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Abstract. In this paper, the concept of partial pseudo-triangular entropy as a superior 

measure of indeterminacy for uncertain random variables is proposed. It is first proved that 

partial entropy and partial triangular entropy sometimes fail to measure the indeterminacy 

of an uncertain random variable. Then, the concept of partial pseudo-triangular entropy and 

its mathematical properties are investigated. To illustrate the outperformance of partial 

pseudo-triangular entropy as a measure of risk, a portfolio optimization problem is optimized 

via different types of entropy. Furthermore, a genetic algorithm (GA) is implemented in 

MATLAB to solve the corresponding problem. Numerical results show that partial pseudo-

triangular entropy as a quantifier of portfolio risk outperforms partial entropy and partial 

triangular entropy in the uncertain random portfolio optimization problem. 
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1. Introduction 

Entropy is a quantitative measurement of indeterminacy associated with a variable. Entropy of random 

variables was first proposed in logarithm form (Shannon [28]). A pioneer research carried out by scholars 

to associate entropy with a measure of risk in portfolio optimization showed that entropy is more common 

and better suited in portfolio optimization than variance (Philippatos and Wilson [26]). Moreover, 

researches showed that entropy as a measure of risk is better than variance in wealth allocation and by 

using entropy instead of variance in the portfolio optimization problem, all major difficulties with 
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Markowitz’s mean-variance portfolio optimization model can be eliminated (simonelli [31] and 

Mercurio et al. [25]). 

In the mentioned literatures, the indeterminacy is considered under probability theory. The key 

assumption for using probability theory is that the probability distribution of historical data is similar to 

the past one and close enough to the frequency. Nevertheless, it is difficult to achieve this assumption 

generally. As an approach to deal with problems associated with non-random phenomena, fuzzy set 

theory was proposed (Zadeh [34]).  As an improvement, Liu and Liu [21] presented a self-dual credibility 

measure for fuzzy events. Further researches by Liu [17] confirmed that using fuzzy set theory or 

subjective probability to model human uncertainty may lead to inaccurate results.  

To better deal with non-random phenomena and in particular human uncertainty, Liu [14] founded 

uncertainty theory. Then, Liu [15] introduced entropy of uncertain variables in logarithm form. Since 

then, several scholars have been investigating entropy under uncertainty theory. Chen et al. [6] proposed 

the concept of cross-entropy to measure the divergence degree of uncertain variables and presented the 

minimum cross-entropy principle. Chen and Dai [5] proposed the maximum entropy principle for 

uncertain variables. Moreover, Dai and Chen [8] presented a formula to calculate the entropy of uncertain 

variables. As a supplement of logarithm entropy, several types of entropy for uncertain variables have 

been investigated by scholars (Tang and Gao [32], Yao et al. [33], Dai [9] and Abtahi et al. [1]).  

In numerous situations, uncertainty and randomness may appear together in phenomena. In these 

situations, the concept of uncertain random variable and chance theory are used for modeling such 

phenomena. In order to describe such phenomena, Liu [19] proposed uncertain random variables. Liu 

[20] also discussed the concepts of chance distribution, expected value and variance of uncertain random 

variables. Then, Liu and Ralescu [22] proposed the risk index for uncertain random variables and 

established a formula for calculating this index. Guo and Wang [10] presented a formula to obtain 

variance of uncertain random variables. Liu and Ralescu [23] presented the concept of value at risk for 

uncertain random variables and Qin et al. [27] optimized portfolio selection problems of uncertain 

random returns based on value at risk models. Liu et al. [24] proposed the concept of tail value at risk 

for uncertain random variables and applied it to series systems, parallel systems, k-out-of-n systems, 

standby systems and structural system. Li et al. [13] proved some mathematical properties of tail value 

at risk for uncertain random variables and formulated several mean-TVaR models for hybrid portfolio 

optimization models. 

Entropy of uncertain random variables was first proposed in logarithm form by Sheng et al. [30]. Then, 

Ahmadzade et al. [3] introduced a definition of partial entropy for uncertain random variables to 

measures how much the entropy of an uncertain random variable belongs to the uncertain variable and 

derived several properties. Further applications of entropy for uncertain random variables in portfolio 

optimization problems have been investigated by several scholars (Ahmadzadeh et al. [4], Chen et al. [7] 

and He et al. [11]).  

As it mentioned, partial entropy and partial triangular entropy sometimes fail to measure the 

indeterminacy of an uncertain random variable. Therefore, in order to address this problem, in this paper, 
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the concept of partial pseudo-triangular entropy for uncertain random variables is proposed. As an 

application, partial pseudo-triangular entropy as a measure of risk is applied in a portfolio optimization 

problem. The rest of this paper is organized as follows. In Section 2, some concepts of uncertainty theory 

and chance theory are reviewed. In Section 3, the concept of partial pseudo-triangular entropy for 

uncertain random variables together with its mathematical properties are proposed. Then in Section 4, a 

portfolio optimization problem based on different types of entropy are optimized via a mean–entropy 

model. Finally, conclusions are given in Section 5. 

2. Preliminaries 

This section comes with reviewing some concepts of uncertainty theory and chance theory including 

definition of uncertain variable, uncertainty distribution, uncertain random variable and chance 

distribution. 

2.1. Uncertainty theory 

Uncertainty theory was founded by Liu in 2007 to model human uncertainty. In lack of historical data, 

we should request experts to evaluate the degree of belief for the occurrence of an event. In this section, 

some necessary definitions and theorems in uncertainty theory are reviewed.  

Assume that Γ is a nonempty set and ℒ is a 𝜎- algebra over Γ. Then, (Γ, ℒ) is named a measurable space. 

Each element ʌ in ℒ is called a measurable set. A measurable set can be considered as an event in 

uncertainty theory. That is, a number ℳ{ʌ} will be assigned to each event ʌ to indicate the belief degree 

with which we believe ʌ will happen. In order to deal with belief degree, the following axioms are 

suggested (Liu [14]): 

Axiom 1 (Normality) For the universal set  Γ, ℳ{Γ} = 1. 

Axiom 2 (Duality) For any event , ℳ{ʌ} + ℳ{ʌc} = 1. 

Axiom 3 (Subadditivity) For every countable sequence of events ʌ1, ʌ2, …, we have 

ℳ{⋃ ʌ𝑖

∞

𝑖=1

} ≤ ∑ ℳ{ʌ𝑖}.

∞

𝑖=1

 

Then, (Γ, ℒ , ℳ) is called an uncertainty space. 

Axiom 4 (Product) Let (Γ𝑖 , ℒ𝑖  , ℳ𝑖) be uncertainty spaces for 𝑖 = 1,2, … . Then, the product uncertain 

measure ℳ is an uncertain measure satisfying 

ℳ{∏ ʌ𝑖

∞

𝑖=1

} = ⋀ ℳ𝑖{ʌ𝑖},

∞

𝑖=1

 

where ʌ𝑖are arbitrarily chosen events from ℒ𝑖 for 𝑖 = 1,2, … , respectively. 
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Definition 2.1 (Liu [14]) An uncertain variable is a function 𝜏 from an uncertainty space (Γ, ℒ , ℳ) to 

the set of real numbers such that {𝜏 ∈ 𝐵} is an event for any Borel set B of real numbers. 

Definition 2.2 (Liu [16]) For any Borel sets B1, B2, … , B𝑛 of real numbers, the uncertain variables 

𝜏1, 𝜏2, … , 𝜏𝑛 are independent if  

ℳ{⋂(τ𝑖 ∈ 𝐵𝑖)

𝑛

𝑖=1

} = ⋀ ℳ{τ𝑖 ∈ 𝐵𝑖}.

𝑛

𝑖=1

 

Definition 2.3 (Liu [16]) An uncertain variable 𝜏 is called normal denoted by 𝑁(𝑚, δ) if it has a normal 

uncertainty distribution  

γ(𝑥) =  (1 + 𝑒𝑥𝑝 (
𝜋(𝑚 − 𝑥)

√3δ
))

− 1

;         𝑥 ∈ ℝ 

where 𝑚 ∈ ℝ and δ  (δ > 0). 

Example 2.1 (Liu [16]) Let 𝜏~𝑁(𝑚, δ), then the inverse uncertainty distribution of normal uncertain 

variable 𝜏 is  

γ−1(𝑟) = 𝑚 +
√3δ

𝜋
 𝑙𝑛 (

𝑟

1 − 𝑟
) ;       0 <  𝑟 < 1. 

Theorem 2.1 (Liu [16]) Let 𝜏 be an uncertain variable with regular uncertainty distribution γ(𝑥). If the 

expected value of 𝜏 exists, then 

E[𝜏] = ∫ γ−1(𝑟)
1

0

d𝑟, 

where γ−1(𝑟) is the inverse uncertainty function of 𝜏 with respect to 𝑟. 

Definition 2.4 (Liu [15]) Let 𝜏 be an uncertain variable with uncertainty distribution γ(𝑥). Then, the 

logarithm entropy of uncertain variable 𝜏 is  

H[𝜏] = ∫ L(γ(𝑥))
+∞

−∞

d𝑥, 

where L(𝑠) = −(𝑠)𝑙𝑛(𝑠) − (1 − 𝑠) 𝑙𝑛(1 − 𝑠). 

Theorem 2.2 (Dai and Chen [8]) Let 𝜏 be an uncertain variable with inverse uncertainty distribution 

γ−1(𝑟). Then, the logarithm entropy of 𝜏 is 

H[𝜏] = ∫ γ−1(𝑟)𝑙𝑛(
𝑟

1 − 𝑟
)

1

0

d𝑟. 
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Definition 2.5 (Tang and Gao [32]) Suppose that 𝜏 is an uncertain variable with uncertainty distribution 

γ. Then, the triangular entropy of 𝜏 is defined by  

T[𝜏] = ∫ K(γ(𝑥))
+∞

−∞

d𝑥 

where K(s) = {
s,                 𝑖𝑓  0 ≤ s ≤

1

2
    

1 − s,         𝑖𝑓  
1

2
< s ≤ 1.  

 

Theorem 2.3 (Tang and Gao [32]) Let 𝜏 be an uncertain variable with uncertainty distribution γ. Then, 

the triangular entropy of 𝜏 is 

T[𝜏] = ∫ γ−1(𝑟)
1

1
2

d𝑟 − ∫ γ−1(𝑟)

1
2

0

d𝑟.      

Remark 2.1 Logarithm entropy and triangular entropy sometimes may fail to measure the indeterminacy 

of an uncertain variable. 

Example 2.2 (Abtahi et al. [1]) Let 𝜏 be an uncertain variable with uncertainty distribution 

γ(𝑥) =
1

π
arctan(𝑥) +

1

2
 ;   𝑥 ∈ ℝ, 

and inverse uncertainty distribution  

γ−1(𝑟) = tan (𝜋 (𝑟 −
1

2
)) ;  0 < 𝑟 < 1. 

Then, the logarithm entropy and triangular entropy of 𝜏 are infinite. 

As a superior measure of indeterminacy compared to logarithm entropy and triangular entropy, Abtahi et 

al. [1] proposed the concept of pseudo-triangular entropy for uncertain variables. They also proved that 

the pseudo-triangular entropy of 𝜏 in Example 2 is finite. 

Definition 2.6 (Abtahi et al. [1]) Suppose that 𝜏 is an uncertain variable with uncertainty distribution γ. 

Then, the pseudo-triangular entropy of 𝜏 is defined by  

PS[𝜏] = ∫ C(γ(𝑥))
+∞

−∞

d𝑥, 

where C(s) = {
(s)2,              𝑖𝑓  0 ≤ s ≤

1

2

(1 − s)2,       𝑖𝑓  
1

2
< s ≤ 1.
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Theorem 2.4 (Abtahi et al. [1]) Suppose that 𝜏 is an uncertaint variable with regular uncertainty 

distribution γ. Then, the pseudo-triangular entropy of 𝜏 is 

PS[𝜏] = ∫ 2(1 − 𝑟)γ−1(𝑟)
1

1
2

d𝑟

− ∫ 2(𝑟)γ−1(𝑟)

1
2

0

d𝑟 .                                        

Example 2.3 (Abtahi et al. [1]) Let 𝜏~𝑁(𝑚, δ), then the pseudo-triangular entropy of uncertain variable 

𝜏 is  

PS[𝜏] =
(2ln2 − 1)√3

π
δ. 

Theorem 2.5 (Liu [16]) Let 𝜏1, 𝜏2, … , 𝜏𝑛 be independent uncertain variables with regular uncertainty 

distributions γ1, γ2, … , γ𝑛, respectively. If 𝑓(𝜏1, 𝜏2, … , 𝜏𝑛) is strictly increasing with respect to  

𝜏1, 𝜏2, … , 𝜏𝑚 and strictly decreasing with respect to 𝜏𝑚+1, 𝜏𝑚+2, … , 𝜏𝑛, then  

𝜏 = 𝑓(𝜏1, 𝜏2, … , 𝜏𝑛) 

has an inverse uncertainty distribution  

φ−1(𝑟) = 𝑓(γ1
−1(𝑟), … , γ𝑚

−1(𝑟) , γ𝑚+1
−1 (1 − 𝑟), … , γ𝑛

−1(1 − 𝑟)). 

 

2.2. Chance theory 

In order to handle phenomena including both uncertainty and randomness, chance theory was proposed 

by Liu [19]. In chance theory, the chance space is refer to the product of (Γ, ℒ , ℳ) × (Ω, 𝒜, pr), in which 

(Γ, ℒ , ℳ) is an uncertainty space and (Ω, 𝒜, pr) is a probability space. The chance measure of an 

uncertain random event Θ = ℒ × 𝒜 is defined as 

Ch{Θ} = ∫ Pr{ω ϵ Ω|ℳ{γ ϵΓ |(γ, ω) ϵ Θ} ≥ 𝑟}
1

0

d𝑟. 

Liu [19] proved that a chance measure satisfies following properties: 

(i) (Normality) Ch(Γ × Ω) = 1. 

(ii) (Duality) Ch{Θ} + Ch{Θ
c} = 1, for any event Θ. 

(iii) (Monotonicity) Ch{Θ1} < Ch{Θ2} for any real number set Θ1⸦ Θ2. 

Furthermore, Hou [12] proved that for a sequence of events Θ1, Θ2, …, a chance measure satisfies 

subadditivity as follows, 
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Ch{⋃ Θi

∞

𝑖=1

} ≤ ∑ Ch(Θi)

∞

𝑖=1

. 

Definition 2.7 (Liu [19]) An uncertain random variable is a function ξ from a chance space 

 (Γ, ℒ , ℳ) × (Ω, 𝒜, pr) to the set of real numbers such that for any Borel set of 𝐵 of real numbers, 

{ξ ϵ 𝐵} is an event in ℒ × 𝒜. 

Definition 2.8 (Liu [19]) Suppose ξ is an uncertain random variable. Then the chance distribution of ξ 

for any 𝑥 ϵ ℝ is defined by 

Φ(𝑥) = Ch{ξ ≤ 𝑥}. 

Definition 2.9 (Sheng et al. [29]) A chance distribution Φ(𝑥) is said to be regular if it is a continuous 

and strictly increasing function with respect to 𝑥 at which 0 < Φ(𝑥) < 1, and lim
𝑥→−∞

Φ(𝑥) =

0, lim
𝑥→+∞

Φ(𝑥) = 1. 

Definition 2.10 (Liu [19]) Let ξ be an uncertain random variable. Then the expected value of ξ is defined 

by 

E[ξ] = ∫ Ch{ξ ≥ 𝑥}
+∞

0

d𝑥 − ∫ Ch{ξ ≤ 𝑥} d𝑥
0

−∞

, 

provided that at least one of the two integrals is finite. 

Theorem 2.6 (Liu [20]) Let η1, η2, … , η𝑚 be independent random variables with probability 

distributions Ψ1, Ψ2, … , Ψ𝑚, and let 𝜏1, 𝜏2, … , 𝜏𝑛 be independent uncertain variables with uncertainty 

distributions γ1, γ2, … , γ𝑛, respectively. Then the uncertain random variable ξ =

𝑓(η
1

, η
2

, … , η
𝑚

, 𝜏1, 𝜏2, … , 𝜏𝑛) has a chance distribution  

Φ(𝑥) = ∫ 𝐹(𝑥; 𝑦1, … , 𝑦𝑚)dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚),
ℝ𝑚

 

where 𝐹(𝑥; 𝑦1, … , 𝑦𝑚) is the uncertainty distribution of uncertain variable 𝑓(η1, η2, … , η𝑚, 𝜏1, 𝜏2, … , 𝜏𝑛) 

for any real numbers  𝑦1, 𝑦2, … , 𝑦𝑚. 

Theorem 2.7 (Ahmadzadeh et al. [2]) Let η1, η2, … , η𝑚 be independent random variables with 

probability distributions Ψ1, Ψ2, … , Ψ𝑚, and let 𝜏1, 𝜏2, … , 𝜏𝑛 be independent uncertain variables with 

uncertainty distributions γ1, γ2, … , γ𝑛, respectively. Suppose ξ = 𝑓(η
1

, η
2

, … , η
𝑚

, 𝜏1, 𝜏2, … , 𝜏𝑛), then 

E[ξ] = ∫ ∫ 𝐹−1(𝑟, 𝑦1, … , 𝑦𝑚)d𝑟dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚)
1

0ℝ𝑚

,     
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where  𝐹−1(𝑟, 𝑦1, … , 𝑦𝑚) is the inverse uncertainty distribution of uncertain variable 

𝑓(y1, y2, … , y𝑚, 𝜏1, 𝜏2, … , 𝜏𝑚).  

3. Partial pseudo-triangular entropy of uncertain random variables 

In this section, the concepts of pseudo-triangular entropy of uncertain random variables are proposed. 

Besides, some mathematical properties of pseudo-triangular entropy and a formula to calculate it via 

inverse uncertainty distribution are derived. We first recall the definition of entropy, partial entropy and 

partial triangular entropy for uncertain random variables. 

Definition 3.1 (Sheng et al. [30]) Let ξ be an uncertain random variable with chance distribution Φ(𝑥). 

Then the entropy of ξ is defined by 

H[ξ] = ∫ L(Φ(𝑥))
+∞

−∞

d𝑥, 

where L(𝑠) = −𝑠ln𝑠 − (1 − 𝑠) ln(1 − 𝑠). 

Theorem 3.1 (Ahmadzade et al. [3]) Let η1, η2, … , η𝑚 be independent random variables with probability 

distributions Ψ1, Ψ2, … , Ψ𝑚 and 𝜏1, 𝜏2, … , 𝜏𝑛 be independent uncertain variables with uncertainty 

distributions γ1, γ2, … , γ𝑛, respectively, and let 𝑓 be a measurable function. Also let ξ =

𝑓(η1, η2, … , η𝑚, 𝜏1, 𝜏2, … , 𝜏𝑛) be an uncertain random variable. Then, ξ = 𝑓(η1, η2, … , η𝑚, 𝜏1, 𝜏2, … , 𝜏𝑛) 

has partial entropy 

PH[ξ] = ∫ ∫ L(𝐹(𝑥, 𝑦1, … , 𝑦𝑚))d𝑥dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚)
+∞

−∞ℝ𝑚

, 

where L(𝑠) = −𝑠ln𝑠 − (1 − 𝑠) ln(1 − 𝑠) and 𝐹(𝑥, 𝑦1, … , 𝑦𝑚) is the uncertainty distribution of uncertain 

variable 𝑓(η1, η2, … , η𝑚, 𝜏1, 𝜏2, … , 𝜏𝑛) for any real numbers  y1, y2, … , y𝑚. 

Theorem 3.2 (Ahmadzade et al. [3]) Let η1, η2, … , η𝑚 be independent random variables with probability 

distributions Ψ1, Ψ2, … , Ψ𝑚 and 𝜏1, 𝜏2, … , 𝜏𝑛 be independent uncertain variables with uncertainty 

distributions γ1, γ2, … , γ𝑛, respectively, and let 𝑓 be a measurable function. Then, ξ =

𝑓(η1, η2, … , η𝑚, 𝜏1, 𝜏2, … , 𝜏𝑛) has partial entropy  

PH[ξ] = ∫ ∫ 𝐹−1(𝑟, 𝑦1, … , 𝑦𝑚)𝑙𝑛
𝑟

1 − 𝑟
d𝑟dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚)

1

0ℝ𝑚

, 

where  𝐹−1(𝑟, 𝑦1, … , 𝑦𝑚) is the inverse uncertainty distribution of uncertain variable 

𝑓(y1, y2, … , y𝑚, 𝜏1, 𝜏2, … , 𝜏𝑚).  

Theorem 3.3 (Ahmadzade et al. [3]) Let 𝜏 be an uncertain variable with uncertainty distribution function 

γ and let η be a random variable with probability distribution function Ψ. If ξ = η + 𝜏, then 

PH[ξ] = H[𝜏]. 
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Theorem 3.4 (Ahmadzade et al. [3]) Let η1 and η2 be independent random variables and let 𝜏1 and 𝜏2 be 

independent uncertain variables. Also assume that ξ
1

= 𝑓(η1, 𝜏1) and ξ
2

= 𝑓(η2, 𝜏2). Then, for any real 

numbers 𝑎 and 𝑏, we have 

PH[𝑎ξ
1

+ 𝑏ξ
2

] = |𝑎|PH[ξ
1

] + |𝑏|PH[ξ
2

]. 

Theorem 3.5 (Ahmadzade et al. [4]) Suppose that η1, η2, … , η𝑚 are independent random variables, and 

𝜏1, 𝜏2, … , 𝜏𝑛 are independent uncertain variables. Also let ξ = 𝑓(η1, η2, … , η𝑚, 𝜏1, 𝜏2, … , 𝜏𝑛) be an 

uncertain random variable. Then, partial triangular entropy of uncertain random variable ξ is defined as 

follows, 

PT[ξ] = ∫ ∫ K(𝐹(𝑥, 𝑦1, … , 𝑦𝑚))d𝑥dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚)
+∞

−∞ℝ𝑚

, 

where K(s) = {
s,                𝑖𝑓  0 ≤ s ≤

1

2

1 − s,         𝑖𝑓  
1

2
< s ≤ 1,

 

and 𝐹(𝑥, 𝑦1, … , 𝑦𝑚) is the uncertainty distribution of uncertain variable 𝑓(η1, η2, … , η𝑚, 𝜏1, 𝜏2, … , 𝜏𝑛) for 

any real numbers  y1, y2, … , y𝑚. 

Theorem 3.6 (Ahmadzade et al. [4]) Let η1, η2, … , η𝑚 be independent random variables with probability 

distributions Ψ1, Ψ2, … , Ψ𝑚 and 𝜏1, 𝜏2, … , 𝜏𝑛 be independent uncertain variables with uncertainty 

distributions γ1, γ2, … , γ𝑛, respectively, and let 𝑓 be a measurable function. Then, ξ =

𝑓(η1, η2, … , η𝑚, 𝜏1, 𝜏2, … , 𝜏𝑛) has partial triangular entropy  

PT[ξ] = ∫ ∫ 𝐹−1(𝑟, 𝑦1, … , 𝑦𝑚)d𝑟dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚)
1

1
2ℝ𝑚

− ∫ ∫ 𝐹−1(𝑟, 𝑦1, … , 𝑦𝑚)d𝑟dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚)

1
2

0ℝ𝑚

, 

where  𝐹−1(𝑟, 𝑦1, … , 𝑦𝑚) is the inverse uncertainty distribution of uncertain variable 

𝑓(y1, y2, … , y𝑚, 𝜏1, 𝜏2, … , 𝜏𝑚).  

Theorem 3.7 (Ahmadzade et al. [4]) Let 𝜏 be an uncertain variable with uncertainty distribution function 

γ and let η be a random variable with probability distribution function Ψ. If ξ = η + 𝜏, then 

PT[ξ] = T[𝜏]. 

Theorem 3.8 (Ahmadzade et al. [4]) Let η1 and η2 be independent random variables and let 𝜏1 and 𝜏2 be 

independent uncertain variables. Also assume that ξ
1

= 𝑓(η1, 𝜏1) and ξ
2

= 𝑓(η2, 𝜏2). Then, for any real 

numbers 𝑎 and 𝑏, we have 
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PT[𝑎ξ
1

+ 𝑏ξ
2

] = |𝑎|PT[ξ
1

] + |𝑏|PT[ξ
2

]. 

Remark 3.2 Partial entropy and partial triangular entropy sometimes may fail to measure the 

indeterminacy of an uncertain random variable. 

Example 3.4 Let 𝜏 be an uncertain variable with uncertainty distribution 

γ(𝑥) =
1

π
arctan(𝑥) +

1

2
;   𝑥 ∈ ℝ, 

and inverse uncertainty distribution  

γ−1(𝑟) = tan (𝜋 (𝑟 −
1

2
)) ;  0 < 𝑟 < 1, 

also let η be a random variable. Consider ξ = η + 𝜏. Since, H[𝜏] and T[𝜏] are infinite (Abtahi et al. 2022), 

Theorem 10 and Theorem 14 imply that PH[ξ] = H[𝜏] = ∞ and PT[ξ] = T[𝜏] = ∞, respectively. Since, 

partial entropy and partial triangular entropy failed to measure the indeterminacy of uncertain random 

variable ξ, a new measure of indeterminacy for uncertain random variables will be proposed. 

Definition 3.2 Suppose that η1, η2, … , η𝑚 are independent random variables, and 𝜏1, 𝜏2, … , 𝜏𝑛 are 

independent uncertain variables. Also let ξ = 𝑓(η1, η2, … , η𝑚, 𝜏1, 𝜏2, … , 𝜏𝑛) be an uncertain random 

variable. Then, partial pseudo-triangular entropy of uncertain random variable ξ is defined as follows, 

PPS[ξ] = ∫ ∫ C(𝐹(𝑥, 𝑦1, … , 𝑦𝑚))d𝑥dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚)
+∞

−∞ℝ𝑚

, 

where C(s) = {
(s)2,              𝑖𝑓  0 ≤ s ≤

1

2

(1 − s)2,       𝑖𝑓  
1

2
< s ≤ 1,

   

 and 𝐹(𝑥, 𝑦1, … , 𝑦𝑚) is the uncertainty distribution of uncertain variable 𝑓(y1, y2, … , y𝑚, 𝜏1, 𝜏2, … , 𝜏𝑛). 

Theorem 3.9 Suppose that η1, η2, … , η𝑚 are independent random variables, and 𝜏1, 𝜏2, … , 𝜏𝑛 are 

independent uncertain variables. Also let ξ = 𝑓(η1, η2, … , η𝑚, 𝜏1, 𝜏2, … , 𝜏𝑛) be an uncertain random 

variable. Then, the partial pseudo-triangular entropy of uncertain random variable ξ is defined as follows, 

PPS[ξ] = − ∫ ∫ 𝐹−1(𝑟, 𝑦1, … , 𝑦𝑚)C′(𝑟)d𝑟dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚)
1

0ℝ𝑚

, 

 

where C(𝑟) = {
(𝑟)2,              𝑖𝑓  0 ≤ 𝑟 ≤

1

2

(1 − 𝑟)2,       𝑖𝑓  
1

2
< 𝑟 ≤ 1,
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and  𝐹−1(𝑟, 𝑦1, … , 𝑦𝑚) is the inverse uncertainty distribution of uncertain variable 

𝑓(y1, y2, … , y𝑚, 𝜏1, 𝜏2, … , 𝜏𝑚).  

Proof It is clear that C(𝑟) is a derivable function with 

C′(𝑟) = {
2(𝑟),                     𝑖𝑓  0 ≤ 𝑟 ≤

1

2

−2(1 − 𝑟),          𝑖𝑓 
1

2
< 𝑟 ≤ 1.

  

Since,  

C(𝐹(𝑥, 𝑦1, … , 𝑦𝑚)) = ∫ C′(𝑟)
𝐹(𝑥,𝑦1,…,𝑦𝑚)

0

d𝑟 = − ∫ C′(𝑟)
1

𝐹(𝑥,𝑦1,…,𝑦𝑚)

d𝑟, 

we have, 

    PPS[ξ] = ∫ ∫ C(𝐹(𝑥, 𝑦1, … , 𝑦𝑚))d𝑥dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚)
+∞

−∞ℝ𝑚

 

= ∫ ∫ C(𝐹(𝑥, 𝑦1, … , 𝑦𝑚))d𝑥dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚)
0

−∞ℝ𝑚

+ ∫ ∫ C(𝐹(𝑥, 𝑦1, … , 𝑦𝑚))d𝑥dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚)
+∞

0ℝ𝑚

 

= ∫ ∫ ∫ C′(𝑟)d𝑟d𝑥dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚)
𝐹(𝑥,𝑦1,…,𝑦𝑚)

0

0

−∞ℝ𝑚

− ∫ ∫ ∫ C′(𝑟)d𝑟d𝑥dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚)
1

𝐹(𝑥,𝑦1,…,𝑦𝑚)

0

−∞ℝ𝑚

. 

It follows from Fubini’s theorem that 

= ∫ ∫ ∫ C′(𝑟)d𝑥d𝑟dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚)
0

𝐹−1(𝑟,𝑦1,…,𝑦𝑚)

𝐹(0,𝑦1,…,𝑦𝑚)

0ℝ𝑚

 

− ∫ ∫ ∫ C′(𝑟)d𝑥d𝑟dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚)
𝐹−1(𝑟,𝑦1,…,𝑦𝑚)

0

1

𝐹(0,𝑦1,…,𝑦𝑚)ℝ𝑚

 

= − ∫ ∫ 𝐹−1(𝑟, 𝑦1, … , 𝑦𝑚)C′(𝑟)d𝑟dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚)
𝐹(0,𝑦1,…,𝑦𝑚)

0ℝ𝑚

 

− ∫ ∫ 𝐹−1(𝑟, 𝑦1, … , 𝑦𝑚)C′(𝑟)d𝑟dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚)
1

𝐹(0,𝑦1,…,𝑦𝑚)ℝ𝑚
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= − ∫ ∫ 𝐹−1(𝑟, 𝑦1, … , 𝑦𝑚)C′(𝑟)d𝑟dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚).
1

0ℝ𝑚

 

The proof is completed. 

Theorem 3.10 Let η1, η2, … , ηm be independent random variables with probability 

distributions Ψ1, Ψ2, … , Ψ𝑚 and τ1, τ2, … , τ𝑛 be independent uncertain variables with uncertainty 

distributions γ1, γ2, … , γn, respectively, and let 𝑓 be a measurable function. Then,ξ =

𝑓(η1, η2, … , η𝑚, τ1, τ2, … , τ𝑛) has partial pseudo-triangular entropy 

PPS[ξ] = ∫ ∫ 2(1 − 𝑟)𝐹−1(𝑟, 𝑦1, … , 𝑦𝑚)d𝑟dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚)
1

1
2ℝ𝑚

− ∫ ∫ 2(𝑟)𝐹−1(𝑟, 𝑦1, … , 𝑦𝑚)d𝑟dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚)

1
2

0ℝ𝑚

. 

Proof According to Theorem 16 we have 

PPS[ξ] = − ∫ ∫ 𝐹−1(𝑟, 𝑦1, … , 𝑦𝑚)C′(𝑟)d𝑟dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚)
1

0ℝ𝑚

 

= − (∫ ∫ 𝐹−1(𝑟, 𝑦1, … , 𝑦𝑚)C′(𝑟)d𝑟dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚)

1
2

0ℝ𝑚

+ ∫ ∫ 𝐹−1(𝑟, 𝑦1, … , 𝑦𝑚)C′(𝑟)d𝑟dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚)
1

1
2ℝ𝑚

) 

= − (∫ ∫ 2(𝑟)𝐹−1(𝑟, 𝑦1, … , 𝑦𝑚)d𝑟dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚)

1
2

0ℝ𝑚

− ∫ ∫ 2(1 − 𝑟)𝐹−1(𝑟, 𝑦1, … , 𝑦𝑚)d𝑟dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚)
1

1
2ℝ𝑚

) 

= ∫ ∫ 2(1 − 𝑟)𝐹−1(𝑟, 𝑦1, … , 𝑦𝑚)d𝑟dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚)
1

1
2ℝ𝑚

− ∫ ∫ 2(𝑟)𝐹−1(𝑟, 𝑦1, … , 𝑦𝑚)d𝑟dΨ1(𝑦1) …  dΨ𝑚(𝑦𝑚)

1
2

0ℝ𝑚

. 

Theorem 3.11 Let 𝜏 be an uncertain variable with uncertainty distribution function γ and let η be a 

random variable with probability distribution function Ψ. If ξ = η + 𝜏, then 
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PPS[ξ] = PS[𝜏]. 

Proof It is obvious that  𝐹−1(𝑟, 𝑦) = γ−1(𝑟) + 𝑦. Therefore, by applying theorem 17 we have 

PPS[ξ] = ∫ ∫ 2(1 − 𝑟)𝐹−1(𝑟, 𝑦)d𝑟dΨ(𝑦)
1

1
2

+∞

−∞

− ∫ ∫ 2(𝑟)𝐹−1(𝑟, 𝑦)d𝑟dΨ(𝑦)

1
2

0

+∞

−∞

 

= ∫ ∫ 2(1 − 𝑟)(γ−1(𝑟) + 𝑦)d𝑟dΨ(𝑦)
1

1
2

+∞

−∞

− ∫ ∫ 2(𝑟)(γ−1(𝑟) + 𝑦)d𝑟dΨ(𝑦)

1
2

0

+∞

−∞

 

= ∫ ∫ 2(1 − 𝑟)γ−1(𝑟)d𝑟dΨ(𝑦)
1

1
2

+∞

−∞

+ ∫ ∫ 2(1 − 𝑟)𝑦d𝑟dΨ(𝑦)
1

1
2

+∞

−∞

 

− ∫ ∫ 2(𝑟)γ−1(𝑟)d𝑟dΨ(𝑦)

1
2

0

+∞

−∞

− ∫ ∫ 2(𝑟)𝑦d𝑟dΨ(𝑦)

1
2

0

+∞

−∞

 

= ∫ 2(1 − 𝑟)γ−1(𝑟)d𝑟 +
1

4

1

1
2

E[η] − ∫ 2(𝑟)γ−1(𝑟)d𝑟 −

1
2

0

1

4
E[η] 

= PS[𝜏]. 

Theorem 3.12 Let 𝜏 be an uncertain variable with uncertainty distribution function γ and let η be a 

random variable with probability distribution function Ψ. If ξ = η𝜏, then 

PPS[ξ] = PS[𝜏]E[η]. 

Proof It is obvious that  𝐹−1(𝑟, 𝑦) = γ−1(𝑟)𝑦. Therefore, by applying theorem 16 we have 

PPS[ξ] = ∫ ∫ 2(1 − 𝑟)𝐹−1(𝑟, 𝑦)d𝑟dΨ(𝑦)
1

1
2

+∞

−∞

− ∫ ∫ 2(𝑟)𝐹−1(𝑟, 𝑦)d𝑟dΨ(𝑦)

1
2

0

+∞

−∞

 

= ∫ ∫ 2(1 − 𝑟)(γ−1(𝑟)𝑦)d𝑟dΨ(𝑦)
1

1
2

+∞

−∞

− ∫ ∫ 2(𝑟)(γ−1(𝑟)𝑦)d𝑟dΨ(𝑦)

1
2

0

+∞

−∞

 

= PS[𝜏]E[η]. 

Theorem 3.13 Suppose that η1, η2, … , η𝑛 are independent random variables, and 𝜏1, 𝜏2, … , 𝜏𝑛 are 

independent uncertain variables. Assume 

ξ
1

= 𝑓1(η1, 𝜏1), ξ
2

= 𝑓2(η2, 𝜏2), … , ξ
𝑛

= 𝑓𝑛(η𝑛, 𝜏𝑛). 



14                                                               S. H. Abtahi/𝐼𝐽𝑀2𝐶, 13 -01 (2023) 01-22. 

If 𝑓(z1, z2, … , z𝑛) is strictly increasing with respect to z1, z2, … , z𝑚 and strictly decreasing with respect 

to  z𝑚+1, z𝑚+2, … , z𝑛, then ξ = 𝑓(ξ
1

, ξ
2

, … , ξ
𝑛

) has partial pseudo-triangular entropy  

PPS[ξ] = ∫ ∫ 2(1
1

1
2

ℝ𝑛

− 𝑟)𝑓(𝐹1
−1(𝑟, 𝑦1), … , 𝐹𝑚

−1(𝑟, 𝑦𝑚), 𝐹𝑚+1
−1(1 − 𝑟, 𝑦𝑚+1), … , 𝐹𝑛

−1(1

− 𝑟, 𝑦𝑛) )d𝑟dΨ1(𝑦1) …  dΨ𝑛(𝑦𝑛) 

− ∫ ∫ 2(𝑟)𝑓(𝐹1
−1(𝑟, 𝑦1), … , 𝐹𝑚

−1(𝑟, 𝑦𝑚), 𝐹𝑚+1
−1(1 − 𝑟, 𝑦𝑚+1), … , 𝐹𝑛

−1(1

1
2

0ℝ𝑛

− 𝑟, 𝑦𝑛) )d𝑟dΨ1(𝑦1) …  dΨ𝑛(𝑦𝑛), 

where  𝐹𝑖
−1(𝑟, 𝑦𝑖) is the inverse uncertainty distribution of uncertain variable 𝑓𝑖(η𝑖, 𝜏𝑖) for any real 

number 𝑦𝑖; 𝑖 = 1, 2, … , 𝑛. 

Proof By applying Theorem 17, the proof of theorem is straightforward. 

Theorem 3.14 Let η1 and η2 be independent random variables with probability distributions Ψ1 and Ψ2, 

respectively, and let  𝜏1 and 𝜏2 be independent uncertain variables with uncertainty distributions γ1 and 

γ2, respectively. Then, 

(i) If ξ
1

= η1𝜏1 and ξ 2 = η2𝜏2, 

PPS[ξ
1
ξ

2
] = E[η1]E[η2]PS[𝜏1𝜏2]. 

(ii) If ξ
1

= η1 + 𝜏1 and ξ
2

= η2 + 𝜏2, 

PPS[ξ
1
ξ

2
] = PS[𝜏1𝜏2] + E[η1]PS[𝜏2] + E[η2]PS[𝜏1]. 

 

Proof of part (i) it is clear that  𝐹1
−1(𝑟, 𝑦1) = 𝑦1γ1

−1(𝑟) and 𝐹2
−1(𝑟, 𝑦2) = 𝑦2γ2

−1(𝑟). By applying 

Theorem 20, we have 

PPS[ξ
1
ξ

2
] = ∫ ∫ 2(1 − 𝑟)𝐹−1(𝑟, 𝑦1, 𝑦2)d𝑟dΨ1(𝑦1)dΨ2(𝑦2)

1

1
2ℝ2

 

− ∫ ∫ 2(𝑟)𝐹−1(𝑟, 𝑦1, 𝑦2)d𝑟dΨ1(𝑦1)dΨ2(𝑦2)

1
2

0ℝ2

 

= ∫ ∫ 2(1 − 𝑟)𝐹1
−1(𝑟, 𝑦1)𝐹2

−1(𝑟, 𝑦2)d𝑟dΨ1(𝑦1)dΨ2(𝑦2)
1

1
2ℝ2
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− ∫ ∫ 2(𝑟)𝐹1
−1(𝑟, 𝑦1)𝐹2

−1(𝑟, 𝑦2)d𝑟dΨ1(𝑦1)dΨ2(𝑦2)

1
2

0ℝ2

 

= ∫ ∫ 2(1 − 𝑟)(𝑦1γ1
−1(𝑟))(𝑦2γ2

−1(𝑟))d𝑟dΨ1(𝑦1)dΨ2(𝑦2)
1

1
2ℝ2

 

− ∫ ∫ 2(𝑟)(𝑦1γ1
−1(𝑟))(𝑦2γ2

−1(𝑟))d𝑟dΨ1(𝑦1)dΨ2(𝑦2)

1
2

0ℝ2

 

= E[η1η2]PS[𝜏1𝜏2] = E[η1]E[η2]PS[𝜏1𝜏2]. 

Proof of part (ii) it is clear that  𝐹1
−1(𝑟, 𝑦1) = 𝑦1 + γ1

−1(𝑟) and 𝐹2
−1(𝑟, 𝑦2) = 𝑦2 + γ2

−1(𝑟). By 

applying Theorem 20, we have 

PPS[ξ
1
ξ

2
] = ∫ ∫ 2(1 − 𝑟)𝐹−1(𝑟, 𝑦1, 𝑦2)d𝑟dΨ1(𝑦1)dΨ2(𝑦2)

1

1
2ℝ2

 

− ∫ ∫ 2(𝑟)𝐹−1(𝑟, 𝑦1, 𝑦2)d𝑟dΨ1(𝑦1)dΨ2(𝑦2)

1
2

0ℝ2

 

= ∫ ∫ 2(1 − 𝑟)𝐹1
−1(𝑟, 𝑦1)𝐹2

−1(𝑟, 𝑦2)d𝑟dΨ1(𝑦1)dΨ2(𝑦2)
1

1
2ℝ2

 

− ∫ ∫ 2(𝑟)𝐹1
−1(𝑟, 𝑦1)𝐹2

−1(𝑟, 𝑦2)d𝑟dΨ1(𝑦1)dΨ2(𝑦2)

1
2

0ℝ2

 

= ∫ ∫ 2(1 − 𝑟)(𝑦1 + γ1
−1(𝑟))(𝑦2 + γ2

−1(𝑟))d𝑟dΨ1(𝑦1)dΨ2(𝑦2)
1

1
2ℝ2

 

− ∫ ∫ 2(𝑟)(𝑦1 + γ1
−1(𝑟))(𝑦2 + γ2

−1(𝑟))d𝑟dΨ1(𝑦1)dΨ2(𝑦2)

1
2

0ℝ2

 

= PS[𝜏1𝜏2] +
1

4
E[η1η2] + E[η1]PS[𝜏2] + E[η2]PS[𝜏1] −

1

4
E[η1η2] 

= PS[𝜏1𝜏2] + E[η1]PS[𝜏2] + E[η2]PS[𝜏1]. 

Theorem 3.15 Let η1 and η2 be independent random variables with probability distributions Ψ1 and Ψ2, 

respectively, and let τ1 and τ2 be independent uncertain variables with uncertainty distributions γ1 and 

γ2, respectively. If ξ
1

= η1𝜏1 and ξ 2 = η2𝜏2, then 
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PPS[
ξ

1

ξ
2

] = E[η1]E[
1

η2

]PS[
𝜏1

𝜏2

]. 

Proof.  It is clear that  𝐹1
−1(𝑟, 𝑦1) = 𝑦1γ1

−1(𝑟) and 𝐹2
−1(𝑟, 𝑦2) = 𝑦2γ2

−1(𝑟). By applying Theorem 20, 

we have 

PPS[
ξ

1

ξ
2

] = ∫ ∫ 2(1 − 𝑟)𝐹−1(𝑟, 𝑦1, 𝑦2)d𝑟dΨ1(𝑦1)dΨ2(𝑦2)
1

1
2ℝ2

 

− ∫ ∫ 2(𝑟)𝐹−1(𝑟, 𝑦1, 𝑦2)d𝑟dΨ1(𝑦1)dΨ2(𝑦2)

1
2

0ℝ2

 

= ∫ ∫ 2(1 − 𝑟)
𝐹1

−1(𝑟, 𝑦1)

𝐹2
−1(𝑟, 𝑦2)

d𝑟dΨ1(𝑦1)dΨ2(𝑦2)
1

1
2ℝ2

 

− ∫ ∫ 2(𝑟)
𝐹1

−1(𝑟, 𝑦1)

𝐹2
−1(𝑟, 𝑦2)

d𝑟dΨ1(𝑦1)dΨ2(𝑦2)

1
2

0ℝ2

 

= ∫ ∫ 2(1 − 𝑟)
(𝑦1γ1

−1(𝑟))

(𝑦2γ2
−1(𝑟))

d𝑟dΨ1(𝑦1)dΨ2(𝑦2)
1

1
2ℝ2

 

− ∫ ∫ 2(𝑟)
(𝑦1γ1

−1(𝑟))

(𝑦2γ2
−1(𝑟))

d𝑟dΨ1(𝑦1)dΨ2(𝑦2)

1
2

0ℝ2

 

= E[
η1

η2

]PS[
𝜏1

𝜏2

] = E[η1]E[
1

η2

]PS[
𝜏1

𝜏2

]. 

Theorem 3.16 Let η1 and η2 be independent random variables and also let τ1 and τ2 be independent 

uncertain variables. Assume that ξ
1

= 𝑓1(η1, 𝜏1) and ξ
2

= 𝑓2(η2, 𝜏2). Then for any real numbers 𝑎 and 

𝑏, we have 

PPS[𝑎ξ
1

+ 𝑏ξ
2

] = |𝑎|PPS[ξ
1

] + |𝑏|PPS[ξ
2

]. 

Proof.  The theorem will be proved via three steps. 

Step 1 We prove PPS[𝑎ξ
1

] = |𝑎|PPS[ξ
1

]. 

If 𝑎 > 0, then the inverse uncertainty distribution of 𝑎𝑓1(𝜏1, 𝑦1) is 

𝐹−1(𝑟, 𝑦1) = 𝑎𝐹1
−1(𝑟, 𝑦1), 

where 𝐹1
−1(𝑟, 𝑦1) is the inverse uncertainty distribution of 𝑓1(𝜏1, 𝑦1). It follows from Theorem 20 that 
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PPS[𝑎ξ
1

] = ∫ ∫ 2(1 − 𝑟)𝑎𝐹1
−1(𝑟, 𝑦1)d𝑟dΨ1(𝑦1)

1

1
2

+∞

−∞

− ∫ ∫ 2(𝑟)𝑎𝐹1
−1(𝑟, 𝑦1)d𝑟dΨ1(𝑦1)

1
2

0

+∞

−∞

 

= 𝑎PPS[ξ
1

]. 

If 𝑎 < 0, then the inverse uncertainty distribution of 𝑎𝑓1(𝜏1, 𝑦1) is 

𝐹−1(𝑟, 𝑦1) = 𝑎𝐹1
−1(1 − 𝑟, 𝑦1), 

therefore we have, 

PPS[𝑎ξ
1

] = ∫ ∫ 2(1 − 𝑟)𝑎𝐹1
−1(1 − 𝑟, 𝑦1)d𝑟dΨ1(𝑦1)

1

1
2

+∞

−∞

− ∫ ∫ 2(𝑟)𝑎𝐹1
−1(1 − 𝑟, 𝑦1)d𝑟dΨ1(𝑦1)

1
2

0

+∞

−∞

 

By changing variable 𝑢 = 1 − 𝑟, we have 

PPS[𝑎ξ
1

] = − ∫ ∫ 2(𝑢)𝑎𝐹1
−1(𝑢, 𝑦1)d𝑢dΨ1(𝑦1)

0

1
2

+∞

−∞

+ ∫ ∫ 2(1 − 𝑢)𝑎𝐹1
−1(𝑢, 𝑦1)d𝑢dΨ1(𝑦1)

1
2

1

+∞

−∞

 

= ∫ ∫ 2(𝑟)𝑎𝐹1
−1(𝑟, 𝑦1)d𝑟dΨ1(𝑦1)

1
2

0

+∞

−∞

− ∫ ∫ 2(1 − 𝑟)𝑎𝐹1
−1(𝑟, 𝑦1)d𝑟dΨ1(𝑦1)

1

1
2

+∞

−∞

 

= −𝑎PPS[ξ
1

]. 

Thus, we have PPS[𝑎ξ
1

] = |𝑎|PPS[ξ
1

]. 

Step 2 we prove PPS[ξ
1

+ ξ
2

] = PPS[ξ
1

] + PPS[ξ
2

]. 

Since, the inverse distribution of 𝑓1(𝜏1, 𝑦1) + 𝑓2(𝜏2, 𝑦2) is 𝐹−1(𝑟, 𝑦1, 𝑦2) = 𝐹1
−1(𝑟, 𝑦1) + 𝐹2

−1(𝑟, 𝑦2), 

by applying Theorem 20 we have 

PPS[ξ
1

+ ξ
2

] = ∫ ∫ 2(1 − 𝑟)𝐹−1(𝑟, 𝑦1, 𝑦2)d𝑟dΨ1(𝑦1)dΨ2(𝑦2)
1

1
2ℝ2

− ∫ ∫ 2(𝑟)𝐹−1(𝑟, 𝑦1, 𝑦2)d𝑟dΨ1(𝑦1)dΨ2(𝑦2)

1
2

0ℝ2
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= ∫ ∫ 2(1 − 𝑟) (𝐹1
−1(𝑟, 𝑦1) + 𝐹2

−1(𝑟, 𝑦2)) d𝑟dΨ1(𝑦1)dΨ2(𝑦2)
1

1
2ℝ2

 

− ∫ ∫ 2(𝑟) (𝐹1
−1(𝑟, 𝑦1) + 𝐹2

−1(𝑟, 𝑦2)) d𝑟dΨ1(𝑦1)dΨ2(𝑦2)

1
2

0ℝ2

 

= ∫ ∫ 2(1 − 𝑟) (𝐹1
−1(𝑟, 𝑦1)) d𝑟dΨ1(𝑦1)dΨ2(𝑦2)

1

1
2ℝ2

− ∫ ∫ 2(𝑟) (𝐹1
−1(𝑟, 𝑦1)) d𝑟dΨ1(𝑦1)dΨ2(𝑦2)

1
2

0ℝ2

 

+ ∫ ∫ 2(1 − 𝑟) (𝐹2
−1(𝑟, 𝑦2)) d𝑟dΨ1(𝑦1)dΨ2(𝑦2)

1

1
2ℝ2

− ∫ ∫ 2(𝑟) (𝐹2
−1(𝑟, 𝑦2)) d𝑟dΨ1(𝑦1)dΨ2(𝑦2)

1
2

0ℝ2

 

= ∫ ∫ 2(1 − 𝑟) (𝐹1
−1(𝑟, 𝑦1)) d𝑟dΨ1(𝑦1)

1

1
2

+∞

−∞

− ∫ ∫ 2(𝑟) (𝐹1
−1(𝑟, 𝑦1)) d𝑟dΨ1(𝑦1)

1
2

0

+∞

−∞

 

+ ∫ ∫ 2(1 − 𝑟) (𝐹2
−1(𝑟, 𝑦2)) d𝑟dΨ2(𝑦2)

1

1
2

+∞

−∞

− ∫ ∫ 2(𝑟) (𝐹2
−1(𝑟, 𝑦2)) d𝑟dΨ2(𝑦2)

1
2

0

+∞

−∞

 

= PPS[ξ
1

] + PPS[ξ
2

]. 

Step 3 For any real numbers 𝑎 and b, we have 

PPS[𝑎ξ
1

+ 𝑏ξ
2

] = PPS[𝑎ξ
1

] + PPS[𝑏ξ
2

] = |𝑎|PPS[ξ
1

] + |𝑏|PPS[ξ
2

]. 

The proof is completed. 

4. Uncertain random portfolio optimization  

In this section, in order to solve the portfolio optimization problem of uncertain random variables, a 

mean-entropy model via partial pseudo-triangular entropy is proposed. Suppose that there are 𝑛 securities 

with uncertain random returns ξ
𝑖

= 𝜏𝑖 + η𝑖;  𝑖 = 1, 2, … , 𝑛. Moreover, let 𝑥𝑖’s be investment proportions 

in security 𝑖 = 1, 2, … , 𝑛. To make sure that the uncertain random portfolio risk is under control, we 
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minimize entropy as the objective function. Moreover, we set expected value greater than some preset 

value 𝑐.  

In order to optimize the portfolio optimization problem, a mean-entropy model based on partial pseudo-

triangular entropy is presented as follows, 

𝑀𝑖𝑛  PPS[𝑥1ξ1
+ ⋯ +  𝑥𝑛ξ𝑛

]                                                                                       

𝑆. 𝑡.                                                                                                                                      
E[𝑥1ξ1

+ ⋯ +  𝑥𝑛ξ𝑛
] ≥ C                                                                                    

𝑥1 +  𝑥2 + ⋯ +  𝑥𝑛 = 1,      0 ≤ 𝑥𝑖 ≤ 1; ∀𝑖 = 1,2, … , 𝑛,                                       

(4.1) 

where the predetermined parameter C is designated by investor. 

By applying the expected value formula of uncertain random variables  ξ
𝑖

= 𝜏𝑖 + η𝑖;  𝑖 = 1, 2, … , 𝑛 in 

Theorem 7, we have  

E[𝑥1ξ1
+ ⋯ +  𝑥𝑛ξ𝑛

] = ∫ ∫ (𝑥1𝐹1
−1(𝑟, 𝑦1) + ⋯ +  𝑥𝑛𝐹𝑛

−1(𝑟, 𝑦𝑛)) d𝑟dΨ1(𝑦1) …  dΨ𝑛(𝑦𝑛)
1

0ℝ𝑛

 

= ∫ ∫ (𝑥1(γ1
−1(𝑟) + 𝑦1) + ⋯

1

0ℝ𝑛

+  𝑥𝑛(γ𝑛
−1(𝑟) + 𝑦𝑛))d𝑟dΨ1(𝑦1) …  dΨ𝑛(𝑦𝑛) 

= 𝑥1(E(𝜏1) + E(η1)) + ⋯ + 𝑥𝑛(E(𝜏𝑛) + E(η𝑛)). 

Now, according to Theorem 18 and Theorem 23, the partial pseudo-triangular entropy of uncertain 

random variables  ξ
𝑖

= 𝜏𝑖 + η𝑖;  𝑖 = 1, 2, … , 𝑛 is obtained as follows, 

PPS[𝑥1ξ1
+ ⋯ +  𝑥𝑛ξ𝑛

] = PPS[𝑥1ξ1
]+ ⋯ + PPS[𝑥𝑛ξ𝑛

] = 𝑥1PS[𝜏1] + ⋯ + 𝑥𝑛PS[𝜏𝑛], 

where PS[𝜏𝑖] is the pseudo-triangular entropy of uncertain variable 𝜏𝑖;  𝑖 = 1, 2, … , 𝑛.  

Thus, Model (4.1) is equivalent to the following model, 

𝑀𝑖𝑛  𝑥1PS[𝜏1] + ⋯ + 𝑥𝑛PS[𝜏𝑛]                                                                                               
𝑆. 𝑡.                                                                                                                                                  
𝑥1(E(𝜏1) + E(𝜂1)) + ⋯ + 𝑥𝑛(E(𝜏𝑛) + E(𝜂𝑛)) ≥ C                                                (4.2)

𝑥1 +  𝑥2 + ⋯ +  𝑥𝑛 = 1,      0 ≤ 𝑥𝑖 ≤ 1; ∀𝑖 = 1,2, … , 𝑛,                                                   

 

Now, in order to further investigate the outperformance of partial pseudo-triangular entropy as a 

quantifier of portfolio risk in comparison with partial entropy and partial triangular entropy in portfolio 

risk management let us consider the following example. 

Example 5 Suppose there is an investment portfolio containing five securities. According to expert’s 

evaluation and the data from Tehran Stock Exchange, five securities are assumed to be uncertain random 
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variables with  ξ
𝑖

= 𝜏𝑖 + η𝑖 , 𝑖 = 1, 2, … , 5 depicted in Table 1. Moreover, the parameter C in Model (4.2) 

is designated to 2 by investor.  

The optimal solutions are obtained by implementing a genetic algorithm (GA) in MATLAB. The 

investment proportions in securities and the objective values are illustrated in Table 2. According to 

Table 2, the objective value for partial pseudo-triangular entropy has the lowest value amongst different 

types of entropy. Therefore, a portfolio based on partial pseudo-triangular entropy is less risky than 

partial entropy and partial triangular entropy. Furthermore, investment proportion in securities with 

smaller parameter δ is more other securities. 

Table 1. Uncertain random returns. 

No 

Uncertain term 

𝑁(𝑚, 𝛿) 

Random term 

𝒩(𝜇, 𝜎2) 

1 𝜏1~𝑁(1.5, 0.7) 
𝜂1~𝒩(0.6, 0.09) 

2 𝜏2~𝑁(1,0.5) 
𝜂2~𝒩(1, 0.25) 

3 𝜏3~𝑁(−0.5, 0.8) 
𝜂3~𝒩(1.7, 0.04) 

4 𝜏4~𝑁(1, 0.3) 
𝜂4~𝒩(−0.7, 0.49) 

5 𝜏5~𝑁(1.5, 0.4) 
𝜂5~𝒩(0.4, 0.36) 

 

Table 2. Investment proportion in securities. 

Entropy Objective value Investment proportion 

Partial  0.6548 (0.005, 0.032, 0.001, 0.543, 0.418) 

Partial triangular 0.2544 (0.001, 0.055, 0.001, 0.73, 0.212) 

Partial pseudo-triangular 0.0792 (0.006, 0.063, 0.002, 0.367, 0.561) 

 

5. Conclusions 

In this paper, a superior supplement measure of indeterminacy for uncertain random variables was 

proposed. It was first proved that partial entropy and partial triangular entropy sometimes fail to measure 

the indeterminacy of an uncertain random variable. Then, the concepts of partial pseudo-triangular 

entropy for uncertain random variables and its mathematical properties were investigated. To show the 

outperformance of partial pseudo-triangular entropy compared to partial entropy and partial triangular 

entropy in portfolio risk management, a numerical example was presented. To solve the corresponding 

problem, a genetic algorithm (GA) was implemented in MATLAB and optimal solutions were obtained. 

The example illustrated that a portfolio based on partial pseudo-triangular entropy is less risky than a 
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portfolio based on partial entropy and partial triangular entropy. Furthermore, investment proportion in 

securities with smaller parameter δ is more than other securities. 
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