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Abstract. This paper presents a damage identification method for a benchmark structure model 

using time series analysis of output-only ambient vibration data. To demonstrate the capability of 

the proposed method, a 3D finite element model based on a benchmark laboratory model is 

simulated, and a novel damage-sensitivity feature based on autoregressive time series models with 

exogenous input (ARX) using the output acceleration responses from the sensors. , is presented 

under the influence of ambient loads in modeling. In the finite element model, minor local 
damages near the supports that may occur to a bridge during operation are created to demonstrate 

the robustness and stability of the proposed damage feature. The results showed that the presented 

damage feature could effectively identify and locate the minor damages made near the supports 
(which is presented as a challenge in identification studies) accurately and without errors and 

provide an indication of the extent of the damage. 
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1. Introduction 

In recent years, Structural Health Monitoring (SHM) has received significant attention in 

aerospace, mechanical, and civil engineering. The SHM refers to the monitoring and 

investigating of changes in structures over a specific time to detect, locate, and determine 

the level of damage and assess the possibility of continued use of the structure and estimate 

its lifetime. Various definitions of damage can be proposed. For example, damage is 

defined as changes introduced to the system that have an undesirable effect on the current 

and future performance of the system [4]. There are various methods for implementing 

SHM, among which visual inspection is the most important. Although this method is 

considered a qualitative approach because it can be carried out periodically, quantitative 

methods include global and local measurements. For example, non-destructive evaluation 

techniques, which are mostly local, can provide more accurate and detailed information on 

damage, but these methods are also periodic, like a visual inspection. To overcome this 

drawback, permanent monitoring systems that include a network of sensors and evaluate 

the overall behavior of the structure can be used [12]. One of the important subsets of 

vibration-based methods is time series methods. Time series is a part of general methods 
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that are the most accurate and efficient methods for detecting and evaluating the damage. 

This method has advantages such as no requirement for visual inspection, automation 

capability, coverage of the entire structure, no requirement for finite element models, etc. 

[5,6,7,15]. Numerous studies have been conducted to identify damage based on time series 

to extract damage-sensitive features (DSF). For example, Sohn and Farrar used a method 

based on a time series analysis of vibration signals to detect and locate damage in a 

mechanical system. They utilized the standard deviation of residual errors, which is the 

difference between measured and predicted acceleration, extracted from hybrid 

AR1-ARX2 models as damage-sensitivity features [19]. Lu and Gao introduced the ratio of 

the standard deviation of residual error in the actual (damaged) system to that in the initial 

(undamaged) state as a damage-sensitivity feature and used the ARX model for prediction 

signals. They also investigated that although the deviation of residual error of the ARX 

model is sensitive to damage, it does not provide an accurate index of the damage level 

[13]. Nair et al. introduced a function of the first three components of AR as damage 

features and used the ARMA3 model for time series modeling. They used a hypothesis 

t-test for damage detection and introduced two indices based on AR coefficients for 

damage localization. They tested their proposed method on analytical and experimental 

results of ASCE benchmark structures [17].  

Catbas and Gul presented a statistical pattern recognition methodology using various 

laboratory structures. They used the AR model with the Mahalanobis distance-based 

outlier detection algorithm for damage identification and evaluated their method using two 

different laboratory structures. They utilized AR coefficients as a damage feature. Their 

results showed that successful identification was achieved in both laboratory models, 

although their method failed in some cases for one of the laboratory models [9]. In 

addition, Catbas and Gul presented a new method based on time series analysis using ARX 

models with different clusters and using the free response of the structure to detect, locate, 

and estimate the extent of the damage. They proposed two different approaches for 

introducing damage features from ARX models for different clusters. The first approach 

was introduced based on the direct comparison of coefficients of ARX models. In this 

approach, identification is not successful if there is noise in the system. Therefore, where 

the system is noisy and when the model becomes more complex, the second approach was 

introduced as a damage feature. This approach is based on fitting ratios from ARX models 

[10]. In another study, Catbas and Gul presented a time series analysis method for 

detecting damage using output-only vibration data and used ARX models to simulate this 

data. They introduced the difference between fit ratios as a damage feature. This method 

was applied to experimental data from a steel grid structure with different damage 

scenarios. Ambient vibration tests showed that damage could be successfully identified 

and located using this method. In addition, the relative level of damage was estimated 

using this method. However, this method does not work accurately in cases where the 

damage is small. The aforementioned damage detection method was applied to the Z24 

bridge, and the results showed that this method could identify the location and severity of 

damage satisfactorily [8].  

In several studies, Mita et al. proposed a substructure approach using time series to 

detect local damage in a shear structure. They used a hybrid damage feature based on both 

the model coefficients and residuals of the ARMAX4 model and showed that complete 

information about the structural damage could be obtained compared to the case where 

only model coefficients are used in the damage feature [14,23,24]. Farahani and Penumadu 

 
1 Autoregressive (AR) 
2 Autoregressive with Exogenous Input (ARX) 
3 Autoregressive Moving Average (ARMA) 
4 Autoregressive Moving Average with Exogenous Input (ARMAX) 
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presented a parametric study to understand the effects of damage location, extent, and 

vibration measurement noise using time series-based damage identification techniques. 

They used a new damage-sensitive feature based on prediction errors of the ARX model 

and found that the damage location cannot be identified when the damage is near support 

on an internal main girder [21]. Azim and Gul proposed a method for identifying damage 

in railway bridges based on acceleration responses. They used ARX models in the 

introduced damage feature and introduced the differences between fitting ratios as the 

damage feature. Their results showed good agreement between the predicted and expected 

damage features. One of the limitations of the aforementioned method is that although 

small local damages can be detected, their precise location is difficult to determine [2]. 

Catbas et al. investigated the ability of the ARX model analysis method to detect 

damages/flaws in Composite Overwrapped Pressure Vessels (COPVs) using pressure as 

input and corresponding strains as response data. They introduced a damage feature based 

on the difference in fitting ratios between healthy and damaged states for comparing the 

existing conditions of COPVs [16]. Chegeni et al. also introduced an effective one-variable 

similarity method called Kolback similarity (KS) for locating the damage and identifying 

the severity of the damage. They used a feature extraction technique based on residual to 

determine a sufficient order of the AR model that can extract independent residual [11]. 

The study presented a damage identification method based on time series analysis for a 

benchmark laboratory structure. In this regard, a finite element model was used to simulate 

the laboratory model used in previous studies [8,9,10]. The main goal of this study is to 

provide a new method for effective damage identification, localization, and estimation of 

damage severity. As observed, a powerful method has not been proposed for detecting 

damage around supports, especially when damages are small and local. Therefore, in this 

study, to compensate for this weakness, a new damage feature was introduced to correctly 

identify such damages, which in previous studies mostly suffered from false positive and 

negative results. The following will be discussed in this section, including the 

fundamentals of methodology such as time series modeling and governing equations, 

system identification structure, damage-sensitivity feature extraction, threshold 

determination, finite element modeling of the benchmark structure and introduction of 

various damage scenarios, modeling assumptions, inputs, outputs, and the application of 

the proposed method, discussion and analysis of results, and finally, conclusion. 

2. Methodology fundamentals 

2.1 Time series modeling 

As shown in Figure 1, a linear time-invariant (LTI) system can be considered with a white 

noise input and a colored process output. By considering Equation (1) of time series 

models: 

 

Figure 1.  Modeling a colored random process 
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(1) 
d0wt + d1wt−1 + d2wt−2 +⋯+ dnwt−n

= c0vt + c1vt−1 + c2vt−2 +⋯+ cmvt−m 

Equation (1) expresses a relationship between white noise (input) and colored noise 

(output). The above model is known as an ARMA time series model. Now, if the 

coefficients c are equal to zero and the coefficient of c0 = 1, the special case of the AR 

model is obtained. And if the coefficients d are equal to zero and the coefficient of   d0 =
1, the special case of the MA model is obtained. Usually, the values of c0 = 0 and d0 =
1  are assumed to be unique solutions. Now, assuming that the system transformation 

function is equal to 
B(Z−1)

A(Z−1)
 and the xt input is applied to the system, the output without 

noise and system errors can be represented by ỹ  (which is not accessible), and the noise 

and errors present in the system can be shown together as wt. 

 

Figure 2. Structural and measurement errors in the form of colored noise applied to the system. 

By combining Figures 1 and 2, the general structure of the ARMAX system can be 

obtained, as shown in Figure 3. 

 

Figure 3. ARMAX block diagram according to relation (2). 

This structure can be written in the form of relation (2): 

(2) yt =
B(z−1)

A(z−1)
xt +

C(z−1)

D(z−1)
vt 

But generally, for the simplicity of calculations, the ARMAX formula is considered as 

equation (3): 

(3) 
A(z−1)yt = B(z

−1)xt + C(z
−1)vt⏟      
et

 

In other words, a MA model is considered for et signal. Now if et is white noise, the 

resulting model is an ARX. Equation (4) represents the general form of the ARX time 

series. 

(4) y(t) +∑ak

na

k=1

y[t − k] = ∑ bk

nb

k=nk

x[t − k] + et 
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ak  ، bk are the unknown parameters of the model, na, nb, nk respectively are the order of 

AR, the order of input X and the order of delay, and et is the residual of the model. 

2.2 System identification structure 

This article uses a method for damage detection using output-only ambient vibration data 

by applying ARX time series models and sensor clustering [8,10], and the acceleration 

vibration data is recorded from each sensor. Before fitting time series models to sensor 

data, the data is normalized (standardization) according to equation (5) [17,19] to compare 

acceleration histories at a sensor location, which may have occurred under different 

environmental and operational conditions. 

(5) yî(t) =
yi(t) − μi

σi
 

where yî(t) is the normalized acceleration signal in sensor i and yi(t) is the acceleration 

signal in sensor i, μi , σi  are respectively the mean and standard deviation of the 

acceleration in sensor i (in the following, y(t) is used instead of ŷ(t) for convenience). 

Obtaining the free response of the structure for most civil engineering applications may not 

be an easy task. In this article, the random decrement (RD) technique is used to obtain the 

quasi-free response data from the ambient vibration data similar to that found in the 

references [8,9,20]. The random decrement method was first developed by Cole (1968) 

and is used to transform random time series into a free decreasing response. The RD 

method can eliminate the effects of random loading on the structure and makes it easier to 

fit time series models to the data. After the normalization (standardization) of acceleration 

data, the RD method was used to obtain quasi-free response data. Then several sensor 

clusters are created for adjacent sensors, and for each cluster, multi - input – single-output 

ARX time series models are generated for the structure in healthy conditions. According to 

equation (6) and Figure 4, which shows an ARX model, for each of the clusters, the input 

of the model (x(t)) acceleration responses, including all the degrees of freedom of that 

cluster and the output of the ARX  y(t)) model is the acceleration response of the reference 

channel. 

(6) A(z−1)y(t) = B(z−1)x(t) + e(t) 

 

 Figure 4.  ARX block diagram according to relation (6). 

After the ARX models in healthy conditions are produced for each cluster, the same 

models are used to predict the vibration data obtained in damaged conditions in the same 

cluster. 

2.3 Extracting damage sensitivity features 

The definition of a damage feature that is sensitive to changes in the system is one of the 

most important steps in the effective identification of the system. The damage feature is 
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defined based on the coefficients and residuals of the model. Many studies have been 

conducted in this regard, mostly based on either model coefficients or model residuals, 

leading to false positive or negative results in the identification process. More accurate 

information about the system can be obtained by defining a damage feature that can 

encompass both parts. Therefore, in this study, a new hybrid damage feature, which 

includes both model coefficients and residuals, is introduced according to equation (7). 

(7) DSF =
σ(ed)

σ(eh)
.
||c̅3h| − |c̅3d||

|c̅3h|
.
ωh
ωd

 

As it is known, the equation consists of three parts .  In the first part of equation (7), 

parameter (
σ(ed)

σ(eh)
) is the ratio of the standard deviation of the residual error in the damaged 

state to the standard deviation of the residual error in the healthy state. In the definition of 

eh and ed, the responses of yh, y
d
, and ŷ according to equation (8), are equal to the 

acceleration response in the healthy state, the acceleration response in the damaged state, 

and the predicted response, respectively. Many studies have been carried out based on the 

first part of relation (7) as a feature of damage. And in their investigations, it was found 

that this relationship does not provide an accurate indicator of the damage level, and 

sometimes they get false results in locating the damage. 

(8) ed = yd − ŷ eh = yh − ŷ 

The definition of the second part of the equation (7), that is (
||c̅3h|−|c̅3d||

|c̅3h|
), it shows the 

changes in the average of the first three coefficients of the AR model, where c̅3h and 

c̅3d are respectively the norm average of the first three coefficients of the AR model in a 

healthy and damaged state, in order to achieve The most effective result, the number and 

different states of the coefficients, were considered and it was determined that the first 

three coefficients with the aforementioned combination, in the second part of the equation 

(7), gives a damage feature, sensitive to changes in the system. The third part of equation 

(7) or (
ωh

ωd
) is the ratio of the original frequency in the healthy state to the damaged state in 

each cluster. 

2.4 Definition of threshold 

To distinguish for changes in the damage-sensitive features due to noise and changes 

resulting from damage, an approach is introduced to define the threshold value based on 

noisy data in healthy conditions similar to [10,22], where a Monte Carlo simulation was 

used. Additionally, a set of 10% white noise data is separately added, and this process is 

repeated independently 1000 times. With each iteration, the damage feature is calculated, 

and its features are sorted from lowest to highest. To achieve a 95% confidence level, the 

950th feature value is selected as the threshold value. Finally, any value above this 

threshold is considered damage, and any value below the threshold, which may be due to 

the presence of damage or noise in the data, is not considered damage. 

2.5 Finite element model construction of the benchmark structure 

This article uses a benchmark structure for numerical study [3,8]. The structure mentioned 

above is a grid steel model representing the primary phase of the study on the practical 

behavior of bridges. A finite element model of the benchmark structure is constructed 

using ABAQUS [1] (Figure 5). 
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Figure 5. Laboratory physical model of the University of Central Florida benchmark structure -  

Catbas et al.- (right). Finite element benchmark structure model based on [3,8] (left). 

The columns on the ground level were modeled as fixed supports. The superstructure is 

supported by four columns with roller connections (N4, N7, N11, N14) and two columns 

with hinge connections (N1, N8). The finite element model consists of 5145 nodes and 

3744 members. Table 1 shows the material properties and selected steel sections. To 

validate the model used in this study for simulating the behavior of the bridge under 

healthy conditions, modal analysis was performed, and the natural frequencies and mode 

shapes obtained from the model were compared with the experimental data. Additionally, 

in Abaqus software, all elements of the model were selected as standard shell elements - 

four-node and two-curve reduced integration elements (S4R). 

Table 1.  Properties of materials and sections used in the finite element model [3,8]. 

Materials 
Poisson's 

ratio 

Density 

(Ton/mm3) 

Elastic 

modulus 

(MPa) 

Column 

section 

The 

cross-section 

of the girder 

The 

cross-section of 

the cross beam 

Steel 0.3 7.85 e-9 2 e5 W10X26 S3X5.7 S3X5.7 

In order to validate, the first four principal modes of the model under investigation 

were examined. In Figure 6, the shapes of the first four modes of the model and those 

identified experimentally by Catbas et al. in healthy structural conditions are shown. As 

can be observed, the modal shapes of the model exhibit good agreement with the modal 

shapes identified from experimental data. To quantify the amount of correlation between 

the modal shapes obtained from the models and those identified from experimental data, 

the Modal Assurance Criterion (MAC) [18] was used according to equation (9). The MAC 

is a value between zero (indicating not consistent mode shapes) and one (indicating fully 

consistent mode shapes). Values greater than 0.9 indicate (consistent correspondence) high 

compatibility, while small values indicate low (weak) similarity between the two modal 

shapes. 

 

 
(a) The shape of the first mode. 
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(b) The shape of the second mode. 

 
(c) Third mode figure. 

 

 
(d) Fourth mode figure. 

Figure 6. Comparison of mode shapes in a healthy state: finite element model (right), 

laboratory model (left) 

 

(9) MAC(E, FE) =
|∑ {φE}j
n
j=1 {φFE}j|

(∑ {φE}j
2n

j=1 )(∑ {φFE}j
2n

j=1 )
 

In equation (9), {φE} is the experimental mode vector and {φFE} is the mode vector 

resulting from the finite element model. As Table 2 shows the modal frequencies and 

MAC values for the first four principal modes, the maximum difference between the 

frequencies of the modes is equal to 5% and the MAC values are greater than 0.9, which 

indicates a good correlation between the mode shapes of the finite element and the 

laboratory model. 

Table 2. Comparison of natural frequencies and mode shapes, finite element, and laboratory 

model. 

Vertical mode Limited components Experimental % error MAC 

Mode 1 22.13 Hz 22.37 Hz -1.072 1 

Mode 2 27.729 Hz 27Hz 2.7 1 

Mode 3 31.709 Hz 33.38 Hz -5 0.995 

Mode 4 40.931  Hz 40.91 Hz 0.05 0.995 
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2.6 Assumed damage scenarios 

In this study, a damage case with different levels has been considered according to Table 3. 

The damage case related to the settlement of the support under column 1 (under the column 

connected to node N1 according to Figure 7) is assumed as a damage scenario. 

 
Table 3. Damage scenario. 

Damage state Description of damage mode 

 

Settlement 

 

D1. 40 millimeters settlement under column 1 

D2. 50 millimeters settlement under column 1 

D3. 70 millimeters settlement under column 1 

D4. 100 millimeters settlement under column 1 

 

 

 

Figure 7. Assumed damage scenario. 

2.7 Assumptions for modeling, inputs, outputs, and implementation of the proposed 

method 

White Gaussian noise has been used to define ambient loads as an input to the structure. In 

the benchmark model of the bridge, according to Figure 5, accelerations were taken from 

eight nodes, except for the supports, to collect vertical accelerations (accelerations near 

zero are obtained at the supports, which may cause instability in modeling time series). The 

sampling interval is 0.01, and to consider the instrumental and measurement errors in the 

sensors, 10% of white Gaussian noise has been added to the acceleration responses. After 

collecting the ambient vibration data in healthy and damaged states, the data have been 

normalized (standardization) according to equation (5) to compare acceleration histories in 

a sensor location that may have occurred under different environmental and operational 

conditions. Then, the random decrement method was used to eliminate the effects of 

random loading on the structure, facilitate the fitting of time series models, and reach the 

quasi-free response data from the ambient vibration data. Several clusters are created for 

neighboring sensors, according to Table 4 and Figure 8. For each cluster, multi-input 

single-output (MISO) ARX time series models are generated in the healthy state. Suitable 

orders of models have been selected using the Akaike Information Criterion (AIC) and the 

Final Prediction Error (FPE). ARX time series models have also been generated in the 

damaged state (according to the introduced damage scenario in Table 3). The response in 

the damaged state is predicted using the healthy condition. Then, the damage-feature 

sensitivity is applied. The threshold value is obtained as explained, equal to 0.4226. This 
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method is schematically and briefly illustrated in Figure 9. 

Table 4. Input and output of ARX models generated and used for finite element modeling. 

Sensor cluster ARX model output (reference channel) ARX Model Input 

1 N2 N2,N9,N3 

2 N3 N2,N3,N10,N5 

3 N5 N3,N5,N12,N6 

4 N6 N5,N6,N13 

5 N9 N9,N2,N10 

6 N10 N9,N10,N3,N12 

7 N12 N10,N12,N5,N13 

8 N13 N12,N13,N6 

 

Figure 8. Sensor clustering for finite element model according to Table 4. 

3. Discussion and analysis of results 

3.1 Settlement damage 

According to Figure 7, settlement under the column connected to N1 in four scenarios with 

values of 40, 50, 70, and 100 millimeters has been considered. The results are shown in 

Figure 10, where Cluster 1, which is the closest sensor location to the damage location, has 

the highest values of damage features and exceeds the threshold value. Therefore, Cluster 

1 accurately represents the existence and location of the damage. With an increase in 

settlement values, the damage feature values also increase. Additionally, when the 

settlement value is equal to 100 millimeters, Cluster 2 (N3 in Figure 7) also has a value 

greater than the threshold value. This is because the sensor is located at position N3, which 

is the closest location to sensor N2 and is located on the same girder. Therefore, it is less 

affected by the settlement value and has fewer damage features than N2. In general, it can 

be concluded that in this case of damage, the damage feature accurately identifies the 

existence and location of the damage and are able to obtain a relative intensity index of the 

damage. 
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Figure 9. Graphical abstract. 

 

Figure 10. The damage feature obtained for the settlement of column 1 from ambient vibration 

data with a 10% noise level. 

4. Conclusion 

Using ARX time series models to identify hypothetical damage scenarios, a new damage 

feature has been introduced. The introduced damage feature uses a combination of model 

coefficients and model residuals for more accurate identification. Small and localized 

damage scenarios were investigated to demonstrate the superiority and capability of the 

proposed feature. The analysis results show that the introduced damage feature can 

effectively identify and locate assumed damages and estimate their extent. A notable 

advantage of this research is the defined scenario in which the damage is assumed to be 

near the support point of the assumed structure. This type of damage, which has been a 
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significant challenge in most previous studies, has been effectively identified in terms of 

localization and extent estimation for various damage severity levels by the proposed 

damage feature. The study did not consider the effect of multiple and simultaneous 

damages and various, sometimes smaller, damage scenarios. Therefore, in future studies, 

authors will consider this issue. 
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