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Abstract. The multi-parametric programming (mp-P) is designed to minimize the number of
unnecessary calculations to obtain the optimal solution under uncertainty, and since we widely
encounter to that kind of problem in mathematical models, its importance is increased. Al-
though mp-P under uncertainty in objective function coefficients (OFC) and right-hand sides
of constraints (RHS) has been highly considered and numerous methods have been proposed to
solve them so far, uncertainty in the coefficient matrix (i.e., left-hand side (LHS) uncertainty)
has been less considered. In this work, a new method for solving multi-parametric mixed inte-
ger linear programming (mp-MILP) problems under simultaneous uncertainty OFC, RHS, and
LHS is presented. The method consists of two stages which in the first step, using tightening
McCormick relaxation, the boundaries of the bilinear terms in the original mp-MILP prob-
lem are improved, the approximate model of the problem is obtained based on the improved
boundaries of the first stage, and finally an algorithm is presented to solve these kinds of
problems. The efficiency of the proposed algorithm is investigated via different examples and
the amount of required calculations for solving the problem in different partitioning factors
is compared. Also, model predictive control (MPC) using mp-P is designed for an example of
urban traffic network to examine the practical application of the proposed algorithm.
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1. Introduction

The principal aim of programming is to control future events in accordance with
the objectives so that it is more prepared to deal with upcoming changes. Un-
certainty exists widely in the models presented for physical phenomena, so it is
important to investigate the changes in the optimal solution obtained after solving
the model. In multi-parametric programming (mp-P), an optimization problem is
solved for a range and as a function of multiple parameters. In recent decades,
mp-P has received a lot of attention. Applications of that can be seen in model
predictive control (MPC) [26, 30–32, 34] scheduling under uncertainty [23, 33], and
bi-level and dynamic programming [4–6, 13].
In spite of good advances for certain classes of mp-P problems such as multi-
parametric linear programming (mp-LP), mp-MILP, multi-parametric mixed inte-
ger programming (mp-MIP), and multi-parametric quadratic programming (mp-
QP), with OFC and RHS uncertainty, or a combination of both, models with an
LHS uncertainty have been received less attention. The problem facing these prob-
lems is that owing to the presence of the parameter on the left-hand side of the
constraints, a bilinear term is created which is followed by the computational com-
plexity of the resulting problem.
In [28] two algorithms for solving mp-MILPs are presented in general for when we
have a single parameter uncertainty at the same time, the first is based on the
branch and bound algorithm and solving parametrically an LP in each single node,
and the second divides the problem into MILP, mp-LP and MINLP sub-problems.
In both algorithms presented in [28] to solve linear parametric sub-problems, the
algorithm presented in [11] is used and their algorithm can be used even in the spe-
cific single parameter studied for problems with limited variable numbers. In [22],
a method for solving a small-sized mp-MILP problems with general uncertainty
based on the branch and bound algorithm and using the optimality conditions
for the standard linear optimization problem is presented. In the circumstances
that the uncertainty appears on the left side, some researchers apply projection
algorithms [3] based on convex hulls for a full explanation of the critical region,
and the type of projection algorithms that they use have an influence on the re-
sults that they acquired. In [37] an approximation algorithm for global solutions
of general mp-MILP problems is presented. They transform the LHS uncertainty
into the RHS uncertainty by using McCormick relaxation, as well as employ the
logarithmic partitioning scheme for parameter space to cut down the number of
decision variables. Then by using that approximation and applying the two-step
method [36], they have presented a general piecewise affine relaxation for this kind
of problems which as the number of the Partitioning number increases, the number
of subproblems that must be solved in linear and logarithmic states increases lin-
early and logarithmically respectively. An algorithm for an LHS single-parameter
uncertainty in the LP problem is considered in [20]. The authors had developed
an algorithm to find optimal values for the entire range of parameters by using
a two-step iterative method. At first, by applying the Flavell-Salkin approximate
approach [14], the optimality condition equations is solved and then the location
of break-points is found. In the second step, the rigorous Woodbury equation [17]
is used to check the accuracy of the results and they will be up-to-date if it is
necessary. In [10], the authors suggest an analytical solution to solve mp-MILPs
under global uncertainty based on the principles of symbolic computation and
semi-algebraic geometry. They solve the Karush Kuhn Tucker (KKT) system of
the original problem by using Groebner Bases theory [35] within a symbolic com-
putational environment and obtain candidate solutions, and then through using
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the optimality and feasibility conditions, the global parametric optimal solutions
of the problem is achieved. One of the important features of that algorithm is the
precise computation of non-convex critical regions, but when the number of con-
straints and variables increases the number of initial candidate solutions grows.
As stated above, researches for problems with general uncertainty can be divided
into three categories, based on the relaxation of bilinear terms using such as Mc-
Cormick relaxation, Exact algorithm in single-parametric mode, and the use of
KKT conditions and symbolic environments to obtain accurate answers. The main
problem of all three mentioned methods is the limitation of its application in the
number of high variables because of the high computational volume, which shows
the importance of using a method to reduce the amount of calculations more than
before. To solve this problem, in this work, firstly by using the McCormick re-
laxation bilinear terms, resulting from the product of decision variable and the
uncertainty parameter, convert to the linear constraints and their bounds will be
improved. In the next step, a piecewise affine approximation of bilinear terms is
presented by applying the method where is introduced in [15] and bounds which
are obtained from the first step are improved. So this approximate model is an
RHS-mp-MILP problem. Then, the decomposition algorithm is implemented to
solve these problems [12] and using the available Matlab toolbox to solve mp-LPs,
YALMIP [24], an algorithm for mp-MILPs is presented in general. It is important
to note that the toolboxes provided for solving mp-MILP problems are only ap-
plicable if we have uncertainty on the right-hand side, and none of the toolboxes
presented so far is able to solve mp-MILP problems with simultaneous uncertainty,
especially the simultaneous uncertainty of LHS and OFC or LHS and RHS. The
efficiency of the proposed new algorithm for solving a general mp-MILP in order
to reduce the amount of calculations has been compared with another algorithm
for solving these problems presented in [37] and critical regions and the optimal
solution obtained from the new algorithm with critical regions and the optimal
solution presented in [10] are reported.
In addition, an example of urban traffic control is considered to demonstrate a
practical application of the proposed algorithm. As one of the most powerful and
widely used control technologies, MPC has been widely used in Traffic Signal Con-
trol (TSC) and significant results have been obtained. MPC methods have been
widely used in urban traffic networks [2], [16], [1] but they are often designed as a
deterministic framework, while uncertainty mostly existed in real traffic networks.
Hence uncertainty (eg traffic demand, random disturbances) should also be con-
sidered in traffic modeling.
Due to the complexity of the urban traffic system, the MPC approaches mentioned
for TSC try to balance the accuracy of the model with the calculation time for
its implementation. However, the biggest challenge for implementing MPC is the
complexity of its online optimization computing. To resolve this, some methods
have been used to reduce online computing, one of which is to solve the problem
offline with mp-P. Recently, optimization for control signal splitting for large-scale
traffic networks based on the store-and-forward model using explicit predictive
model-based control (EMPC) has been introduced [26]. Their results show that
by converting online computing to offline by mp-P, the efficiency of the designed
controller is significantly increased and makes it available in real urban traffic net-
works. Although their method reduces the complexity of computing compared to
the standard MPC, it is designed in a deterministic framework. In addition, turn-
ing times and travel times on the roads between intersections are ignored. On the
other hand, the MPC approach proposed in [21] is a successful approach to simul-
taneously optimize green times duration and turning fractions at intersections to
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minimize the number of vehicles in the controlled traffic networks, which also takes
into account travel time.
The model proposed in [21] uses linear constraint to simulate real traffic behav-
ior that is also very efficient in MPC. According to the knowledge of the authors,
EMPC does not design for it yet. In this work we design EMPC for urban traffic
networks using the new proposed algorithm and the model presented in [21]. In the
mathematical linear models proposed in [21], the complexity of the optimization
problem created by MPC is reduced by considering the traffic flow as a kwon and
constant parameter. If we consider the traffic flow as a parameter, ans design an
EMPC for the new model, we are faced with a mp-P that uncertainty appears on
the LHS and RHS of the optimization problem. The resulttiong optimization prob-
lem can be solved by the new proposed algorithm. By this method, we consider the
uncertainty for traffic demand and optimal control is designed offline which avoids
solving an optimization problem online at any time step. As a result, its practical
application in real urban traffic networks is possible because it significantly reduces
the computational complexity.
The rest of the paper is organized as follow: First of all, in section two we are

going to improve the bounds of bilinear variables. Secondly, in section three an
approximate model will be created by using the improved bounds from the sec-
tion two. Finally, in section four we will show the applicability of the proposed
method with some numerical examples that clarify the computational results and
will compare them with another methods.

2. Algorithm to improve the bounds of bilinear terms in mp-MILP

McCormick relaxation is an efficient technique for the linearization of nonlinear
terms [27]. The tightness of bilinear terms are investigated in [15]. In this section,
mp-MILPs with global uncertainty is defined, and tightening piecewise McCormick
relaxation is applied to obtain an improved bound for variables that appear in
bilinear terms. In general, an mp-MILP problem is

z(θ) = minx,y((c+Hθ)Tx+ (d+Rθ)T y),
subject to : A(θ)x+ E(θ)y ⩽ b+ Fθ,
x ∈ X = {x ∈ Rnx |xmin

j ⩽ xj ⩽ xmax
j , j = 1, . . . , nx}, y ∈ {0, 1}p,

θ ∈ Θ = {θ ∈ Rnθ |θmin
l ⩽ θl ⩽ θmax

l , l = 1, . . . , nθ},

(1)

The notation used in the mp-MILP problem and its approximation process is de-
fined in Table 1.
Let the coefficients matrix corresponding to the constraints is linearly dependent
on the parameter θ and is defined as follows

A(θ) = Ac +

nθ∑
l=1

Ap
l θl, Ac = [aij ]m×nx

, Ap
l = [alij ]m×nx

,

E(θ) = Ec +

nθ∑
l=1

Ep
l θl, Ec = [eik]m×p, Ep

l = [elik]m×p. (2)

The objective of mp-MLIP problem is to determine the z(θ) as a function of θ
in each crossponding critical regions (CR). If the uncertainty in the technology
matrix is ignored, A(θ) = Ac, E(θ) = Ec, problem (1) have an OFC and RHS
uncertainty and numerous methods have been suggested to solve these kind of
optimization problems up to now. But very little work exists on the solution of
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Table 1. List of symbols used in this article

symbol remark
c Coefficient vector of continuous variable x in objective function,

c ∈ Rnx .
d Coefficient vector of binary variable y in objective function, d ∈

Rp.
A(θ) Coefficients matrix of x which linear based on θ, A(θ) ∈ Rm×nx .
E(θ) Coefficients matrix of y which linear based on θ, E(θ) ∈ Rm×p.
F Coefficients matrix of uncertainty parameter θ in right-hand side

of constraints, F ∈ Rm×nθ .
b Right-hand side of constraints, b ∈ Rm.
Ac Fixed part of A(θ)
Ec Fixed part of E(θ)
Ap

l Coefficients matrix of uncertainty parameter in A(θ).
Ep

l Coefficients matrix of uncertainty parameter in E(θ).
H Coefficients matrix of θx in objective function, H ∈ Rnx×nθ .
R Coefficients matrix of θy in objective function, R ∈ Rp×nθ .
j Component counters of x
k Component counters of y
l Component counters of θ
θmin
l and xmin

j Lower bounds of θl and xj
θmax
l and xmax

j Upper bounds of θl and xj
θmin
ln and θmax

ln Lower nad upper bounds of θl in n-th partition
xmin
jln xmax

jln Lower nad upper bounds of xj when θl is in the n-th partition

wjl The product of continuous variable xj and uncertainty parameter
θl

vkl The product of binary variable yk and uncertainty parameter θl
γln Binary variable to display being active θl in n-th partition

λj
q Binary variable to display being active xj in q-th partition

δjlq Continuous variable corresponding to variable xj and parameter
θl in q-th partition

Nl Partitioning number of parameter θl
Mj Partitioning number of variable xj
βj The increment of xj
BL A set of indexes (j, l) in bilinear terms
DL A set of indexes (k, l) in bilinear terms
X ⊆ Rnx Definition region of continuous variables x ∈ X
Θ ⊆ Rnθ Definition region of uncertainty parameters θ ∈ Θ

problem (1) which contain simultaneous uncertainty, beacuse of the non-convexity
of the problem (the existence of the sentences θx and θy), and high computational
complexity. It is of special importance to fix non-convexity of A(θ) and E(θ) that
one of them is linearization. Bilinear terms of (1) regarding (2) is made up of θx
and θy that McCormick relaxations [27] is used to linearize them. For example,
to relax θx by taking the new variable w, inequality corresponding to the variable
and parameter that have created the bilinear term, w = θx, is

w ⩾ xθmin + xminθ − xminθmin,
w ⩾ xθmax + xmaxθ − xmaxθmax,
w ⩽ xθmin + xmaxθ − xmaxθmin,
w ⩽ xθmax + xminθ − xminθmax,

(3)

The relaxation for θy is similarly definable. Concerning 3, as we select tighter upper
and lower bounds we will obtain the higher quality of the relaxation, and thus the
search space is shrunk.
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In [15], the authors prove that the quality of the McCormick relaxation is affected
by the upper and lower bounds of each variables that appears in the bilinear terms.
Accordingly, a new method based on improving the boundaries of bilinear variables
and thus improving the efficiency of McCormic relaxation and its use in solving
multi-parametric programming problems is presented in this paper.
To shrink the search space in the feasible region of the relaxed problem, we need
to partition the domain of the problem. At this point of approximation it is time
to consider partitioning of the uncertainty parameter. Partitioning can be made
uniformly and/or nonuniformly [9].
Have a look at (1) and the uncertainty parameter θl, θ

min
l ⩽ θl ⩽ θmax

l also assume
that BL is the set of all (j, l), and DL is the set of all (k, l) in bilinear terms, where
j, k and l is the index of variables x, y and parameter θ respectively. Let the Nl

as the partition number of θl divide Θ into Nl equal sub-intervals

θmin
l +

(θmax
l − θmin

l )(n− 1)

Nl
⩽ θl ⩽ θmin

l +
(θmax

l − θmin
l )n

Nl
, n = 1, 2, . . . , Nl.(4)

Let θmin
ln and θmax

ln are respectively the lower and upper bounds of θl, within the
nth partition, n = 1, 2, . . . , Nl. Now we suppose wjl = xjθl and define vkl = ykθl
as a new variable for the bilinear terms, which are produced from the product of
binary variable and uncertainty parameter, so similar to (3) four corresponding
constraints will be appear for this.
In the following, the bounds of the above-mentioned McCormick relaxation of (1)
will improve by executing a maximization problem and a minimization problem,
that this idea is taken from [9].
First, select a parameter θl∗ , l

∗ ∈ {1, 2, , . . . , nθ} then the variable xj∗ such that
{j∗|(j∗, l∗) ∈ BL}, and a partition n∗ ∈ {1, 2, . . . , Nl∗}. For that partition, bounds
of θl∗ are obtained from (4), and for the other variables, the original bounds of the
problem are taken into account. Also assuming that the uncertainty parameter is
a decision variable, the problem (1) by considering (2) is a nonlinear mixed-integer
programming problem (NMILP) whose solution by helping a nonlinear solver can
be an upper bound for the objective function that called it z′. Maximization and
a minimization problem is constructed based on the given assumptions

xmin
j∗l∗n∗ = min

xj ,θl,yk,wjl,vkl

xj∗ , or (xmax
j∗l∗n∗ = max

xj ,θl,yk,wjl,vkl

xj∗)

subject to :
nx∑
j=1

(cj +

nθ∑
l=1

hjlθl)xj +

p∑
k=1

(dk +

nθ∑
l=1

rklθl)yk ⩽ z′

m∑
i=1

nx∑
j=1

aijxj +

m∑
i=1

p∑
k=1

eikyk +

m∑
i=1

nθ∑
l=1

nx∑
j=1

alijwjl+

m∑
i=1

nθ∑
l=1

p∑
k=1

elikvkl ⩽
m∑
i=1

bi +

m∑
i=1

nθ∑
l=1

filθl

wjl ⩾ xjθ
min
l + xmin

j θl − xmin
j θmin

l

wjl ⩾ xjθ
max
l + xmax

j θl − xmax
j θmax

l

wjl ⩽ xjθ
min
l + xmax

j θl − xmax
j θmin

l

wjl ⩽ xjθ
max
l + xmin

j θl − xmin
j θmax

l

 ∀(j, l) ∈ BL
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vkl ⩾ ykθ
min
l + ymin

k θl − ymin
k θmin

l
vkl ⩾ ykθ

max
l + ymax

k θl − ymax
k θmax

l
vkl ⩽ ykθ

min
l + ymax

k θl − ymax
k θmin

l
vkl ⩽ ykθ

max
l + ymin

k θl − ymin
k θmax

l

∀(k, l) ∈ DL

wjl ∀{l|(j, l) ∈ BL}
vkl ∀{l|(k, l) ∈ DL}

}
j ∈ {1, 2, . . . , nx}, k ∈ {1, 2, . . . p}

θmin
l∗n∗ ⩽ θl∗ ⩽ θmax

l∗n∗

x ∈ X = {x ∈ Rnx |xmin
k ⩽ xk ⩽ xmax

k , k = 1, . . . , nx}
θ ∈ Θ = {θ ∈ Rnθ |θmin

l ⩽ θl ⩽ θmax
l , l = 1, . . . , nθ, l ̸= l∗}. (5)

So tighter upper and lower bounds for xj will be achieved if the problem (5) has a
solution, where θl∗ lies in the nth partition. If (5) is infeasible, partition n∗ which
corresponds to θl∗ is deleted and therefore smaller problem size for the latter is
introduced. Replacing bounds xmin

j , xmax
j for xj with improved bounds xmin

jln , xmax
jln ,

leads to a tighter relaxation. Now the obtained bounds is replaced with the original
bounds of the problem and will be used to approximate the problem (1) in the next
section.
It is important to note that by using this technique for bounds tightening we require
the solution of multiple MILP problems, and the number of MILP subproblems at
this stage increases linearly via the number of partitions. In other words, when the
proposed method is applied to general mp-MILP problems, the size of MILPs seems
to be a computational time issue. But our examples in the next section show, by
increasing the partition, the number of RHS-mp-MILP to be solved is considerably
reduced and improved bounds would help us to examine the critical region of the
problem more effectively.

3. Linear approximate model of a general mp-MILP problem

In this section we are going to elucidate an approximation of mp-MILP based on
[15] and the new bounds obtained from the previous section. By applying this tech-
nique, we approximate bilinear terms. Therefore the coefficient matrix in terms of
decision variables is linearized and finally a coefficients matrix of the uncertainty
parameter will be obtained on the RHS. In other words, the approximation of the
original problem is finally an RHS- mp-MILP. Tighter bounds that are used to
relax mp-MILP (1), transform it into an approximate model that computational
requirements will be significantly reduced. But the number of sub-problems in-
creases as the number of partitions increases, therefore one should set the value
of the partitioning number in a trade-off between accuracy and complexity. To
do this, problem (1) is transformed into an mp-MILP problem with LHS- and
RHS-uncertainty by introducing an auxiliary variable µ

z(θ) = minx,y,µµ
subject to
A(θ)x+ E(θ)y ⩽ b+ Fθ
(c+Hθ)Tx+ (d+Rθ)T y ⩽ µ
x ∈ X = {x ∈ Rnx |xmin

j ⩽ xj ⩽ xmax
j , j = 1, . . . , nx}

y ∈ {0, 1}p, µ ∈ R
θ ∈ Θ = {θ ∈ Rnθ |θmin

l ⩽ θl ⩽ θmax
l , l = 1, . . . , nθ}

(6)

and, then the upper and lower bounds of the variable xj were improved in the
previous section are replaced with bounds of the problem (6). In the following,
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xmin
j and xmax

j are the solution of (5). The feasible region of xj is divide into Mj

equal intervals. It means the length of each interval is

βj =
xmax
j − xmin

j

Mj
, j = 1, 2, . . . nx. (7)

To realize that a partition is whether active or inactive, we require a binary variable
λj
q corresponding the variable xj . When xj lies in the q-th subinterval its value is

one, otherwise zero. Since variable xj always lies in one of the Mj subintervals it
is obvious that

Mj∑
q=1

λj
q = 1. (8)

To model the domain of the variable xj by helping the λj
q, we have [15]

xmin
j + βj

Mj∑
q=1

(q − 1)λj
q ⩽ xj ⩽ xmin

j + βj

Mj∑
q=1

qλj
q, j = 1, 2, . . . nx. (9)

It is also mandatory to define a set of continuous variables δjl,q so that the following

conditions are hold [15]

θl = θmin
l +

Mj∑
q=1

δjl,q, l = 1, . . . , nθ, j = 1, . . . , nx,

0 ⩽ δjl,q ⩽ (θmin
l − θmax

l )λj
q l = 1, . . . , nθ, j = 1, . . . , nx, q = 1, . . . ,Mj . (10)

The equation (10) is an estimate for the deviation of variable θl from its lower
bound whenever the variable xj lies in the qth subinterval. Now, the nonlinear
terms of (1) with regards to (2) are estimated by employing McCormick envelopes
[27]. The relations (9), (10), and the definition of McCormick envelopes result in

xjθl ⩽ max
{
xjθ

min
l +

Mj∑
q=1

(xmin
j + βj(q − 1))δjl,q,

xjθ
max
l +

Mj∑
q=1

(xmin
j + βjq)(δjl,q − (θmax

l − θmin
l )λj

q)
}
,

xjθl ⩾ min
{
xjθ

min
l +

Mj∑
q=1

(xmin
j + βjq)δjl,q,

xjθ
max
l +

Mj∑
q=1

(xmin
j + βj(q − 1))(δjl,q − (θmax

l − θmin
l )λj

q)
}
. (11)

Now, we obtain a piecewise affine approximation of the original problem by
replacing bilinear terms of (6) with (2) and (11). The obtained approximation
problem is an mp-MILP problem whose bilinear terms are approximate, thus
it turns out to be an RHS-mp-MILP problem, which is called the tightening
piecewise McCormick approximation of multi-parametric programming problem
(mpPMA).
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To solve RHS-mp-MILP, it is sufficient to count all possible combinations of
binary variables, solve the subproblems of mp-LP, and then compare the obtained
solutions [7, 12]. However, for a large number of binary variables handling
this approach is an arduous task. As a result, a lot of researchers have looked
for methods to decrease the number of combinations of binary variables. the
branch and bound strategy [19] and the decomposition algorithm [7, 12] are
two types of those methods. In this work the decomposition algorithm applies
to solve RHS-mp-MILP problem. Based on the decomposition method, the
problem is alternatively decomposed into mp-LP and MILP subproblems. First
of all, the value of the binary variable will be fixed for a critical region. Then
the resulting mp-LP should be solved (step 6), now the obtained solution pro-
vides an upper bound for the value function in that region. Secondly, for each
critical region that is obtained from the first step, an MILP subproblem will
be constructed (step 8) by adding the integer cuts and parametric cuts along
with assuming the parameter θ as a variable (1). The steps of described approxi-
mation and solution based on decomposition method [12] are given in Algorithm 1.

Algorithm 1 H [0]
Let j ∈ {1, 2, . . . , nx}, l ∈ {1, 2, . . . , nθ},Nl indicates the number of a partitions cor-
responding θl, M as a partitioning number corresponding x, CR = Θ and zup(θ) =
∞. Also consider xmin and θmin lower bounds, xmax and θmax upper bounds of x
and θ respectively. Furthermore, let BLθ = {l : ∃j ∈ {1, 2, . . . , nx} ∋ (j, l) ∈ BL}.
In (1) take the uncertainty parameter θ as a decision variable and solve this with a
nonlinear solver and obtain the upper bound z′. (z′ is obtained with solver BARON
in GAMS environment.) BLθ ̸= ∅ choos l∗ ∈ BLθ determine the Nl∗ corresponding
to it and define BLl∗ = {j : (j, l∗) ∈ BL}. BLl∗ ̸= ∅ j∗ ∈ BLl∗ . n

∗ ⩽ Nl∗

Solve minimization and maximization (5). If both problems have solutions, the
tighter bounds (xmin

j∗l∗n∗ , xmax
j∗,l∗n∗) corresponding xj∗ in the n∗ partition is obtained.

Otherwise, delete n∗ corresponding θl∗ .
Update the bounds of xj∗ : x

∗
j
min = minnx

min
j∗l∗n∗ , x∗j

max = maxnx
max
j∗l∗n∗ and let

BLl∗ = BLl∗ \ {j∗}. BLθ = BLθ \ {l∗}
Let xmin

j = x∗j
min and xmax

j = x∗j
max. By using (11) construct mpPMA and consider

an initial integer solution ȳ. (ȳ is an integre solution of MILP problem which
is obtained from mpPMA by taking the uncertainty parameter θ as a decision
variable.)
each CR with a new integer solution ȳ Solve mp-LP problem in CR achieve both
the optimal value of parametric objective function ẑt(θ) and critical region CRt,
t = 1, 2, . . . T , whis is obtained by substitutting y = ȳ in (mpPMA). Establish a
closed polyhedral convex region IRt′ , t

′ = 1, 2, . . . T ′ with ∪t′IRt′ = cl(CR\∪tCRt),
where the mpPMA is infeasible and within that set ẑt′(θ) = ∞ [8]. ẑ(θ) ⩽ zup(θ)
for some region of θ update zup(θ), and corresponding integer solution [12]. myalg

Algorithm 2 [0] myalg
each region in step 5 a) formulated the MILP subproblem by considering θ as a
decision variable in (mpPMA) and defining integer cuts

∑
{k|yto

k =1}

yk −
∑

{k|yto
k =0}

yk ⩽ |J | − 1, o = 1, 2, . . . O
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and parametric cuts

(c+Hθ)Tx+ (d+Rθ)T y ⩽ ẑt(θ), t = 1, 2, . . . T.

let |J | and O respectively describes the cardinality of J = {k|ytok = 1}, and the
number of integer solutions. b) solve MILP subproblem MILP subproblem is fea-
sible the new integer solution ȳ is found and go step 5. the final solution is given
by zup(θ) in the corresponding CR

The number of critical regions of the new presented method for solving (6) de-
pends on the algorithm that is used to solve the mp-LP subproblem. In this work
the and YALMIP Matlab toolbox can be used to solve the mp-LP subproblem.
The solution of this mp-LP problem is obtained by dividing the parameter space
into the polytope region and obtaining the optimal solution and the value function
related to each of them. According to Theorem 7.10 of [8], the critical regions of
the approximate RHS-mp-MILP problem is the union of a finite number of poly-
hedra and the value function is piecewise affine on polyhedra. If for a fixed θ0∈Θ
there exists a finite optimal solution, then for all θ ∈ Θ, the problem has either
a finite optimum or no feasible solution. Also, during the mp-LP algorithm, it is
necessary to compare the solutions and to calculate the rest of the space in each
step. An approach for generating a polyhedra partition of the rest of the space is
described in Theorem 5.2 of [8]. This procedure allows us to recursively explore the
parameter space and terminate after a finite time. Therefore, the new algorithm
ends up in a finite number of steps.
It should be noted that in this work, we are proposing a novel algorithm that cov-
ers uncertainties in the RHS and LHS of constraints as well as OFC uncertainties;
all together and simultaneously. So far, two MATLAB toolboxes that have been
presented to solve mp-MILP problems, MPT [18], POP [29], that are limited to
uncertainties in RHS and OFC. Hence, they can not solve the general mp-MILP
problems that is the subject of proposed algorithm. In the following, several exam-
ples are illustrated to clarify the efficiency of Algorithm 1 and the results obtained
from this method are compared with the other methods. It is worth mentioning
that we use Windows 7 operating system with hardware (Intel (R) Core (TM) i5,
2.5 GHz, 2GB RAM) for running the software GAMS 23.3, Matlab 2013, Cplex
12.1, and YALMIP 2015.

Remark 3.1 As the partition factor M increases, the number of critical regions
in each iteration increases. Thus the partition factor has a direct impact on the
computation time of the problem. One should be cautious that as the value of the
partition factor increases, the depth of each iteration decreases. So, the value of
M must be chosen such that a very good approximate solution yields, also the
problem doesnt increase in size.

4. Examples

In this section, several examples of the mp-MILP problems with general uncertainty
are presented and the computational requirements for Algorithm 1 based mpPMA
model are also compared with other recent methods. Then, the application of this
algorithm for larger problems is investigated using the relationship between mp-P
and EMPC.
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Table 2. The number of subproblems and critical regions for solving Example4.1.

Proposed method Algorithm from [37]
MILP mp− LP CR MINLP mp− LP CR

N = (2, 2) 12 1 3 4 1 3
N = (3, 3) 27 2 9 17 6 11
N = (4, 4) 35 4 19 52 17 35
N = (8, 8) 70 11 25 150 33 117

4.1 Numerical example

In this subsection, the efficiency of the Algorithm 1 for solving a general mp-MILP
in order to reduce the amount of calculations has been compared with another
algorithm for solving these problems presented in [37] and critical regions and the
optimal solution obtained from the new algorithm with critical regions and the
optimal solution presented in [10] are reported.

Example 4.1 Consider the following LHS-mp-MILP problem that includes two
continuous variables (x1, x2), two binary variables (y1, y2) and two uncertainty
parameters (θ1, θ2). Besides, bilinear terms θ1x2 and θ2x1 are in left-hand side of
constraints

z(θ) = min
x,y

(−2x1 − x2 + y1 + y2)

x1 + (3 + θ1)x2 + y1 ⩽ 9
(2 + θ2)x1 + x2 − y2 ⩽ 8
x1 − y1 + y2 ⩽ 4
0 ⩽ x1 ⩽ 4
0 ⩽ x2 ⩽ 3
yk ∈ {0, 1}, k = 1, 2
0 ⩽ θl ⩽ 10, l = 1, 2. (12)

By applying the proposed method to above example, an RHS-mp-MILP approxi-
mated problem associated to this is obtained and solved. Table 2 shows the number
of subproblems that must be solved, as well as the number of critical regions ex-
tracted and compared with the result of Two-Step method that is presented in
[37]. The consequences made it clear that the number of critical regions and the
number of subproblems that are required to solve the example 4.1 is less than the
consequences of the method that is presented in [37] while partitioning number is
increasing. Also, CPU time that is required for obtaining the solution of example
4.1 compared to [37] in Table 3 which shows that has decreased significantly. Fur-
thermore, the partitioning of the parameter space and the approximate value of the
objective function for M = (2, 2) and M = (8, 8) are respectively shown in Figure
1, and the optimal values of the variables, the value of the objective function and
the critical region with M = (2, 2) by applying the new presented method and
algorithm presented in [10] are reported in Table 4 and Table 5, respectively.
Example 4.1 is a typical example of the mp-MILP problem with uncertainty in

the technology matrix, as the results show, the proposed approximated model of
this has been successfully solved. In the following examples of mp-MILP problem
with general uncertainty are given and applicability of the proposed method for
these problem have been investigated.

Example 4.2 Consider the general mp-MILP problem [37]. θ1x1 in the objective
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Table 3. Comparing CPU time for solving Example4.1 by diffrent partitioning factor.

Proposed method (min:s) Method reported in [37] (min:s)
N = (2, 2) 0 : 01 0 : 03
N = (3, 3) 0 : 02 0 : 07
N = (4, 4) 0 : 03 0 : 19
N = (8, 8) 0 : 03 1 : 02
N = (16, 16) 0 : 04 11 : 48

Table 4. Optimal solution and critical regions obtained by the new presented algorithm
for Example 4.1 with partitioning number M=(2,2).

y1 y2 x1 x2 z CR

0 0 −0.3θ1 + 1.2θ2 + 3 0.6θ1 + 2 −2.4θ2 − 8


0 −1
−1 0
0.8321 −0.5547
−0.2425 0.99701

 ⩽


0
0
1.3868
0.8085


0 0 θ2 + 2.5 3 −2θ2 − 8


1 0
0 −1
0 1
−0.8321 0.5547

 ⩽


10
0
1.5
−1.3868


0 0 4 3 −11


1 −0
0 1
0 −1
−1 0

 ⩽


10
10
−1.5
−2.67


Table 5. Optimal solution and critical regions obtained by algorithm presented in [10] for
Example 4.1.

y1 y2 x1 x2 z CR

0 0 −8θ1−15
θ1θ2+2θ1+3θ2+5

−9θ2−10
θ1θ2+2θ1+3θ2+5

−2(−8θ1−15)−9θ2−10
θ1θ2+2θ1+3θ2+5


−5
6 ⩽ θ1 ⩽ 0

0 ⩽ θ2 ⩽ −6θ1−5
3θ1

θ1 ⩾ 0
θ2 ⩾ 0

0 0 4 −4θ2 −8 + 4θ2


θ1

−5
6

θ2 ⩾ 0
−5
6 ⩽ θ1 ⩽ 0

θ2 ⩾ −6θ1−5
3θ1

0 0 − 5
2+θ2

3 −3− 10
2+θ2


θ1 ⩽ −4

3−3
4 ⩽ θ2 ⩽ 0
θ1 ⩾ −4

3−5
12+4θ1

⩽ θ2 ⩽ 0

0 0 4 3 −11

{
θ1 ⩽ −4

3
θ2 ⩽ −3

4

0 0 4 − 5
3+θ1

−8− 5
3+θ1

{
θ1 ⩾ −4

3
θ2 ⩽ − 5

12+4θ1

function and θ3x1 on the left-hand side of the second constraint are bilinear terms,

z(θ) = min
x,y

((−3 + θ1)x1 − 8x2 + 4y1 + 2y2)

x1 + x2 + y1 ⩽ 13 + θ2
(5 + θ3)x1 − 4x2 ⩽ 20
−8x1 + 22x2 ⩽ 121
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−4x1 − x2 ⩽ −8
x1 − 10y1 ⩽ 0
x2 − 15y1 ⩽ 0
0 ⩽ x1 ⩽ 10
0 ⩽ x2 ⩽ 15
yk ∈ {0, 1}, k = 1, 2
0 ⩽ θl ⩽ 10, l = 1, 2, 3. (13)

Table 6 shows the number of subproblems that must be solved, as well as the
number of critical regions extracted and compared with the result of Two-Step
method that is presented in [37]. The consequences made it clear that the num-
ber of critical regions and the number of subproblems that are required to solve
Example 4.2 is less than the consequences of the method that is presented in [37]
while partitioning number is increasing. Also, CPU time that is required for this
example reported in Table 7 and compared with the result of [37]. In Figure 2 you
can see partitioning of the parameter space with M = (2, 2) and M = (16, 16).
The approximate value of decision variables with partitioning number M = (2, 2)
are shown in Table 8. Computational results of Example 4.2 show that the

Table 6. The number of subproblems and critical regions for Example.4.2

Proposed method Algorithm from [37]
MILP mp− LP CR MINLP mp− LP CR

N = (1, 1) 13 2 7 4 1 3
N = (2, 2) 18 1 4 8 3 5
N = (4, 4) 22 2 8 25 10 15
N = (8, 8) 43 3 10 82 36 46
N = (16, 16) 78 2 18 274 126 148

Table 7. Comparing CPU time for solving Example4.2 by diffrent partitioning factor.

Proposed method (min:s) Method reported in [37] (min:s)
N = (1, 1) 0 : 01 0 : 05
N = (2, 2) 0 : 01 0 : 05
N = (4, 4) 0 : 03 0 : 21
N = (8, 8) 0 : 03 0 : 29
N = (16, 16) 0 : 03 2 : 06
N = (32, 32) 0 : 03 12 : 20

Algorithm 1 is applicable for general mp-MILP problem and also reduces the size
of computations. The following example show that the number of subproblems
remain constant with any value of the partitioning number.

Table 8. Approximate value of decision variables of Example 4.2 with the partitioning
number M=(2,2)

y1 y2 x1 x2

1 0 −2.8205θ3 + 11.8426 −1.0256θ3 + 9.8077
1 0 10 9.1364
1 0 0.7333θ2 + 5.5 0.26667θ2 + 7.5
0 1 0.7333θ2 + 5.5 0.26667θ2 + 7.5
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Table 9. The number of subproblems and critical regions of the solution of Example.4.3.

MILP mp− LP CR CPU(min : s)
M = (2, 2) 12 1 2 0 : 01
M = (4, 4) 20 1 2 0 : 01
M = (8, 8) 36 1 2 0 : 01
M = (16, 16) 68 1 2 0 : 02
M = (32, 32) 132 1 2 0 : 04

Example 4.3 Consider the general mp-MILP problem [10]

z(θ) = min
x,y

((6.4 + 0.25θ1)x1 + 6x2 + (7.5 + 0.3θ1)y1 + 5.5y2)

0.8x1 + (0, 67 + 0.015θ1)x2 + y1 ⩾ 10 + θ2
(5 + θ3)x1 − 4x2 ⩽ 20
x1 − 40y1 ⩽ 0
x2 − 40y2 ⩽ 0
xj ⩾ 0, j = 1, 2
0 ⩽ x2 ⩽ 40
yj ∈ {0, 1}, k = 1, 2
−20 ⩽ θl ⩽ 20, l = 1, 2. (14)

The optimal solution, critical regions and the number of subproblems of this
example are reported in Table 9 for different partitioning numbers that last column
contains the CPU time of the proposed method in the solution of 4.1. Experimental
results show that by increasing partitioning number, partitioning of the parameter
space does not change. The critical regions and the optimal solution of Example
4.3 by applying the proposed method as well as the algorithm presented in [10] are
respectively given in Table 10 and Table 11.

4.2 EMPC for urban traffic network

Consider the part of urban traffic network is given in Figure 3, that model by
multi-class queueing networks, where classes relate to different types of network
elements [21]. Vehicles arrive from out of network, pass through Delay (D), Rout
(R), and Queue (Q) Classes, then end up in Sink (S) classes.

The network has three intersections and is modeled with 22 different classes. The
free flow speed is assumed at 60 km/h and each queue corresponds to a 1 km length
road segment. The average vehicles length is 5 meters and the minimum distance
between them in congestion conditions is 2.5 meters, so the queue capacity is 135
cars. The flow rates are measured by a long-running Simulation of Urban MObility
(SUMO) [25] under heavy traffic load with arbitrary traffic signalization and the
following values are reported.

f1 = f2 . . . = f16 = 45, f17 = f18 = . . . = f22 = 20. (15)

The average number of vehicles arriving in each cycle for {D1
11, D

3
31}, {D1

31, D
3
11}

and {D2
13, D

2
33} is 17, 13 and 7 cars/cycle that random noises have the standard de-

viation of 8, 6, 3 is added to this respectively. The main roads that cause congestion
at the second intersection is modeled with D1

11, D
2
11, D

2
12, . . . , D

5
12 in the West-East

and D3
31, D

2
31, D

2
32, . . . , D

2
35 in the NorthSouth. By this data, the following model
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is obtained for netwoks [21]

X̃k+1 = X̃k + B̂Uk + wk, (16)

[
Φx̃ Φlink Φlight

]  X̃k

U link
k

U light
k

 ⩽ b̂+ Ewwk. (17)

In above equation,vector U link
k is fraction of a time unit during which each link

are active, U light
k green duration of traffic lights, and X̃k is a vector of number of

vehicles per queue. Matrices B̂,Φx,Φlink,Φlight, Ew, b̂ and wk are defined in the
appendix [21].
Without loss of generality, assume control horizon and predictive horizon are N .
First, write (17) explicitly to express all future states as a function of the future
inputs u0, u1, . . . and then eliminate all intermediate states, consequently

X̃k = X̃0 +
k−1∑
q=0

B̂Uk−1−q +
k−1∑
q=0

wk−1−q, k = 1, 2, . . . ,N . (18)

By substituting (18) to (17),

ΦuUk +
k−1∑
q=0

Φx̃B̂Uk−1−q +
k−1∑
q=0

Φx̃wk−1−q ⩽ bk − Ewwk − Φx̃X̃0 (19)

where Φu = [Φlink Φlight], Uk = [U link
k U light

k ], and k = 1, 2, . . . ,N . Therfore
MPC over the predictive horizon N is expressed as following optimal control prob-
lem,

J ∗
0 (X̃0) = min

[u0,u1,...,uN−1]

{
max

w0,...,wN−1

(N−1∑
k=0

∥Q̄X̃k∥∞ +
N−1∑
k=0

R̄Uk

)}
,

subj. to
X̃k = X̃0 +

∑k−1
q=0 B̂Uk−1−q +

∑k−1
q=0 wk−1−q

ΦuUk +
∑k−1

q=0 Φ
x̃B̂Uk−1−q +

∑k−1
q=0 Φ

x̃wk−1−q ⩽ b+ Ewwk − Φx̃X̃0

k = 1, 2, . . . ,N − 1, X̃0 = X̃(t0)

where Q̄ is a matrix where every element is equal to one and is assumed to be a
matrix with negative weights of traffic flow on each link [21]. The obtainded result
reported in [21] by the following date show that MPC controller with this cost
function may reduce the congestion inside the network. By solving (20), the input
sequence U∗ = [U∗

0 , U
∗
1 , . . . , U

∗
N−1] is obtained, then by applying the first element

of U∗ to (18), satat at the next time step is calculated. The optimization problem
(20) is repeated at next time step, and this process is repeated recursively along
predictive horizon based on the new state. Therefore, by apply MPC, it is necessary
to solve the N optimal control problem online, which shows the computational
complexity of this method. Using mp-P can reduce the complexity of MPC online
computing to offline.To achieve this, the auxiliary variables ϵx̃0 , . . . , ϵ

x̃
N−1 are used
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to linearize infinite norm in cost function of (20) according to [8], then

J ∗
0 (X̃(0)) = min

[u0,u1,...,uN−1,ϵx̃1 ,...,ϵ
x̃
N ]

{
max

w0,...,wN−1

(N−1∑
k=1

ϵx̃k +

N−1∑
k=1

R̄Uk

)}
, (20)

subj. to

ϵx̃k ⩽ ±Q̄X̃k

X̃k = X̃0 +
∑k−1

q=0 B̂Uk−1−q +
∑k−1

q=0 wk−1−q

ΦuUk +
∑k−1

q=0 Φ
x̃B̂Uk−1−q +

∑k−1
q=0 Φ

x̃B̂wk−1−q ⩽ b+ Ewwk − Φx̃X̃0

k = 1, 2, . . . ,N − 1

X̃0 = X̃(t0)

As stated before, for MPC along N , should be solve N optimization problem in
form (20) for each initial state X̃0, but if we consider X̃0 as a parameter in eq.
(20), we have a mp-LP problem and the explicit optimal solution of this will be an
affine function of X̃0 [8]. In other words, solution of (20) is obtained as a function
of X̃0.
In (17), the traffic flow rates are variable parameter and be adjusted on traffic

measurements. These parameter are assumed known and constant (15) in [21],

therefore B̂ are fixed and kown and the complexity of (20) are reduced. Now, if we
consider the traffic flow rates as parameters, according to the definition of matrix
B̂, RHS- mp-LP problem in (20) convert to a RHS-LHS-mp-LP problem and the
resulting problem can be solved by Algorithm 1. In this way, while significantly
reducing the the computational requirment, a more general case of urban traffic
control is also examined. In the following, MPC of [21] and new EMPC are applied
to urban traffic network is given in Figure 3 and the results are compared.
MPC controller is designed in [21] and EMPC by using (20) and Algorithm 1 is
also applied to this example with predictive horizon N = 10 and the results are
reported in Figure 4. Two traffic routes are effective in congestion at the second
intersection, the main traffic flows of queues D1

11 − Q1
11, D

3
31 − Q3

31 and the side
traffic flows of queues D3

11 − Q3
11 and queues D1

31 − Q1
31. The simulation results

show that both MPC and EMPC try to reduce the queue length in the main and
side traffic (Figure 4.c and Figure 4.d) and thus prevent traffic congestion at the
second intersection (Figure 4.b). Figure 4.a shows that EMPC compare to MPC
has no effect on improving network throughpu but Table 12 shows that its online
computing time is significantly reduced.

5. Conclusions

In this paper, we propose a novel method for the solutions of an mp-MILP prob-
lem with a general uncertainty by combining tighten McCormick relaxation with
multi-parametric programming. It seems that this combination has not been used
for general mp-MILP problem. The algorithm consists of two steps. In the first
step, we approximate bilinear terms of the coefficient matrix by taking advantage
of the McCormick relaxation and the bounds of partitioning variables have been
tightened with the help of linear programming. Therefore, this makes the feasible
region smaller. Secondly, we apply the new bounds that are obtained from the first
step. Then by presenting a piecewise linear approximation the problem changes to
a multi-parametric programming problem, whose uncertainty only appears to the
right-hand side of constraints, and the approximation problem is solved by using
an efficient algorithm.
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In fact, by optimizing the bounds of variables that appear in the form of bilinear
terms, we obtained an approximate RHS-mp-MILP, this help to reduce the number
of sub-problems that is mandatory to be solved for solving the main problem, and
consequently the computational requirement decreases.
It is important to be cautious that as the partitioning number increases the ac-
curacy of the approximation increases, but its value cannot be chosen as large as
possible. Given that the higher value of the partitioning number, the higher number
of binary variables of the approximate model, increasing the partitioning number
would result in a more complex problem. Hence, one should set the value of the
partitioning number in a trade-off between accuracy and complexity. In examples,
we set the value in an attempt to preserve the reliability of the approximate pre-
sented model results subject to our computational limits. Also, example of urban
traffic netwok with two uncertainty parameter is selected and design EMPC for
it by using the proposed alghorithm. Computational results of example show that
the proposed method significantly reduced online cpu time. It is important that
due to the uncertainty on the flow rates, the proposed method is able to coordinate
the green time split and turning fractions at intersections aiming to minimize the
number of vehicles in the controlled area and also prevents form traffic jams inside
network. According to the results, it seems that this method can be used in real
traffic networks that we intend to examine this in future research.

Appendix A. Appendix

Deffinition of matrices in (16) and (17) that is given in [21].

Td =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0


Ts =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
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Φ =



Φx︷ ︸︸ ︷
zeros(22, 12)

zeros(612)

zeros(22, 12)

zeros(3, 12)

zeros(3, 12)

zeros(3, 12)

−eye(12)

eye(12)

Φu,link︷ ︸︸ ︷
−eye(22)

zeros(6, 22)

eye(22)

zeros(3, 22)

zeros(3, 22)0 0 0 0
0 0 0 0
0 0 1 0


zeros(3, 4)

Ts ∗ F̂
(Td− Ts) ∗ F̂

Φu,light︷ ︸︸ ︷
zeros(22, 6)

−eye(6)

zeros(22, 6)1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

−1 0 0 0 0 0
0 0 −1 0 0 0
0 0 0 0 −1 0

0 −1 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 −1


zeros(12, 6)
zeros(12, 6)


B =

[
(Td − Ts) ∗ F̂ zeros(12, 6)

]
Ew =

[
zeros(size(Φ, 1)− 12, 12) −eye(12, 12)

]
b̂ =

[
zeros(size(Φ, 1)− 12, 1) 135 ∗ ones(12, 1)

]
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Figure 1. a) Partitioning of parameter space with M = (2, 2), b) Approximate objective function with M =
(2, 2), c) Partitioning of parameter space with M = (4, 4), d) Approximate objective function with M = (4, 4)
for Example 4.1.

[] []

Figure 2. a) Partitioning of the parameter space with M = (2, 2), b) Partitioning of the parameter space
with M = (16, 16)

Table 10. Optimal solution and critical regions obtained by proposed method for Exam-
ple. 4.3 witth any partitioning number.

y1 y2 x1 x2 CR

1 0 0 0

{
−20 ⩽ θ1 ⩽ 20
−20 ⩽ θ2 ⩽ −10

1 0 1.25θ2 + 12.5 0

{
−20 ⩽ θ1 ⩽ 20
−10 ⩽ θ2 ⩽ 20
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Table 11. Optimal solution and critical regions obtained by algorithm presented in [10]
for Example.4.3.

y1 y2 x1 x2 CR

1 0 0 0

{
−20 ⩽ θ1 ⩽ 20
−20 ⩽ θ2 ⩽ −10

0 1 0 66.67θ2+666.67
θ1+44.67


0 ⩽ θ1 ⩽ 20

−10 ⩽ θ2 ⩽ −8
−0.0675 ⩽ θ1 ⩽ 0

−8 ⩽ θ2 ⩽ θ1(−10.96θ1−751.947)+1079.47
θ1(θ1+70.267)−136.533

1 0 1.25θ2 + 12.5 0



{
−20 ⩽ θ1 ⩽ 0.0675
−10 ⩽ θ2 ⩽ 20

−0.0675 ⩽ θ1 ⩽ 0
−10 ⩽ θ2 ⩽ −8

θ1(−10.96θ1−751.947)+1079.47
θ1(θ1+70.267)−136.533 ⩽ θ2 ⩽ 20{

0 ⩽ θ1 ⩽ −20
−8 ⩽ θ2 ⩽ 20

Figure 3. Traffic network with queue classes and with input flow rate in D1
11 D2

13 D3
31

D2
33 D1

31 and D3
11

[ Total vehicles out from the network] [Queue length at secound

intersection]
[Queue length of main traffic] [Queue length of side traffic]

Figure 4. Compare the impact of MPC and EMPC on queue length and network throughput

time step EMPC MPC
min:s min:s

200 0 : 5 23 : 36
500 0 : 13 8 : 15
1000 0 : 31 7 : 34

Table 12. Online cpu time computting of MPC and EMPC per ( minutes, second )


