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Abstract. The spline collocation method is used to approximate solutions of boundary value
problems. The convergence analysis is given and the method is shown to have second-order
convergence. A numerical illustration is given to show the pertinent features of the technique.
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1. Introduction

Boundary value problems (BVPs) are mathematical models for several physical
phenomena. For example, when an infinite horizontal layer of fluid is heated from
below and is subject to the action of rotation, instability sets in. When this in-
stability sets in as ordinary convection, the ordinary differential equation is sixth
order. When the instability sets in as overstability, it is modeled by an eighth-order
ordinary differential equation [4]. If an infinite horizontal layer of fluid is heated
from below, with the supposition that a uniform magnetic field is also applied
across the fluid in the same direction as gravity and the fluid is subject to the ac-
tion of rotation, instability sets in. When instability sets in as ordinary convection,
it is modeled by tenth-order boundary value problem. When instability sets in as
overstability, it is modeled by twelfth-order boundary value problem [4].
We consider in this paper the numerical approximation for the boundary value

problems of the form

y(r)(x) = f(x, y(x), y′(x), . . . , y(r−1)(x)), x ∈ [a, b], (1)
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y(m)(a) = αm, m = 0, . . . , r2 − 1, y(m)(b) = βm, m = 0, . . . , r1 − 1, (2)

where f = f(x, z0, . . . , zr−1) is a real valued function on Rr+1 sufficiently smooth,
αi(i = 0, . . . , r2−1), and βi(i = 0, . . . , r1−1) are real finite constants, with

r2 = ⌊r
2
⌋ = max{n ∈ N, n ⩽ r

2
}, r1 = ⌈r

2
⌉ = min{n ∈ N, n ⩾ r

2
}.

Theorems which list the condition for the existence and uniqueness of solution of
such problems are thoroughly discussed in a book by Agarwal [1]. In general it
is not possible to obtain the analytical solution of (1)-(2) for arbitrary choices of
f. Consequently, we usually resort to some numerical methods for obtaining an
approximate solution of (1)-(2).
A variety of numerical methods are available in the literature to solve boundary-

value problems. These methods include finite-difference methods [5], orthogonal
spline collocation methods [3], sinc-Galerkin methods [6].
In [7], we have developed two methods for the solution of special linear and non-

linear fifth order boundary value problem, respectively. The first one uses spline
interpolants and the second is based on spline quasi-interpolants which are con-
structed from sextic splines. In [8], septic spline collocation method based on spline
interpolants was proposed for solving the general sixth-order boundary-value prob-
lems. These methods have extended for the solution of some linear boundary value
problems [10].
In the present paper, a spline collocation method using a spline interpolant which

satisfies the same boundary conditions, is developed and analyzed for approximat-
ing solutions of boundary value problems. There is proved to be second order
convergent.
This paper is organized as follows. Section 2 is devoted to spline collocation

method for linear/nonlinear BVPs using spline interpolant. Next, we prove that
this method is second order convergent and we derive the error bound of the spline
solution. Finally, we give in Section 3 some numerical examples that illustrate the
theoretical results and the convergence of the developed method.

2. Collocation Method Using a Spline Interpolant

2.1 Spline Interpolant

Collocation method is often presented as a generalization of interpolation. More
specifically, if the differential operator is reduced to identity operator, the colloca-
tion method is reduced to interpolation. Moreover, the order of convergence of the
collocation method is often related to that of the interpolant in the same approxi-
mation space.
In this section, we define a spline interpolant S of degree r + 1 satisfying bound-
ary conditions (2) with optimal approximation order. To do this we consider the
uniform grid partition

∆ = {a = x−r−1 = . . . = x0 < x1 < . . . < xn−1 < xn = . . . = xn+r+1 = b},

of the interval I = [a, b], where xi = a + ih, 0 ⩽ i ⩽ n, and h = (b − a)/n. Let
Bi, i = −r− 1, . . . , n− 1, be the B-splines of degree r+ 1 associated with ∆. It is
well known that these B-splines form a basis for the space

Sr
r+1(I,∆) = s ∈ Cr(I) : s|[xi,xi+1] is a polynomial of degree = r + 1.
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Theorem 2.1 Let y be the exact solution of the problem (1) with boundary condi-
tions (2), then there exists a unique spline interpolant of y S ∈ Sr

r+1(I,∆) satisfying

S(m)(x0) = y(m)(x0) = αm, m = 0, . . . , r2 − 1, (3)

S(ti) = y(ti), i = 1, . . . , n+ 1 (4)

S(m)(xn) = y(m)(xn) = βm, m = 0, . . . , r1 − 1, (5)

where ti = (xi + xi−1)/2, i = 1, . . . , n, tn+1 = xn−1.

Proof Let S =
n−1∑

j=−r−1

cjBj be a spline in Sr
r+1([a, b], τ) that satisfies the conditions

(4)-(5). Since

(− ω)r+2−ν

(r + 2− ν)!
=

n−1∑
j=−r−1

(−D)ν−1ψj(ω)

(r + 1)!
Bj , ν = 1, . . . , r + 2,

ψj(ω) = (xj+1 − ω) . . . (xj+r+1 − ω), and D is the derivative operator, we have

cj =

j+r+2∑
ν=1

1

(r + 1)!
(−D)r+2−νψj(a)y

(ν−1)(a) for j = −r − 1, . . . ,−r − 2 + r2, and

cj =

n−j∑
ν=1

1

(r + 1)!
(−D)r+2−νψj(b)y

(ν−1)(b) for j = n− r1, . . . , n− 1.

The other coefficients cj , j = −r+r2−1, . . . , n−r1−1, are obtained as a unique
solution of a linear system introduced in ([9] Theorem 1). ■

Now, we give explicitly the coefficients cj , j = −r − 1, . . . ,−r − 2 + r2 and
cj , j = n− r1, . . . , n− 1, for some values of r which we will use in Section 3.

For r = 8, we have

c−9 = y(a), c−8 = y(a) +
h

9
y′(a), c−7 = y(a) +

h

3
y′(a) +

h2

36
y

′′
(a),

c−6 = y(a) +
2h

3
y′(a) +

11h2

72
y

′′
(a) +

h3

84
y(3)(a),

cn−4 = y(b)− 2h

3
y′(b) +

11h2

72
y

′′
(b)− h3

84
y(3)(b),

cn−3 = y(b)− h

3
y′(b) +

h2

36
y

′′
(b), cn−2 = y(b)− h

9
y′(b), cn−1 = y(b).
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For r = 10, we have

c−11 = y(a), c−10 = y(a) +
h

11
y′(a), c−9 = y(a) +

3h

11
y′(a) +

h2

55
y

′′
(a),

c−8 = y(a) +
6h

11
y′(a) +

h2

10
y

′′
(a) +

h3

165
y(3)(a),

c−7 = y(a) +
10h

11
y′(a) +

7h2

22
y

′′
(a) +

5h3

99
y(3)(a) +

h4

330
y(4)(a),

cn−5 = y(b)− 10h

11
y′(b) +

7h2

22
y

′′
(b)− 5h3

99
y(3)(b) +

h4

330
y(4)(b),

cn−4 = y(b)− 6h

11
y′(b) +

h2

10
y

′′
(b)− h3

165
y(3)(b),

cn−3 = y(b)− 3h

11
y′(b) +

h2

55
y

′′
(b), cn−2 = y(b)− h

11
y′(b), cn−1 = y(b).

For r = 12, we have

c−13 = y(a), c−12 = y(a) +
h

13
y′(a), c−11 = y(a) +

3h

13
y′(a) +

h2

78
y

′′
(a),

c−10 = y(a) +
6h

13
y′(a) +

11h2

156
y

′′
(a) +

h3

286
y(3)(a),

c−9 = y(a) +
10h

13
y′(a) +

35h2

156
y

′′
(a) +

25h3

858
y(3)(a) +

h4

715
y(4)(a),

c−8 = y(a) +
15h

13
y′(a) +

85h2

156
y

′′
(a) +

75h3

572
y(3)(a) +

137h4

8580
y(4)(a) +

h5

1287
y(5)(a),

cn−6 = y(b)− 15h

13
y′(b) +

85h2

156
y

′′
(b)− 75h3

572
y(3)(b) +

137h4

8580
y(4)(b)− h5

1287
y(5)(b),

cn−5 = y(b)− 10h

13
y′(b) +

35h2

156
y

′′
(b)− 25h3

858
y(3)(b) +

h4

715
y(4)(b),

cn−4 = y(b)− 6h

13
y′(b) +

11h2

156
y

′′
(b)− h3

286
y(3)(b),

cn−3 = y(b)− 3h

13
y′(b) +

h2

78
y

′′
(b), cn−2 = y(b)− h

13
y′(b), cn−1 = y(b).

2.2 Spline Collocation Method

It is well known, see [2], that the interpolation with splines of degree d gives O(hd+1)
uniform norm errors for the interpolant and O(hd+1−s) errors for the sth derivative
of the interpolant. Thus, for any y . Cr+2([a, b]) we have

∥Ds(y − S)∥∞ = O(hr+2−s), for s = 0, . . . , r. (6)

We suppose that exact solution of the BVPs (1) and (2) is of class Cr+2([a, b]).
Since the interpolatory spline S satisfies (6), it follows from (1) that

S(r)(ti) = f
(
ti, S(ti) +O(hr+2), . . . , S(r−1)(ti) +O(h3)

)
+O(h2), i = 1, . . . , n+1.

(7)
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Then, the spline collocation method presented in this section consists in finding a
spline

S̃(x) = µ(x) +

n−1−r1∑
j=−r+r2−1

c̃jBj(x), (8)

which satisfies

S̃(r)(ti) = f
(
ti, S̃(ti), . . . , S̃

(r−1)(ti)
)
, i = 1, . . . , n+ 1, (9)

where

µ(x) =

−r−2+r2∑
j=−r−1

cjBj(x) +

n−1∑
j=n−r1

cjBj(x).

2.3 Spline Solution of Linear BVPs

In the case of linear boundary-value problem, f(x, y, . . . , y(r−1)) has the form

f
(
x, y(x), ..., y(r−1)(x)

)
= −

r−1∑
k=0

pk(x)y(
k)(x) + g(x),

where pk, 0 ⩽ k ⩽ r − 1, and g are given continuous functions defined in the
bounded interval [a, b]. Taking

C = [c−r+r2−1, . . . , cn−r1−1]
T and C̃ = [c̃−r+r2−1, . . . , c̃n−r1−1]

T ,

then (7) and (9) can be written respectively in the matrix forms(
Ah

r +

r−1∑
k=0

Ah
kPk

)
C = G+ e, (10)

(
Ah

r +

r−1∑
k=0

Ah
kPk

)
C̃ = G, (11)

where G = [g1, g2, . . . , gn+1]
T , ei = O(h2), i = 1, 2, . . . , n + 1 and Ah

k , Pk are the
following (n+ 1)× (n+ 1) matrices

Pk = diag(pk(ti)), i = 1, . . . , n+ 1,

Ah
k =

(
aki,j(h)

)
1⩽i,j⩽n+1

, where aki,j(h) = B
(k)
−r+r2−2+j(ti),

and

gi = g(ti)− µ(r)(ti)−
r−1∑
k=0

pk(ti)µ
(k)(ti), i = 1, . . . , n+ 1.
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Let Mj , j = −r− 1, . . . , n− 1, be the B-splines of degree r+1 associated with the
uniform partition
Xn = {0 = x−r−1 = . . . = x0 < x1 = 1 < . . . < xn−1 = n − 1 < xn = . . . =
xn+r+1 = n}, and defined by

Bj(x) =Mj

(
x−a
h

)
, ∀x ∈ [a, b]. Therefore, B

(k)
j (ti) =

1
hkM

(k)
j

(
ti−a
h

)
.

If we put

Ak =
(
aki,j

)
1⩽i,j⩽n+1

, where aki,j =M
(k)
−r+r2−2+j

(
ti − a

h

)
,

then

Ah
k =

1

hk
Ak, k = 0, . . . , r, (12)

with the coefficients of the matrix Ak, k = 0, . . . , r are independent of h. Indeed,

since ti−a
h = i − 1 + 1

2 , i = 1, . . . , n, the coefficients M
(k)
−r+r2−2+j

(
ti−a
h

)
, j =

1, . . . , r − r2 + 1, are independent of h. On the other hand, as Ml =M0(− l), l =

0, . . . , n − r − 2, we deduce that M
(k)
−r+r2−2+j

(
ti−a
h

)
, j = r − r2 + 2, . . . , n − r2,

are independent of h. In the same way, we can see that M
(k)
−r+r2−2+j

(
ti−a
h

)
, j =

n − r2 + 1, . . . , n + 1, are independent of h. In addition, we have proved that the
matrix Ar is invertible, for more details see [9].

Remark 1 By using Mathematica, we can compute explicitly the matrix Ak. As an
example, we give the matrix Ak, k = 0, 1, 2, for r = 2.

A0 =



19
32

25
96

1
48

1
32

15
32

23
48

1
48

0 1
48

23
48

23
48

1
48

. . .
. . .

. . .
1
48

23
48

23
48

1
48 0

1
48

23
48

15
32

1
32

1
48

25
96

19
32

1
6

7
12

1
4


, A1 =



− 3
16

13
16

1
8

−13
16 − 9

16
5
8

1
8

0 −1
8 −5

8
5
8

1
8

. . .
. . .

. . .

−1
8 −5

8
5
8

1
8 0

−1
8 −13

16
3
16

−1
8 −13

16
3
16

−1
2 −1

4
3
4



A2 =



−15
4

1
4

1
2

3
4 −3

4 −1
2

1
2

0 1
2 −1

2 −1
2

1
2

. . .
. . .

. . .
1
2 −1

2 −1
2

1
2 0

1
2 −1

2 −3
4

3
4

1
2

1
4 −15

4
1 −5

2
3
2


According to (12), the systems (10) and (11) can be written in the following
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forms (
Ar +

r−1∑
k=0

hr−kAkPk

)
C = hr(G+ e), (13)

(
Ar +

r−1∑
k=0

hr−kAkPk

)
C̃ = hrG, (14)

Proposition 2.2 If ∥A−1
r ∥∞

(∑r−1
k=0 h

(r−k)∥Ak∥∞∥Pk∥∞
)
< 1, then there exists a

unique spline S̃ that approximates the exact solution y of problem (1) with boundary
conditions (2).

Proof For a small real h such that

∥A−1
r ∥∞

(
r−1∑
k=0

h(r−k)∥Ak∥∞∥Pk∥∞

)
< 1,

the matrix (
I +A−1

r

(
r−1∑
k=0

h(r−k)AkPk

))−1

, exists,

and

∥∥∥∥(I +A−1
r

(∑r−1
k=0 h

(r−k)AkPk

))−1
∥∥∥∥
∞
< 1

1−∥A−1
r ∥∞(

∑r−1
k=0 h

(r−k)∥Ak∥∞∥Pk∥∞)
.

From (14), we get

C̃ = hr

(
I +A−1

r

(
r−1∑
k=0

h(r−k)AkPk

))−1

A−1
r G.

■

Proposition 2.3 If we choose the real h such that

∥A−1
r ∥∞

(∑r−1
k=0 h

(r−k)∥Ak∥∞∥Pk∥∞
)

< 1
2 , then there exists a constant K

which depends only of the functions pk and g such that

∥C − C̃∥∞ ⩽ Kh2. (15)

Proof Assume that ∥A−1
r ∥∞

(∑r−1
k=0 h

(r−k)∥Ak∥∞∥Pk∥∞
)
< 1

2 , from (13) and (14),

we have

C − C̃ = hr

(
I +A−1

r

(
r−1∑
k=0

h(r−k)AkPk

))−1

A−1
r e.

Since e = O(h2), there exists a constant K1 such that ∥e∥∞ ⩽ K1h
2. Consequently,

∥C − C̃∥∞ ⩽ K1
hr∥A−1

r ∥∞
1− hr∥A−1

r ∥∞
(∑r−1

k=0 h
(−k)∥Ak∥∞∥Pk∥∞

)h2.
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Using 0 < h ⩽ (b− a), we deduce that

∥C − C̃∥∞ ⩽ K1(∑r−1
k=0(b− a)(−k)∥Ak∥∞∥Pk∥∞

)h2.
■

Now, we are in position to prove the main theorem of this section.

Theorem 2.4 The spline approximation S̃ converges quadratically to the exact
solution y of the BVPs defined by (1) and (2), i.e., ∥y − S̃∥∞ = O(h2).

Proof According to (6), there exists a constant Λ0 such that

∥y − S∥∞ ⩽ Λ0h
r+2.

On the other hand we have

S(x)− S̃(x) =

n−1−r1∑
j=−r+r2−1

(cj − c̃j)Bj(x).

Therefore, by using (15 ), we get

|S(x)− S̃(x)| ⩽ ∥C − C̃∥∞
n−1−r1∑

j=−r+r2−1

Bj ⩽ ∥C − C̃∥∞ ⩽ Kh2.

As ∥y − S̃∥∞ ⩽ ∥y − S∥∞ + ∥S − S̃∥∞ we deduce the stated result. ■

2.4 Spline Solution of Nonlinear BVPs

In this section we assume that f is a nonlinear function and satisfies the Lipschitz
condition

|f(x, y0, . . . , yr−1)− f(x, z0, . . . , zr−1)| ⩽ L
r−1∑
i=0

|yi − zi|, (16)

for all xin [a, b] and all yi, zi ∈ R, i = 0, . . . , r − 1, where L > 0 is the Lipschitz
constant.

Taking C = [c−r+r2−1, . . . , cn−r1−1]
T and C̃ = [c̃−r+r2−1, . . . , c̃n−r1−1]

T , then (7)
and (9) can be written respectively in the matrix forms

ArC = hr(F −M) + e, (17)

ArC̃ = hr(FC̃ −M), (18)
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where

F =


f
(
t1, y(t1), . . . , y

(r−1)(t1)
)

...

...

f
(
tn+1, y(tn+1), . . . , y

(r−1)(tn+1)
)

 , FC̃ =


f
(
t1, S̃(t1), . . . , S̃

(r−1)(t1)
)

...

...

f
(
tn+1, S̃(tn+1), . . . , S̃

(r−1)(tn+1)
)


M = [µ(r)(t1), . . . , µ

(r)(tn+1)]
T , and ei = O(hr+1), i = 1, 2, . . . , n+ 1.

Proposition 2.5 If ∥A−1
r ∥∞

(∑r−1
k=0 h

r−k∥Ak∥∞
)
< 1, then there exists a unique

spline that approximates the exact solution y of problem (1) with boundary condi-
tions (2).

Proof From (17), we get

C̃ = hrA−1
r (FC̃ −M), (19)

setting Z = C̃, we derive the following

φ(Z) = hrA−1
r (FZ −M) = Z, (20)

where Z = [z1, . . . , zn+1]
T and

FZ =


f
(
t1, SZ(t1), . . . , S

(r−1)
Z (t1)

)
...
...

f
(
tn+1, SZ(tn+1), . . . , S

(r−1)
Z (tn+1)

)



with S(k)Z = µ(k) +

n−1−r1∑
j=−r+r2−1

zj+r−r2+2B
(k)
j , k = 0, . . . , r − 1.

We will prove that the function φ(Z) has a unique fixed point, i.e., the equation
(19) has a unique solution. Let Z1, Z2 ∈ Rn+1. Using (20), we get

∥φ(Z1)− φ(Z2)∥∞ ⩽ hr∥A−1
r ∥∞∥FZ1

− FZ2
∥∞ (21)

Since f satisfies conditions (16), it follows that

|f(ti, SZ1
(ti), . . . , S

(r−1)
Z1

(ti)) − f(ti, SZ2
(ti), . . . , S

(r−1)
Z2

(ti))|

⩽ L
r−1∑
k=0

|S(k)
Z1

(ti)− S
(k)
Z2

(ti)|

⩽ L

(
r−1∑
k=0

h−k∥Ak∥∞

)
∥Z1 − Z2∥∞
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Consequently,

∥FZ1
− FZ2

∥∞ ⩽ L

(
r−1∑
k=0

h−k∥Ak∥∞

)
∥Z1 − Z2∥∞.

From (21), we deduce that

∥φ(Z1)− φ(Z2)∥∞ ⩽ L∥A−1
r ∥∞

(
r−1∑
k=0

hr−k∥Ak∥∞

)
∥Z1 − Z2∥∞.

Thus, if we assume that L∥A−1
r ∥∞

(∑r−1
k=0 h

r−k∥Ak∥∞
)
< 1, φ is a strong contrac-

tion mapping. ■

From equations (17) and (18), we get

Ar(C − C̃) = hr(F − FC̃) + e. (22)

Proposition 2.6 If L∥A−1
r ∥∞

(∑r−1
k=0 h

r−k∥Ak∥∞
)
⩽ 1

2 , then there exists a con-

stant K2 which depends only of the function f such that

∥C − C̃∥∞ ⩽ K2h
2. (23)

Proof From (22), we have

(C − C̃) = hrA−1
r (F − FC̃) +A−1

r e.

Since e = O(hr+2), there exists a constant K3 such that ∥e∥∞ ⩽ K3h
r+2.

Consequently,

∥C − C̃∥∞ ⩽ hr∥A−1
r ∥∞∥F − FC̃∥∞ +K3∥A−1

r ∥∞hr+2. (24)

On the other hand we have

|f(ti, y(ti), ..., y(r−1)(ti)) − f(ti, S̃(ti), ..., S̃
(r−1)(ti))|

⩽ L

r−1∑
k=0

|y(k)(ti)− S̃(k)(ti)|

⩽ L

r−1∑
k=0

(
|y(k)(ti)− S(k)(ti)|+ |S(k)(ti)− S̃(k)(ti)|

)
.

According to (6), there exists the constants Λk such that

∥y(k) − S(k)∥∞ ⩽ Λkh
r+2−k∥y(r+2)∥∞, for k = 0, . . . , r.

Moreover, as

S(k)(ti)− S̃(k)(ti) =

n−1−r1∑
j=−r+r2−1

(cj − c̃j)B
(k)
j (ti),
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we have

|S(k)(ti)− S̃(k)(ti)| ⩽
1

hk
∥Ak∥∞∥C − C̃∥∞

Thus,

∥F − FC̃∥∞ ⩽ L∥C − C̃∥∞

(
r−1∑
k=0

h−k∥Ak∥∞

)
+ L

(
r−1∑
k=0

Λkh
r+2−k

)
∥y(r+2)∥∞.

From (24), we deduce that[
1− Lhr∥A−1

r ∥∞

(
r−1∑
k=0

h−k∥Ak∥∞

)]
∥C − C̃∥∞

⩽ hr∥A−1
r ∥∞

[(
r−1∑
k=0

Λkh
r+2−k

)
∥y(r+2)∥∞ +K3h

2

]
.

Using the inequality L∥A−1
r ∥∞

(∑r−1
k=0 h

r−k∥Ak∥∞
)
⩽ 1

2 , we get

∥C − C̃∥∞ ⩽
L
(∑r−1

k=0 Λkh
r−k
)
∥y(r+2)∥∞ +K3

L
(∑r−1

k=0 Λk(b− a)−k∥Ak∥∞
) .

■

Now, we are in position to prove the main theorem of this section.

Theorem 2.7 The spline approximation S̃ converges quadratically to the exact
solution y of the BVPs defined by (1) and (2), i.e., ∥y − S̃∥∞ = O(h2).

Proof According to (6), there exists a constant Λ0 such that

∥y − S∥∞ ⩽ Λ0h
r+2.

On the other hand we have

S(x)− S̃(x) =

n−1−r1∑
j=−r+r2−1

(cj − c̃j)Bj(x).

Therefore, by using (23), we get

|S(x)− S̃(x)| ⩽ ∥C − C̃∥∞
n−1−r1∑

j=−r+r2−1

Bj ⩽ ∥C − C̃∥∞ ⩽ K2h
2.

As ∥y − S̃∥∞ ⩽ ∥y − S∥∞ + ∥S − S̃∥∞, we deduce the stated result. ■

3. Test Examples and Numerical Results

To illustrate the previous theory, we solve the following problems.
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Example 3.1 Consider the following boundary value problem discussed in [5] using
finite-difference methods.

y(8)(x) = 7!exp(−8y(x))− 2(7!)(1 + x)−8, x ∈ [0, e1/2 − 1],

y(0) = 0, y′(0) = 1, y
′′
(0) = −1, y(3)(0) = 2, y(e1/2 − 1) = 1/2,

y′(e1/2− 1) = 1√
e
, y

′′
(e1/2 − 1) = −1/e, y(3)(e1/2 − 1) = 2/e3/2,

(25)

which has the exact solution y(x) = ln(1 + x).
The results are summarized in Table 1. In the first and second column, we give

the maximum absolute errors computed at various points of the interval [0, 1], for
the problem (25) and the convergence orders for the spline collocation method
(SCM) presented in Section 2, respectively. The table shows that the errors for
SCM are better than those given by the finite-difference methods discussed in [5].

Table 1. Error norms for Problem (25)

n Max. Abs. Errors using SCM Order Max. Abs. Errors [5]

8 2.3858e − 008 1.9730 1.76e − 006
16 6.0772e − 009 2.1414 1.12e − 007
32 1.377e − 009 2.1055 7.10e − 009
64 3.2010e − 010 2.004 4.44e − 010
128 8.0002e − 011

Example 3.2 Consider the following boundary value problem discussed in [5] using
finite-difference methods.

y(10)(x) = 9!exp(−10y(x))− 2(9!)(1 + x)−10, x ∈ [0, e1/2 − 1],

y(0) = 0, y′(0) = 1, y
′′
(0) = −1, y(3)(0) = 2, y(4)(0) = −6,

y(e1/2 − 1) = 1/2, y′(e1/2 − 1) = 1√
e
, y

′′
(e1/2 − 1) = −1/e

y(3)(e1/2 − 1) = 2/e3/2, y(4)(e1/2 − 1) = −6/e2,

(26)

which has the exact solution y(x) = ln(1 + x).
A comparison of the maximum errors (in absolute values) for the problem (26)

and the convergence order for SCM are summarized in Table 2. The table shows
that the errors for SCM are better than those given by the finite- difference methods
discussed in [5].

Table 2. Error norms for Problem (26)

n Max. Abs. Errors using SCM Order Max. Abs. Errors [5]

8 1.7351e − 009 2.4128 1.09e − 005
16 3.2584e − 010 2.0543 7.01e − 007
32 7.8451e − 011 2.0224 4.42e − 008
64 1.9310e − 011 2.0100 2.72e − 009
128 4.7941e − 012

Example 3.3 Consider the following boundary value problem
y(12)(x)− y(x) = −12(2xcos(x) + 11sin(x)), x ∈ [−1, 1],

y(−1) = 0, y′(−1) = 2sin(1), y
′′
(0) = 0, y(3)(−1) = 6(cos(1)− sin(1)),

y(4)(−1) = 8cos(1) + 12sin(1), y(5)(−1) = −20cos(1) + 10sin(1),

y(1) = 0, y′(1) = 2sin(1), y
′′
(1) = 4cos(1) + 2sin(1), y(3)(1) = 6(cos(1)− sin(1)),

y(4)(1) = −8cos(1)− 12sin(1), y(5)(1) = −20cos(1) + 10sin(1),
(27)
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the exact solution of the above system is y(x) = (x2 − 1)sin(x).
In Table 3 we give the maximum absolute errors computed at various points of
the interval [a, b], for the problem (27), and the convergence order for SCM. A
comparison of the maximum errors (in absolute values) for the problem (27) is
summarized in Table 4. Moreover, the methods developed in this paper are better
than the non-polynomial spline method given in [11]. Indeed, the maximum abso-
lute errors by using the SCM and non-polynomial spline method are respectively
4.4008e − 010 and 4.69e − 005 for h = 1/16.

Table 3. Error norms for the problem (27) using

SCM.

n Max. Abs. Errors using SCM Order

8 1.7783e − 09 2.0147
16 4.4008e − 010 2.0003
32 1.1000e − 010 2.0137
64 2.7241e − 011

Table 4. Comparison of numerical results for problem (27), with n = 22.

Siddiqi and Twizell [11] Siddiqi and Twizell Method presented

x ∈ [x6, xn−6] Otherwise
1.366e − 004 1.044e + 024 3.4154e − 010

4. Conclusion

Spline collocation method based on a spline interpolant is developed for the ap-
proximate solution of some general BVPs. The method is also proved to be second
order convergent. It has been observed that the relative errors (in absolute values),
are better than those given by other collocation and finite-difference methods. So,
its extension to singularly perturbed two-point boundary-value problems, using
spline collocation on non-uniform partitions, is under progress.
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