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Abstract. Structural engineers' goal has constantly been identifying, restoring, repairing, or 
replacing damaged members. As a result, one of the most crucial and necessary steps in the upkeep 

and restoration of structures is identifying damaged members. Damage detection techniques from 

structural dynamic response measurements can often be used to detect and locate damage. This 

paper proposes a structural damage identification method based on changing natural frequency, 

finite element modeling, and the Grasshopper Optimization Algorithm (GOA). This algorithm 

mathematically models and mimics the behavior of grasshopper swarms in nature for solving 
optimization problems. As numerical examples, the 13-bar and a 31-bar planar truss are 

considered to examine the suggested methodology's precision. According to the findings, the 

recommended method is workable for systems with few members and minor damage. However, 
the accuracy of the diagnosed damage in structures with medium-sized members and considerable 

damages was poor, making it more likely to converge to local optimum points conditions. 
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1. Introduction 

Despite the initial design methods, structures deteriorate over time and become damaged. 

This deterioration is due to various reasons, including damage caused by traffic loads, 

environmental factors (such as steel corrosion and concrete carbonation), and aging of 

construction materials. Additionally, structural damage can be caused by events such as 

earthquakes, hurricanes, and floods. Therefore, the health of a structure is influenced by 

operational and environmental factors, including normal load conditions, current and 

future environmental conditions, and expected hazards throughout its service life. These 

factors are uncertain variables, making it challenging to define structural health in terms of 

age, application, and safety level against severe natural reactions. 

The damage leads to weakness in the overall behavior or one of the structure's members 

due to the applied loads, which affects the equations governing the system's movement. In 

this regard, by timely detecting and identifying damage in the early stages, an appropriate 

solution can be chosen at the right time. By repairing and renovating the structure, general 

deterioration and the resulting financial and life-threatening losses caused by structure 
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collapse can be prevented. Because if some of the structure's members are not identified 

and diagnosed correctly in time, they can cause catastrophic damage and fatal failures. 

Based on the situation, the extent of damage, and the estimated safety level of the 

system, the decision will be made regarding the non-use or repair of the structure subjected 

to dynamic loads. The damages may spread over time, leading to overall damage and 

structural failure. Therefore, the issue of damage detection, as one of the fundamental 

topics in civil and mechanical engineering, has occupied the minds of many researchers 

[4,2]. 

On the one hand, methods for detecting damage can be categorized into four levels: 

Level 1: Detection of damage, determining whether damage exists in the structure. 

Level 2: Damage Localization, level 1 plus determining the geometric location of the 

damage. 

Level 3: Damage Assessment, level 2 plus determining the amount of damage. 

Level 4: Damage Prognosis, level 3 plus predicting the remaining service life of the 

structure. 

In most studies, levels 1 to 3 have been investigated. Generally, the fourth level pertains 

to fracture mechanics, fatigue analysis, and reliability and is not addressed in structural 

dynamics [10]. 

Optimization is one of the critical tools in the decision-making and analysis of physical 

systems. Mathematically, an optimization problem is finding the best solution among a set 

of candidates or feasible solutions. 

Optimization is a complicated subject in civil engineering, and various tools are 

available. Every process has the potential for improvement in itself, and this can be 

achieved by minimizing time, cost, and risk or maximizing profit, quality, and efficiency. 

Based on previous research, finding an algorithm that works well in all optimization 

applications is impossible [8]. Therefore, various evolutionary algorithms with diverse 

search mechanisms have been proposed, and it has been shown that these algorithms can 

be effectively used in multiple problems. Among the evolutionary algorithms, different 

topics such as simplifying algorithms for use in all sciences or improving the search 

mechanism of evolutionary algorithms to increase the accuracy of obtaining optimal, or 

focusing on the convergence speed of evolutionary algorithms and avoiding the calculation 

of problems with computational costs in terms of processing and even runtime are 

considered. It is observed that different evolutionary algorithms have seen various 

improvements in these areas, and the combination of evolutionary algorithm operators is 

also investigated. The grasshopper optimization algorithm was proposed by Mirjalili et al. 

in 2017 and has shown promising results in obtaining global optimal in various functions 

in terms of complexity compared to algorithms presented in recent years, such as genetic 

algorithm, particle swarm optimization, bat algorithm, firefly algorithm, gravitational 

search algorithm, and flower pollination algorithm [12]. 

In recent decades, numerous methods have been proposed for identifying damage to 

structures. Initial plans were only capable of identifying the location of damage in 

structures. With the expansion of studies and the emergence of optimization-based 

methods, the ability to determine the severity of damage in structures has also become 

available. Most methods for identifying and diagnosing damage are based on changes in 

the structure's natural frequencies, changes in mode shapes, or the measurement of 

dynamic flexibility. 

For the first time in 1966, metaheuristic algorithms were introduced with the proposal 

of evolutionary algorithms. Subsequently, studies were conducted to develop and improve 

these algorithms, leading to new algorithms based on living organisms in recent years. 

Based on population, well-known evolutionary algorithms include the ant colony 

optimization, the Artificial bee colony optimization, the particle swarm optimization, and 

the charged system search optimization [15]. The grasshopper optimization algorithm 
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(GOA) is one of the newest metaheuristic algorithms. This algorithm belongs to the swarm 

intelligence algorithms and is designed by taking inspiration from the social behavior of 

grasshoppers and how each grasshopper is influenced by its surrounding environment. In 

this algorithm, updating the position of each grasshopper is dependent on its distance from 

all grasshoppers in the current generation and the position of the best grasshopper. The 

characteristics of this algorithm include its simplicity and having only one adjustable 

parameter. 

The following is a summary of several studies in the field of civil engineering: 

Sun and Büyüköztürk investigated the optimal placement of sensors in frame and truss 

structures using the honey bee colony algorithm [14]. Mojtahedi and Baibordi examined 

damage detection using the particle swarm optimization algorithm and modal parameters 

of the structure [3]. Hosseini Vaezi et al. studied damage detection in steel shear walls 

using the wavelet algorithm [1]. Dizangian et al. utilized Mutation 

Teaching-Learning-Based Optimization (MTLBO) to predict the extent of damage in truss 

structures [6]. Additionally, Asnaashariya and Shayanfar investigated damage detection in 

structures using multi-objective optimization algorithms (NSGAII and MOPSO) and the 

VIKOR method [7]. Finally, Ding et al. employed the clustering-based tree seed algorithm 

to identify damage in structures with uncertain modeling errors and noise measurements 

[5]. Sahu and Nayak proposed a method for detecting damage in structural members using 

the adaptive genetic algorithm [11]. 

The present study focuses on identifying damage location in truss structures using the 

Grasshopper Optimization Algorithm (GOA) and the dynamic response of the structure 

(Natural Frequencies) induced by free vibration. 

2. Proposed methodology 

One of the consequences of structural damage is a reduction in the stiffness of the member, 

which is well demonstrated by changes in the structure's natural frequency. Moreover, the 

occurrence of damage leads to an increase in structural damping. Implementing these 

factors in the optimization method makes it possible to detect the damaged element 

accurately. In this study, using the proposed method, analysis was performed using the 

finite element method and programming in MATLAB software. Accordingly, a 

mathematical model of the structure was programmed in MATLAB software, and modal 

analysis was used to obtain the structure's natural frequency. To achieve this objective, the 

relevant issue has been addressed by coding and obtaining the stiffness and mass matrices 

of the structure under discussion. Subsequently, based on the principles of structural 

dynamics, the natural frequencies of the intended structures have been calculated. Then, 

utilizing an objective function and the natural frequencies of both intact and damaged 

structures, the problem has been formulated as an optimization problem. 

2.1 The objective function 

It is defined as a function or expression that represents the objective of the problem. In 

optimization, selecting an appropriate objective function is one of the most crucial 

decisions. In optimization problems, the aim is to minimize the value of this function. The 

objective function should reflect the primary objective of the optimization problem. In this 

study, the Efficient Correlation-Based Index (ECBI) introduced by Seyedpoor and 

Nobahari in 2011 has been chosen as the objective function. This function combines two 

proposed functions, MDLAC and obj. The MDLAC function, expressed in equation (1), 

compares two frequency change vectors, one obtained from the tested structure and the 

other from the desired structure's analytical model (modal analysis). The MDLAC index is 

susceptible to identifying damaged elements as the objective function. However, it may 

have less sensitivity in identifying healthy elements, such that this function correctly 
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identifies the location of damaged elements but may also identify healthy elements as 

damaged [13]. 

(1) 𝑀𝐷𝐿𝐴𝐶(𝑋) = −
|∆𝐹𝑇 . 𝛿𝐹(𝑋)|2

(∆𝐹𝑇. Δ𝐹)(𝛿𝐹𝑇(𝑋). 𝛿𝐹(𝑋))
 

The obj function, defined in equation (2), is a frequency-based index for the structure. 

Compared to the MDLAC index, this function identifies healthy elements more quickly. 

Still, it is less sensitive in identifying damaged elements and has a higher probability of 

misclassifying a damaged element as healthy [13]. 

(2) 𝑜𝑏𝑗(𝑋) =
1

𝑛𝑓
∑

𝑚𝑖𝑛(𝑓𝑥𝑖،𝑓𝑑𝑖)

𝑚𝑎𝑥(𝑓𝑥𝑖،𝑓𝑑𝑖)

𝑛𝑓

𝑖=1

 

As mentioned, by combining these two functions, a new function called ECBI is defined 

according to equation (3). 

(3) 𝐸𝐶𝐵𝐼 = −
1

2
[𝑀𝐷𝐿𝐴𝐶(𝑋) + 𝑜𝑏𝑗(𝑋)] 

2.2 Introducing the GOA  

The Grasshopper Optimization Algorithm (GOA) is one of the latest metaheuristic 

algorithms. This algorithm belongs to the category of swarm intelligence algorithms. It 

was designed by Seyedali Mirjalili et al. in 2017, inspired by the social behavior of 

grasshoppers and how each grasshopper is influenced by its surroundings. In this 

algorithm, the update of each grasshopper's position depends on the distance of that 

grasshopper to all other grasshoppers in the current generation and the position of the best 

grasshopper. One of the notable features of this algorithm is its simplicity and having only 

one adjustable parameter. The mathematical model used to simulate the behavior of 

grasshoppers is initially represented by equation (4) [12]. 

(4) 𝑋𝑖 = 𝑆𝑖 + 𝐺𝑖 + 𝐴𝑖 

In this equation, Xi represents the position of the i-th grasshoppers, Si denotes the social 

interaction, and Gi is the gravitational force acting on grasshopper i-th. Ai represents the 

wind direction. To create random behavior, the above equation can be rewritten as 

equation (5), in which r1, r2, and r3 are random numbers in the interval [0,1]. 

(5) 𝑋𝑖 = 𝑟1𝑆𝑖 + 𝑟2𝐺𝑖 + 𝑟3𝐴𝑖   

The value of social interaction for grasshopper i-th, denoted by S, is calculated based on 

equation (6). 

(6) 𝑆𝑖 =∑𝑠(

𝑁

𝑗=1
𝑗≠𝑖

𝑑𝑖𝑗)𝑑𝑖�̂� 

Which dij indicates the distance between the i-th and j-th grasshoppers and is calculated by 

equation (7): 

(7) 𝑑𝑖𝑗 = |𝑥𝑗−𝑥𝑖| 

A function defines social interaction pressure, as shown in equation (8), where dij is a 

unit vector from the i-th grasshopper to the j-th grasshopper, given by   𝑑𝑖�̂� =
𝑥𝑗−𝑥𝑖

𝑑𝑖𝑗
. 
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The function S, which defines the social force, is calculated as per equation (8), where f 

represents the intensity of gravity and l represents the gravity scale length. 

(8) 𝑆(𝑟) = 𝑓𝑒
−𝑟
𝑙 − 𝑒−𝑟 

The components G and A in equation (4) are also expressed as per equations (9) and 

(10), where g is the gravitational constant, and 𝒆�̂� is a unit vector towards the center of the 

earth, u is the sliding constant, and 𝒆�̂� is a unit vector in the direction of the wind. Nymph 

grasshoppers have no wings; hence their movement is highly dependent on the direction of 

the wind. 

(9) 𝐺𝑖 = −𝑔𝑒�̂� 

(10) 𝐴𝑖 = 𝑢𝑒�̂� 

By substituting S, G, and A, equation (4) can be expanded into equation (11), where    

𝑆(𝑟) = 𝑓𝑒
−𝑟

𝑙 − 𝑒−𝑟 and N is the number of grasshoppers.  

(11) 𝑋𝑖 =∑𝑠(

𝑁

𝑗=1
𝑗≠𝑖

|𝑋𝑗 − 𝑋𝑖|)
𝑋𝑗 − 𝑋𝑖

𝑑𝑖𝑗
− 𝑔𝑒�̂� + 𝑢𝑒�̂� 

However, this mathematical model cannot be directly used to solve optimization 

problems, mainly because the grasshoppers quickly settle in an area where the attraction 

and repulsion forces of other grasshoppers in that area are equal, which is called the 

comfort zone in this field. As a result, the group does not converge to a specific point. This 

area is shown in Figure 1. The modified version of this equation for solving optimization 

problems is given by equation (12). 

 

Figure 1. Illustrates the grasshopper's comfort zone, attraction, and repulsion forces in this area. 

In this equation, ubd is the upper bound at dimension d-th, lbd is the lower bound at 

dimension d-th, and Td is the value at dimension d-th in the target (best solution seen so 

far). c is a constant that reduces the comfort zone, repulsion, and attraction. In this 

equation, S is approximately the same as the S component in equation (4); however, the 

gravitational parameter (G) and wind direction (A) are not considered. We assume that the 

wind direction is always toward the target. 
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(12) 𝑋𝑖
𝑑 = 𝑐

(

 
 
∑𝑐

𝑁

𝑗=1
𝑗≠𝑖

𝑢𝑏𝑑 − 𝑙𝑏𝑑
2

𝑠(|𝑋𝑗
𝑑 − 𝑋𝑖

𝑑|)
𝑋𝑗 −𝑋𝑖

𝑑𝑖𝑗

)

 
 
+ 𝑇�̂� 

 

Equation (12) shows that the next position of a grasshopper is defined based on its 

current position, the target position, and the positions of all other grasshoppers. Note that 

the first component in this equation is the position of the current grasshopper concerning 

the other grasshoppers. We consider the positions of all grasshoppers to define the search 

agents' positions around the target. 

The component must decrease with increasing iterations during the algorithm to 

maintain a balance between exploration and exploitation. This method strengthens the 

exploration by increasing the number of iterations. The coefficient that reduces the 

comfort zone proportional to the number of iterations is calculated using equation (13). 

(13) 𝑐 = 𝑐𝑚𝑎𝑥 − 𝑙
𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛

𝐿
 

In this equation, the mathematical model of the algorithm is considered, where cmax 

represents the maximum value, cmin represents the minimum value, and l indicates the 

current number of iterations. Additionally, L represents the maximum number of iterations 

of the algorithm. 

In this study, cmax equals1 and, cmin is set to 0.00001. 

The concepts above suggest that the mathematical model of the algorithm needs the 

grasshoppers to gradually converge towards the objective during the iterations of the 

algorithm. However, there is no objective in real search space as we need to know the exact 

global optimum location. Therefore, we will find a goal for the grasshoppers in each 

optimization stage. 

The algorithm can be expressed as follows: 

1. First, each member of the population takes a position in the space of feasible 

solutions. 

2. The variables cmax , cmin, and the maximum number of iterations are initialized. 

3. The objective function value is calculated for all population members. 

4. The grasshoppers are sorted based on the objective function's value, the 

population's best member is identified, and then the algorithm's main loop starts. 

5. The value of c is determined (it will not change in subsequent iterations and will 

update for the next replications). 

6. For each grasshopper, a new position is determined based on the equations. 

7. The grasshoppers are evaluated. 

8. The best member of the population is updated. 

9. If the termination conditions are not met, we return to step 5; otherwise, the 

algorithm terminates. 

3. Damage detection method using GOA  

In this study, the Grasshopper Optimization Algorithm (GOA) was employed to address 

the damage identification problem in truss structures. The steps for damage identification 

using the algorithm mentioned above are described as follows: 

i) Structural analysis and calculation of natural frequencies of the structure of interest. 

ii) Determination of natural frequencies of healthy and damaged structures. 

iii) Definition and formation of the objective function. 

iv) Implement the GOA algorithm to minimize the objective function formed in the 
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previous step. 

4. Numerical examples 

The presented findings aim to assess the algorithm's ability and methodology for 

identifying damage in this section. To this end, the results of two numerical examples 

comprising 13 and 31-member trusses, each with two damage cases, are provided for 

examination. 

4.1 Thirteen element planar truss 

The finite element model of a thirteen-element truss structure is shown in Figure 2. This 

model consists of eight nodes and thirteen members. In this example, the damage is 

modeled by reducing the elasticity modulus, and the first ten natural frequencies of the 

structure are used to detect the damage. In all elements, the density equals ρ=7850 kg/m3, 

the elasticity modulus equals E=200 GPa, and the length equals L=2 m. 

The cross-sectional area of all elements is taken as 0.01 m2. It should be noted that any 

rational number can be assumed for the cross-sectional area, as it does not affect the nature 

of the task, identifying the damage. 

 

Figure 2. The 13-bar planar truss, along with its element and node numbers. 

According to Table 1, two cases of damage have been considered for this structure, and 

the results of identifying the damage are also presented in Figures 3 and 4. 

Table 1. Considered damage cases for 13-bar planar truss. 

Damage case 1 Damage case 2 
Element number Damage ratio Element number Damage ratio 
7 0.2 5 0.1 

- - 8 0.25 

- - 12 0.15 

4.2 Thirty-one element planar truss 

The finite element model of a thirteen-element truss structure is shown in Figure 5. The 

mentioned model is composed of 14 nodes with 25 degrees of freedom and 31 elements. In 

this example, the damage is modeled by reducing the elasticity modulus and using the first 

ten natural frequencies of the structure to detect the damage. In all elements, the density 

equals ρ=2770 kg/m3, the elasticity modulus equals E=70 GPa, and the length equals L= 

1.52 m [9]. 
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Figure 3. Detection of damage in 13-element planar truss (Case 1). 

 

 

Figure 4. Detection of damage in 13-element planar truss (Case 2). 

The cross-sectional area of all elements is assumed to be 25 cm2. It should be noted that 

any rational number can be assumed for the cross-sectional area, as it does not affect the 

nature of the task, identifying the damage. 
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Figure 5. The 31-bar planar truss, along with its element and node numbers. 

According to Table 2, two damage cases have been considered for this structure, and 

the results related to identifying its damage have also been presented in Figures 6 and 7. 

Table 2. Considered damage cases for 31-bar planar truss. 

Damage case 1 Damage case 2 
Element number Damage ratio Element number Damage ratio 
16 0.3 11 0.25 

- - 25 0.15 
 

 

Figure 6. Detection of damage in 31-element planar truss (Case 1). 

As seen in Figures 3, 4, 6, and 7, the algorithm identified the location and extent of 

damage in a 13-bar planar truss with acceptable accuracy. However, in the 31-bar planar 

truss, as the number of truss elements increased and the number of damaged elements, 

although the location and extent of damage were identified, the accuracy of the results 

decreased. Damage was incorrectly detected in several other locations. This is due to the 

influence of damage on different elements and the algorithm getting stuck in local 

optimum points. 
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Figure 7. Detection of damage in 31-element planar truss (Case 2). 

5. Conclusion 

The type of algorithm, objective function, presence or absence of noise, the number of 

structural elements, and the number of damages significantly impact the accuracy of the 

results and the speed of providing answers. Based on the numerical examples investigated, 

it was observed that the results obtained for the 13-element planar truss structure had an 

acceptable accuracy. However, in the 31-element planar truss structure, due to the increase 

in the number of damaged elements and structural elements and the vast search space, the 

accuracy and ability of the algorithm decreased, and the desired and satisfactory results 

were not achieved. Therefore, the identified damages in the medium-sized truss structure 

and multiple damages were affected by low accuracy, causing the algorithm to fall into 

local optimum points. In this regard, the ability of the algorithm, as mentioned earlier, 

should be investigated using methods with higher dynamic characteristics. 
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