ﬂTﬂl’n - Tn5n||2_
Yn (1 — ) [|[T" T — 0
< (1(_’)%)”3)5’7‘1_Tn3n‘2 W;’YnLQHxn_SnHQ_ ( )
Y (1 — ) | T" Xy, — 20 ]|*- 2.24
| 2n — T"an2 = [|(1 = Bu)(wn — T"2n) + Bn(T"sn — T”zn)H2
=1 (_ Bn)HgiT - T”zn||2 FﬂnHTnsn - T”zn|]2—
ﬁn 1- /Bn T"sp — ap
< (1= Bn)llzn — TnZnHz + BnL2H5n - Zn”2*
Bn(1 = Bu)||T"sn _ZCnHz- (2.25)
Using (2.22)-(2.25), we obtain:
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lyn — plI* < (1 = an)l|Zn = pI* + angnllzn — pI* + cnllzn — T"20|*+
200, Ty, — an(l - an)HTnzn - 33nH2
< (1 - an)Hxn _pH2 + OénQn{(l - ﬁn)Hxn - p”2 + /BnQnHSn - pH2+
5n”3n - Tnsn”2 + 25717_71 - /877,(1 - /Bn)HTnsn - an2}+
an{(1 = Bp)llzn — TnZnHQ + BnLQHSn - Zn||2_
Bn(1 = BT 80 — 0|2} + 20070 — an(1 — )| T" 2 — 0 ]|?
=(1—ay)[lzs _pH2 + angn (1 — Bn)||lzn —p||2—|-
OénﬂnquHSn - P||2 + an/BnQann - ,Tnsn”2 + 2an‘]n/6n7_n_
nnBn(l = Bu)IT" sn — anQ + an(1 = Bn)l|zn — T”zn||2+
anﬁnLQHSn - Z"”2 — anBn(1 = Bp) || T8 — anQ + 20007, —
an (1l — )| T2 — a5
< ((1 = an) + angn(1 = Bu))llzn = plI* + anBuga{(1 = va)llzn — pl*+
'YnQonn - P||2 + ’Yn”-xn - Tnan2 + 2 Tn—
711(1 - pYn)HTn$n - anQ} + @anQn{(l - P)/n)Hwn - Tnan2+
’YnLQHxn - SnH2 - 771(1 - Vn)“Tnxn - mnHZ} + 20t,Gn BrnTn—
anQn/Bn<1 - 571)”Tn3n - anQ + an(l - BR)HQ;TL - Tnz’fl”2+
anﬁnL2H3n - ZnH2 - an/Bn(l - Bn)HTnSn - $nH2 + 20, T —
an (1l = ap) | T2, — a2
< {(1 - an) + an‘]n(l - /Bn) + anﬁn(ﬁz(l - ’Yn) + ’Ynanqg}H‘Tn _pH2+
{Oén/Bn'anrQL - anﬁnqr%'}/n(l - 'Yn) - Oln/BnQn’Yn(l - ’Yn)}”Tnl'n - l‘n”2
+2an7'n(1 + Bngn + ’Ynﬁn%%)
< Hxn _p||2 + O‘nﬁn'YnQn('Yn + YnQn + ’7721112 - 1)||Tn$n - ZEnHQ‘i‘
a6, (2.26)
where 0, = ¢n([1 + Bn(gn — 1)] = 1)M + 2(q,, + 1)7, for each n > 1. It follows that
p € Cyp, for all n > 1. This shows that F(T) C C, for all n > 1.
We now show that F(T) C @, for all n > 1. We prove this by inductions.
Clearly, F(T) C Q1 = C. Suppose that F(T) C Qy for some k > 1. Since zj1 is
the projection of x1 onto Ci N Qf, we see that

(r1 — Zpy1, Thp1 —y) 20, Vo € CpN Q.

By induction, we know that F'(T) C Cy N Q. Hence, for each y € F(T) C C, we
obtain:

(1 — Ty, 21 —y) 20, (2.27)

this implies that y € Qky1. Hence, F(T') C Ciy1. This shows that F(T') C @), for
all n > 1. Hence, F(T) C C, N Q,, for each n > 1. This completes step 2.

Step 3. We must show that lim,_, ||z, — z1|| exists.

From (2.18), we observe that x, = Py, x1 and z,41 € @, which shos that

1 = 2nll <21 — Znga ] (2.28)

Hence the sequence |z, — z1]| is nondecreasing. Recall that C' is bounded. This
implies that lim,,_, ||y — x1|| exists. This completes step 3.

Step 4. We must show that z,11 — z, — 0 as n — oo.

Observe that =, = Py, z1 and x,41 = Pc,ng, € @n. This implies that

(Tnt1 — Tpyx1 — ) <0, (2.29)

from which it follows that
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[Zn41 = 20]* = [[(Tng1 — 21) + (21 — 2) ||
= lzni1 — 21l + |21 — 20 |* + 2(zpi1 — 21,21 — T0)
< wnsr = 21]? = g — 2. (2.30)
Hence, we obtain z,4+1 — x, — 0 as n — co. This completes step 4.
Step 5. We must show that T"z,, — x, — 0 and T"s,, — x,, — 0 as n — oo.
In view of z,11 € C},, we obtain
1Yn = Tnt1l® < [lzn — Tpr1]]* + anby (2.31)
+[an/82L27n(QN’7n + LQ’V?L - 1)]||Tnxn - an2
+(anQn/B1% - ’YnanQn/B% + anﬁgL2 + anﬁg - anﬁn)HTnsn - anz
On the other hand, we see that

yn—2nt1]1* = [lyn—zn+an—p4|* = Hyn_an2+Hxn_xn+1“2+2<yn_$naxn(_xn-)H)-
2.32
Combining (2.31) and (2.32) and recalling that y, = (1 — ap)zn + anT™2y, we
obtain:
|| T 2n — || + 2T 2y, — T, Ty, — Tpy1)
<0, + [anﬁzLQ'Yn(Qn’Yn + L2772L - 1)] HTnxn - an2

+(04nQn/8721 - ’VnanQnﬁg + anﬁng

+anB2 — anBn)|T"sn — > (2.33)
From the asumption, we observe that there exists ng such that

1= quyn — LPA2 > I_%QW > 0,Vn > ng. (2.34)
For any n > ny, it follows from (2.33) that
e 2b27 i 1T 2n — @nl|® < Op + 2/|T" 20 — @nl|[|2n — Znga | (2.35)
Similarly,
W =2b= L) e 12 < By 4 2T — |l — anall. (2.36)

2

Note that 6,, — 0 as n — oco. Hence, by Step 4, we have:

lim || T"z, — x| = 0. (2.37)
n—oo
and
lim [|[T"s, — z,| = 0. (2.38)
n—oo

This completes Step 5.
Step 6. We must show that Tz, — z, — 0 and T's,, — z,, = 0 as n — oo.
|Zn — Txp|| < |20 — Tpa || + [[Tn41 — T“+1xn+1H
+| T 2 — T || + [T 2y, — Ty ||
S+ Dllzn = zppr ]| + [2nr1 — T ap |
+L| Ty, — x| (2.39)
Similarly,
|20 — Tsnll < |20 — Tpgal| + [|[Tn41 — Tn+13n+1||
H| T 51 — T sy || + [T s, — Tsy|
<+ Dllzn = zpsall + |20 — Tn+13n+1”
+L||T"sp, — |- (2.40)
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The conclusion follows from Step 5. This completes Step 6.
Step 7. We must show that z,, — ¢, where ¢ = Pp()z1 as n — oo.

From Lemma 1.5, we have that wy,(z,) C F(T'). From x, = Py, z1 and F(T) C
Qn, we observe that

21 =zl < flz1 — |- (2.41)

From Lemma 1.5 of Yanes and Xu [31], we obtain Step 7. The proof of Theorem
2.2 is complete.

Remark 2.3. The results of Theorem 2.2 is more general and it is an im-
provement of X. Qin et al. [24], in the sense that if 7, = 0 Vn > 1, then, we obtain
the results of Qin et al. [24]. If 7, = 0, Vn > 1, then we obtain the results of Kim
and Xu [10], Marino and Xu [13], Qin et al. [24], Sahu et al. [28] and Zhou [33].

3. Conclusion

The fixed points results established in this paper improves, generalizes and extends
several other fixed point results in literature including Schu [29], Qin et al. [24]
among others.
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