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Abstract. Classical orthogonal polynomials of Jacobi, Laguerre and Hermite are character-
ized as the infinite sequences of orthogonal polynomials. In this paper, we present a sequence
of orthogonal polynomials which is finitely orthogonal with respect to inverse Gamma distri-
bution on infinite interval. General properties of this sequence such as orthogonality relation,
Rodrigues type formula, recurrence relations and also some of its applications such as Gauss
quadrature, Gauss-Radau quadrature formulas and so on are indicated. In addition, it is well-
known that spectral methods for unbounded domains can be essentially classified into four
categories; domain truncation, approximation by classical orthogonal systems on unbounded
domains, approximation by other non-classical orthogonal systems and mapping. In this pa-
per based on the second category, we propose a spectral method using the finite class of

orthogonal polynomial N
(p)
n (x) related to inverse Gamma distribution. Error analysis and

convergence of the method are thoroughly investigated. At the end, two numerical examples
are given for the efficiency and accuracy of the proposed method.
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1. Introduction

Consider the following Sturm-Liouville equation

σ(x)y′′n(x) + τ(x)y′n(x)− λnyn(x) = 0, (1)
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where σ(x) = ax2+bx+c and τ(x) = dx+e are polynomials independent of n and
λn = n(n − 1)a + nd is the eigenvalue parameter depending on n = 0, 1, · · · . It is
well-known that six special classes of orthogonal polynomials can be derived from
the differential equation (1) [1–3]. The first category of orthogonal polynomials, i.e,
the Jacobi, Laguerre and Hermite polynomials, are known as the infinite classical
orthogonal polynomials and the second one are finite.
It is worth to point out that, for the infinite orthogonal polynomials, the weight

functions are related to probability density function of Beta, Gumma and Normal
distributions for Jacobi, Laguerre and Hermite polynomials, respectively. Also,

three finite classical orthogonal polynomials, i.e., M
(p,q)
n , I

(p)
n and N

(p)
n are orthog-

onal with respect to probability density F distribution, Student’s T -distribution
and Inverse Gama distribution [1, 4]. Table 1 shows these six classical orthogonal
polynomials in details.
Two infinite orthogonal polynomials, namely Laguerre and Hermite polynomials

are defined in unbounded domains. So, in the last two decades, a considerable
progress has been made in using them in spectral methods for solving PDEs. But,

in this paper, we study spectral approximations by orthogonal polynomials N
(p)
n (x)

with the weight function w(p) = x−pe−
1

x on unbounded interval [0,∞). In general,
spectral methods for unbounded domains can be divided into four parts. Domain
truncation is the first one, which is based on truncation of unbounded domains
into bounded domains and solve PDEs on bounded domains. The second one as is
mentioned is approximation by classical orthogonal polynomials such as Laguerre
or Hermite polynomials. The third patr is based on approximation by other non-
classical orthogonal system or mapped orthogonal systems. Finally, in the forth
part, unbounded domains are mapped to bounded domains and used standard
spectral methods to solve the mapped PDEs in bounded domains (see [5] and
references therein).
The outline of this paper is as follows. In Section 2, we give some properties of

orthogonal polynomials N
(p)
n (x). In Section 3, we give the analysis of approxima-

tions by N
(p)
n (x). These results will be useful for error analysis of spectral methods

for unbounded domains. In Section 4, we consider spectral-Galerkin methods and
provide an error analysis by the obtained results. Finally, we give some numerical
examples and show the validation of proposed method.

Table 1. Table of all six classical orthogonal polynomials.

Type Polynomial σ(x) τ(x) Weight function Interval
Infinite Jacobi 1− x2 −(α+ β + 2)x+ (β − α) (1− x)α(1 + x)β ;α, β > −1 [−1, 1]
Infinite Laguerre x α+ 1− x xαe−x;α > −1 [0,∞)

Infinite Hermite 1 −2x e−x2

(−∞,∞)

Finite M
(p,q)
n x2 + x (2− p)x+ (1 + q) xq(1 + x)−(p+q) [0,∞)

Finite I
(p)
n x2 + 1 (3− 2p)x (1 + x2)−(p− 1

2 ) (−∞,∞)

Finite N
(p)
n x2 (2− p)x+ 1 x−pe−

1
x [0,∞)

2. Orthogonal polynomials related to inverse Gamma distribution

2.1 Orthogonality and its consequences

Consider the following differential equation

x2y′′ + ((2− p)x+ 1) y′ − n(n+ 1− p)y = 0. (2)
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By applying the Frobenius method an explicit polynomial solution of (2) can be
obtained as follows

N (p)
n (x) = (−1)n

n∑
k=0

k!

(
p− (n+ 1)

k

)(
n

n− k

)
(−x)k.

These polynomials are finitely orthogonal with respect to the weight function
w(p)(x) = x−pe−

1

x on the half line R+ := [0,∞), i.e.,

∫ ∞

0
x−pe−

1

xN (p)
n (x)N (p)

m (x)dx = 0 ⇔

{
m ̸= n , p > 2ℓ+ 1,

ℓ = max{m,n},

and

γ(p)n :=

∫ ∞

0
x−pe−

1

x

(
N (p)

n (x)
)2

dx =
n!(p− 1− n)!

p− 1− 2n
. (3)

The Rodrigues’ formula for this class of functions takes the form

N (p)
n (x) = (−1)nxpe

1

x
dn

dxn

(
x−p+2ne−

1

x

)
.

For example, if n = 0, 1, 2 and 3, we have

N
(p)
0 (x) = 1,

N
(p)
1 (x) = (p− 2)x− 1,

N
(p)
2 (x) = (p− 4)(p− 3)x2 − 2(p− 3)x+ 1,

N
(p)
3 (x) = (p− 6)(p− 5)(p− 4)x3 − 3(p− 5)(p− 4)x2 + 3(p− 4)x− 1.

The leading coefficient k
(p)
n of N

(p)
n (x) is

k
(p)
0 = 1, k(p)n =

n∏
i=1

(p− (n+ i)). (4)

Since the explicit formula of the polynomials exist, one can get the three-term

recurrence formula that generates the N
(p)
n (x) as follows

N
(p)
n+1(x) =

(
(p− (2n+ 2))(p− (2n+ 1))

p− (n+ 1)
x− p(p− (2n+ 1))

(p− (n+ 1))(p− 2n)

)
N (p)

n (x)

− n(p− (2n+ 2))

(p− (n+ 1))(p− 2n)
N

(p)
n−1(x). (5)

Also, it is not difficult to verify that

d

dx
N (p)

n (x) = n(p− (n+ 1))N
(p−2)
n−1 (x). (6)
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This means that the finite set
{

d
dxN

(p>2ℓ+1)
n (x)

}n=ℓ

n=1
is also orthogonal with respect

to w(p−2)(x) (see [6]). Moreover, replacing (6) in (2) yields

x2
d

dx
N (p)

n (x) + (1− px)N (p)
n (x) = N

(p+2)
n+1 (x).

2.2 Gauss quadrature and Gauss-Radau quadrature formulas

Among all integration rules with n+ 1 points, it is well-known that (n+ 1)-point
Gauss quadrature rule

∫ b

a
f(x)w(x)dx =

n∑
j=0

f(xj)wj + En[f ], (7)

has the highest possible precision degree and is analytically exact for polynomials
of degree at most 2n+1, where nodes xj are zeros of an orthogonal polynomial, wj ’s
are corresponding weights and En[f ] is the quadrature error. If f(x) ∈ Cn+1[a, b],
we have

En[f ] =
1

(n+ 1)!

∫ b

a
f (n+1)(ξx)

n∏
i=0

(x− xi)dx, ξx ∈ [a, b]. (8)

In next theorem, we obtain the (n+1)-point Gauss quadrature rule associated with

N
(p)
n+1(x).

Theorem 2.1 (Gauss quadrature) Let {xj}nj=0 be the set of zeros of N
(p)
n+1(x),

(p > 2n + 3). Then there exists a unique set of quadrature weights {wj}nj=0 such
that ∫ ∞

0
q(x)w(p)(x)dx =

n∑
j=0

q(xj)wj , ∀q ∈ P2n+1,

where the quadrature weights are all positive and given by

wj =
(p− (2n+ 2))n!(p− (n+ 2))!

N
(p)
n (xj)N

(p−2)
n (xj)(n+ 1)(p− (n+ 2))

. (9)

Proof In view of Theorem 3.5 in [5], it suffices to derive the second formula for
the quadrature weights in (9). Let Lj be the Lagrange basis polynomials related
to {xj}nj=0, i.e.,

Lj(x) =

n∏
i=0, i ̸=j

x− xi
xj − xi

,

so taking f(x) = Lj(x) in (7) and using (8), we get the quadrature weights

wj =

∫ ∞

0
Lj(x)w

(p)(x)dx, 0 ⩽ j ⩽ n. (10)
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Applying Christoff-Darboux formula, we have

wj =

∫ ∞

0
Lj(x)w

(p)(x)dx =
k
(p)
n+1

k
(p)
n

∥∥∥N (p)
n

∥∥∥2
w(p)

N
(p)
n (xj)

d
dxN

(p)
n+1(xj)

, 0 ⩽ j ⩽ n.

We note that from (6), we have

d

dx
N

(p)
n+1(xj) = (n+ 1)(p− (n+ 2))N (p−2)

n (xj). (11)

Hence, using (3), (4) and (11) yields

wj =
k
(p)
n+1

k
(p)
n

∥∥∥N (p)
n

∥∥∥2
w(p)

N
(p)
n (xj)

d
dxN

(p)
n+1(xj)

=

n+1∏
i=1

(p− (n+ 1 + i))

n∏
i=1

(p− (n+ i))

n!(p−(n+1))!
p−(2n+1)

N
(p)
n (xj)

d
dxN

(p)
n+1(xj)

=
(p− (2n+ 1))(p− (2n+ 2))

(p− (n+ 1))

n!(p− (n+ 1))!

N
(p)
n (xj)N

(p−2)
n (xj)(n+ 1)(p− (n+ 2))(p− (2n+ 1))

=
(p− (2n+ 2))n!(p− (n+ 2))!

N
(p)
n (xj)N

(p−2)
n (xj)(n+ 1)(p− (n+ 2))

.

■

Theorem 2.2 (Gauss-Radau quadrature) Let x0 = 0 and {xj}nj=1 be the zeros of

qn(x) =
1

x

(
N

(p)
n+1(x) +N (p)

n (x)
)
, p > 2n+ 3.

Then there exists a unique set of quadrature weights {wj}nj=0 such that

∫ ∞

0
q(x)w(p)(x)dx =

n∑
j=0

q(xj)wj , ∀q ∈ P2n.

Moreover, the quadrature weights are all positive and can be expressed as

w0 =
1

(−1)n+2(p− (2n+ 2))

∫ ∞

0
qn(x)w

(p)(x)dx,

wj =
(p− (2n+ 1))(p− (2n+ 2))

(p− (n+ 1))

∥qn−1∥2w̃(p)

qn−1(xj)q′n(xj)
, 1 ⩽ j ⩽ n,

(12)

where w̃(p)(x) = xw(p)(x).
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Proof Using (7), (8) and (10) for any q ∈ Pn we have

∫ ∞

0
q(x)w(p)(x)dx =

n∑
j=0

q(xj)

∫ ∞

0
Lj(x)w

(p)(x)dx =

n∑
j=0

q(xj)wj .

Next, for any q ∈ P2n, we write

q(x) = x r(x)qn(x) + s(x), r ∈ Pn−1, s ∈ Pn,

which implies

∫ ∞

0
q(x)w(p)(x)dx =

∫ ∞

0
x r(x)qn(x)w

(p)(x)dx+

∫ ∞

0
s(x)w(p)(x)dx

=

∫ ∞

0
r(x)N

(p)
n+1(x)w

(p)(x)dx+

∫ ∞

0
r(x)N (p)

n (x)w(p)(x)dx+

∫ ∞

0
s(x)w(p)(x)dx

=

∫ ∞

0
s(x)w(p)(x)dx =

n∑
j=0

s(xj)wj =
n∑

j=0

q(xj)wj . ∀q ∈ P2n.

(13)

As is observed

∫ ∞

0
x r(x)qn(x)w

(p)(x)dx = 0.

This means that {qn : n ⩾ 0} defines a sequence of polynomials orthogonal with
respect to the weight function w̃(p)(x) = xw(p)(x) where the leading coefficient of

qn is k
(p)
n+1.

Taking q(x) = L2
k(x) ∈ P2n in (13), we conclude that wk > 0 for 0 ⩽ k ⩽ n.

Again form (10), we derive

wj =

∫ ∞

0
Lj(x)w

(p)(x)dx =

∫ ∞

0

xqn(x)

(qn(xj) + xjq′n(xj)) (x− xj)
w(p)(x)dx, 0 ⩽ j ⩽ n.

For j = 0, we have

w0 =
1

qn(0)

∫ ∞

0
qn(x)w

(p)(x)dx

=
1

(−1)n+2(n+ 1)(p− (n+ 2)) + (−1)n+1n(p− (n+ 1))

∫ ∞

0
qn(x)w

(p)(x)dx

=
1

(−1)n+2(p− (2n+ 2))

∫ ∞

0
qn(x)w

(p)(x)dx.

In addition for 1 ⩽ j ⩽ n, since {qn} are orthogonal with respect to w̃(p), so the
integral part turns out to be the weight of the Gauss quadrature associated with
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n nodes being the zeros of qn(x). Hence, using Theorem 2.1 we can conclude that

wj =
1

xj

k
(p)
n+1

k
(p)
n

∥qn−1∥2w̃(p)

qn−1(xj)q′n(xj)

=
(p− (2n+ 1))(p− (2n+ 2))

(p− (n+ 1))

∥qn−1∥2w̃(p)

qn−1(xj)q′n(xj)
, 1 ⩽ j ⩽ n.

■

2.3 Computation of nodes and weights

In this section an efficient algorithm, which is called Eigenvalue Method, is given
for computing zeros of orthogonal polynomials.

Theorem 2.3 [5] The zeros {xj}nj=0 of the orthogonal polynomial pn+1 are eigen-
values of the following symmetric tridiagonal matrix

An+1 =


α0 β1
β1 α1 β2

. . .
. . .

βn−1 αn−1 βn
βn αn

 ,

where

αj =
bj
aj

, j ⩾ 0; βj =
1

aj−1

√
aj−1cj
aj

, j ⩾ 1,

with {aj , bj , cj} being the coefficients of the three-term recurrence relation, namely,

pj+1(x) = (ajx− bj)pj(x)− cjpj−1(x), j ⩾ 1,

with p−1 := 0.

Hence, in order to obtain the zeros of N
(p)
n (x) where p > 2n+1, we use Theorem

2.3 and three-term recurrence relation (5), that is

αj =
p

(p− (2j + 2))(p− 2j)
,

βj =
p− j

(p− 2j)(p− (2j − 1))

√
j(p− (2j − 1))

(p− j)(p− (2j + 1))
.

According to Gauss integration theory, by having zeros of orthogonal polynomials,
one can approximate the integral

∫∞
0 f(x)w(p)(x)dx with precision degree 2n + 1

provided to be convergence. Due to this, the following results are given in tables
2, 3 and 4 for n = 1, 2 and 3, respectively.
Also, using Gauss-Radau integration formula, by having zeros of qn(x), one can

approximate the integral
∫∞
0 f(x)w(p)(x)dx with precision degree 2n provided to

be convergence. Due to this the following results are given in tables 5, 6 and 7 for
n = 1, 2 and 3, respectively.
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Table 2. 2-point integration formula n = 1.

p (x0, w0) (x1, w1)
6 (0.211325, 22.3923) (0.788675, 1.6077)
7 (0.166667, 108) (0.5, 12)
8 (0.138197, 628.328) (0.361803, 91.6718)
9 (0.11835, 4283.63) (0.28165, 756.367)

Table 3. 3-point integration formula n = 2.

p (x0, w0) (x1, w1) (x2, w2)
8 (0.128886, 565.215) (0.302535, 154.362) (1.06858, 0.42252)
9 (0.109039, 3682.09) (0.231933, 1349.56) (0.659028, 8.3458)
10 (0.0948473, 27668.4) (0.188128, 12523.9) (0.467024, 127.661)
11 (0.0841378, 235701) (0.158272, 125374) (0.35759, 1805.15)

Table 4. 4-point integration formula n = 3.

p (x0, w0) (x1, w1) (x2, w2) (x3, w3)
10 (0.0912917, 24899.2) (0.174484, 15065.4) (0.388858, 355.273) (1.34537, 0.056014)
11 (0.0802695, 202812) (0.144871, 154334) (0.29304, 5730.89) (0.815153, 3.03374)
12 (0.0718343, 1.8562× 106) (0.124101, 1.68624× 106) (0.234433, 86258.6) (0.569631, 95.5948)
13 (0.0651411, 1.88643× 107) (0.108685, 1.97628× 107) (0.194982, 1.2874× 106) (0.431191, 2371.49)

Table 5. 2-point Gauss-Radau integration formula n = 1.

p (x0, w0) (x1, w1)
6 (0, 6) (0.333333, 18)
7 (0, 24) (0.25, 96)
8 (0, 120) (0.2, 600)
9 (0, 720) (0.166667, 4320)

Table 6. 3-point Gauss-Radau integration formula n = 2.

p (x0, w0) (x1, w1) (x2, w2)
8 (0, 48) (0.166667, 648) (0.5, 24)
9 (0, 240) (0.138197, 4546.63) (0.361803, 253.375)
10 (0, 1440) (0.11835, 36194.5) (0.28165, 2685.49)
11 (0, 10080) (0.103673, 323080) (0.229661, 29719.5)

Table 7. 4-point Gauss-Radau integration formula n = 3.

p (x0, w0) (x1, w1) (x2, w2) (x3, w3)
10 (0, 720) (0.109039, 33768.6) (0.231933, 5818.74) (0.659028, 12.6638)
11 (0, 4320) (0.0948473, 291716) (0.188128, 66571.1) (0.467024, 273.35)
12 (0, 30240) (0.0841378, 2.80137× 106) (0.158272, 792141) (0.35759, 5048.09)
13 (0, 241920) (0.0757383, 2.96432× 107) (0.136607, 9.94381× 106) (0.287654, 87867.9)

2.4 Interpolation and discrete transforms

Let {xj , wj}nj=0 be a set of Gauss or Gauss-Radau quadrature nodes and weights.
Define the associated discrete inner product and discrete norm as

⟨u, v⟩n,w(p) :=
n∑

j=0

u(xj)v(xj)wj , ∥u∥n,w(p) :=
√

⟨u, u⟩n,w(p) .
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Note that ⟨., .⟩n,w(p) is an approximation to the continuous inner product (., .)w(p)

and the exactness of Gauss-type quadrature formulas implies

⟨u, v⟩n,w(p) = (u, v)w(p) , ∀u, v ∈ P2n+σ,

where σ = 1 and 0 for the Gauss and Gauss-Radau quadratures, respectively.
For any u ∈ C[0,∞), the interpolation operator In : C[0,∞) → Pn is defined

such that

(Inu) (xj) = u(xj), 0 ⩽ j ⩽ n,

which can be expressed by

(Inu) (x) =

n∑
j=0

ũjN
(p)
j (x) ∈ Pn.

Given the physical values {u(xj)}nj=0, the coefficients {ũj}nj=0 can be determined
by

ũj =
1

γ
(p)
j

n∑
i=0

u(xi)N
(p)
j (xi)wi 0 ⩽ j ⩽ n,

where γ
(p)
j is defined in (3).

2.5 Differentiation in the physical space

Let {Lj}nj=0 be the Lagrange basis polynomials associated with the Gauss or Gauss-
Radau points {xj}nj=0. Clearly for any u ∈ Pn, we have

u(x) =

n∑
j=0

u(xj)Lj(x).

Hence, differentiating it m times leads to

u(m)(xk) =
n∑

j=0

u(xj)L
(m)
j (xk) , 0 ⩽ k ⩽ n.

These derivative values can be evaluated by the general formula

u(m) = Dmu, (Dm = DD . . .D, m ⩾ 1),

in which

D = (dkj)0⩽j,k⩽n =
(
L′

j(xk)
)
0⩽j,k⩽n

,

u(m) =
(
u(m)(x0), u

(m)(x1), . . . , u
(m)(xn)

)T
, u(0) = u.

Hence, it suffices to evaluate the first-order differentiation matrix D.
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Theorem 2.4 The entries of D are determined for Gauss points by

dkj = L′
j(xk) =


N

(p−2)
n (xk)

N
(p−2)
n (xj)

1
(xk−xj)

, k ̸= j,

n(p−(n+3))N
(p−4)
n−1 (xk)

2N
(p−2)
n (xk)

k = j,

and for Gauss-Radau points by

dkj = L′
j(xk) =

(n+1)(p−(n+2))N
(p−2)
n (xk)+n(p−(n+1))N

(p−2)
n−1 (xk)

(n+1)(p−(n+2))N
(p−2)
n (xj)+n(p−(n+1))N

(p−2)
n−1 (xj)

1
(xk−xj)

, k ̸= j,

(n+1)(p−(n+2))n(p−(n+3))N
(p−4)
n−1 (xk)+n(p−(n+1))(n−1)(p−(n+2))N

(p−4)
n−2 (xk)

2(n+1)(p−(n+2))N
(p−2)
n (xk)+n(p−(n+1))N

(p−2)
n−1 (xk)

, k = j.

Proof The Lagrange basis polynomials can be expressed by

Lj(x) =
N

(p)
n+1(x)

d
dx

(
N

(p)
n+1(x)

) ∣∣
x=xj

(x− xj)
, p > 2n+ 3, 0 ⩽ j ⩽ n.

We have

dkj = L′
j(xk) =

d
dx

(
N

(p)
n+1(x)

)
|x=xk

d
dx

(
N

(p)
n+1(x)

) ∣∣
x=xj

1

(xk − xj)

=
(n+ 1)(p− (n+ 2))N

(p−2)
n (xk)

(n+ 1)(p− (n+ 2))N
(p−2)
n (xj)

1

(xk − xj)

=
N

(p−2)
n (xk)

N
(p−2)
n (xj)

1

(xk − xj)
. ∀k ̸= j.

For k = j, we get

dkk = lim
x→xk

L′
k(x) =

1

d
dx

(
N

(p)
n+1(x)

)
|x=xk

lim
x→xk

d
dx

(
N

(p)
n+1(x)

)
(x− xk)−N

(p)
n+1(x)

(x− xk)
2

=

d2

dx2

(
N

(p)
n+1(x)

)
|x=xk

2 d
dx

(
N

(p)
n+1(x)

)
|x=xk

=
(n+ 1)(p− (n+ 2))n(p− (n+ 3))N

(p−4)
n−1 (xk)

2(n+ 1)(p− (n+ 2))N
(p−2)
n (xk)

=
n(p− (n+ 3))N

(p−4)
n−1 (xk)

2N
(p−2)
n (xk)

.

The Lagrange basis polynomials for Gauss-Radau points will be

Lj(x) =
N

(p)
n+1(x) +N

(p)
n (x)

d
dx

(
N

(p)
n+1(x) +N

(p)
n (x)

) ∣∣
x=xj

(x− xj)
, p > 2n+ 3, 0 ⩽ j ⩽ n.
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Similar to above, we derive

dkj =
(n+ 1)(p− (n+ 2))N

(p−2)
n (xk) + n(p− (n+ 1))N

(p−2)
n−1 (xk)

(n+ 1)(p− (n+ 2))N
(p−2)
n (xj) + n(p− (n+ 1))N

(p−2)
n−1 (xj)

1

(xk − xj)
, ∀k ̸= j,

and

dkk =
(n+ 1)(p− (n+ 2))n(p− (n+ 3))N

(p−4)
n−1 (xk)

2(n+ 1)(p− (n+ 2))N
(p−2)
n (xk) + n(p− (n+ 1))N

(p−2)
n−1 (xk)

+
n(p− (n+ 1))(n− 1)(p− (n+ 2))N

(p−4)
n−2 (xk)

2(n+ 1)(p− (n+ 2))N
(p−2)
n (xk) + n(p− (n+ 1))N

(p−2)
n−1 (xk)

.

■

2.6 Differentiation in the frequency space

In addition to the differentiation in physical space, we have another differentiation,
and that is the differentiation in frequency space. In this differentiation, one tries
to give the expansion coefficients of the derivatives of a function based on the
expansion coeffcients of the main function. More precisely, given u ∈ Pn, instead
of using the Lagrange basis polynomials, we expand u in terms of the orthogonal
polynomials

u(x) =

n∑
j=0

ũjN
(p)
j (x), with ũj =

1

γ
(p)
j

∫ ∞

0
u(x)N

(p)
j (x)w(p)(x)dx,

and

u′(x) =

n∑
j=1

ũj
d

dx

(
N

(p)
j (x)

)
=

n∑
j=0

ũ
(1)
j N

(p)
j (x) ∈ Pn−1 with ũ(1)n = 0. (14)

In order to express {ũ(1)j }nj=0 in terms of {ũj}nj=0, we know that
{

d
dx

(
N

(p)
j (x)

)}
are also orthogonal [6–9]. Indeed, this property holds for the classical orthogonal
polynomials. To do show, consider equation (2). Then by differentiating it with
respect to x and writing z(x) = y′(x), we obtain

x2z′′ + ((4− p)x− 1) z′ − (n− 1)(n+ 2− p)z = 0. (15)

Again by applying the Frobenius method, we get the explicit solution

d

dx

(
N (p)

n (x)
)
= (−1)n−1

n−1∑
k=0

k!

(
p− (n+ 2)

k

)(
n− 1

n− k − 1

)
(−x)k.

It is simply seen that, the finite set
{

d
dx

(
N

(p>2n+1)
j (x)

)}n

j=1
is orthogonal with

respect to the weight function w(p−2)(x) = x2−pe−
1

x on the half line R+ := [0,∞),
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i.e.,∫ ∞

0
x2−pe−

1

x
d

dx

(
N (p)

n (x)
) d

dx

(
N (p)

m (x)
)
dx = 0 , ⇔

{
m ̸= n, p > 2ℓ+ 1,
ℓ = max{m,n}, (16)

and

η(p,1)n :=

∫ ∞

0
x2−pe−

1

x

(
d

dx

(
N (p)

n (x)
))2

dx =
(n− 1)!(p− 2− n)!

p− 1− 2n
. (17)

Also, equation (15) leads to the following three-term recurrence relation

d

dx

(
N

(p)
n+1(x)

)
=
(
a(1)n x− b(1)n

) d

dx

(
N (p)

n (x)
)

− c(1)n

d

dx

(
N

(p)
n−1(x)

)
, (18)

where

a(1)n =
(p− (2n+ 1))(p− (2n+ 2))

p− (n+ 2)
,

b(1)n =
(p+ 2)(p− (2n+ 1))

(p− 2n)(p− (n+ 2))
,

c(1)n =
(n− 1)(p− (2n+ 2))

(p− 2n)(p− (n+ 2))
.

Remark 2.5 Using the above procedure, we can also obtain∫ ∞

0
x2k−pe−

1

x
dk

dxk

(
N (p)

n (x)
) dk

dxk

(
N (p)

m (x)
)
dx = 0, ⇔

{
m ̸= n, p > 2ℓ+ 1,
ℓ = max{m,n}, (19)

and

η(p,k)n =

∫ ∞

0
x2k−pe−

1

x

(
dk

dxk

(
N (p)

n (x)
))2

dx =
(n− k)!(p− (n+ k + 1))!

p− 1− 2n
. (20)

We note that

γ(p)n =

(
n
k

) k−1∏
i=0

(p− (n− i+ 1))η(p,k)n .

Now, by differentiating the three-term recurrence relation (5) and using (18), we
derive

N (p)
n (x) = ã(p)n

d

dx

(
N

(p)
n−1(x)

)
+ b̃(p)n

d

dx

(
N (p)

n (x)
)
+ c̃(p)n

d

dx

(
N

(p)
n+1(x)

)
, (21)

where

ã(p)n =
cn
an

− c
(1)
n

a
(1)
n

, b̃(p)n =
bn
an

− b
(1)
n

a
(1)
n

, c̃(p)n =
1

an
− 1

a
(1)
n

.

Hence, using (14) and (21), the coefficients {ũ(1)j } can be computed in terms of
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{ũj}nj=0 as follows:

u′(x) =

n−1∑
j=0

ũ
(1)
j N (p)

n (x) =

n−1∑
j=0

ũ
(1)
j

(
ã
(p)
j

d

dx

(
N

(p)
j−1(x)

)
+ b̃

(p)
j

d

dx

(
N

(p)
j (x)

)
+ c̃

(p)
j

d

dx

(
N

(p)
j+1(x)

))

=
n−1∑
j=1

(
ã
(p)
j+1ũ

(1)
j+1 + b̃

(p)
j ũ

(1)
j + c̃

(p)
j−1ũ

(1)
j−1

) d

dx

(
N

(p)
j (x)

)
+ c̃

(p)
n−1ũ

(1)
n−1

d

dx

(
N (p)

n (x)
)
.

So, we conclude

ũ
(1)
j−1 =

1

c̃
(p)
j−1

(
ũj − ã

(p)
j+1ũ

(1)
j+1 − b̃

(p)
j ũ

(1)
j

)
, j = n− 1, . . . , 1,

ũ(1)n = 0, ũ
(1)
n−1 =

1

c̃
(p)
n−1

ũn.

3. Approximation by N (p)
n (x) polynomials

This section is devoted to the analysis of approximations by N
(p)
n (x) polynomials.

These results will be useful for error analysis of spectral methods for unbounded
domains.

3.1 Inverse inequalities

We first present two inverse inequalities associated with N
(p)
n (x) polynomials.

Theorem 3.1 For p > 2n+ 1 and any ϕ ∈ Pn,

∥ϕ∥w(p) ⩽ (np)1/m
∥∥∥∥ dm

dxm
ϕ

∥∥∥∥
w(p−2m)

, m ⩾ 1.

Proof For any ϕ ∈ Pn, we have

ϕ(x) =

n∑
j=0

ϕ̃
(p)
j N

(p)
j (x), with ϕ̃

(p)
j =

1

γ
(p)
j

∫ ∞

0
ϕ(x)N

(p)
j (x)w(p)(x)dx. (22)

Hence, by the orthogonality of {N (p)
j (x)},

∥ϕ∥2w(p) =

n∑
j=0

γ
(p)
j

∣∣∣ϕ̃(p)
j

∣∣∣2.
Differentiating (22) and using the orthogonality (16)-(17), we obtain

ϕ′(x) =
n∑

j=1

ϕ̃
(p)
j

d

dx

(
N

(p)
j (x)

)
,



14 A. H. Salehi Shayegan et al./ IJM2C, 13 - 04 (2023) 1-22.

and

∥∥ϕ′∥∥2
w(p−2) =

n∑
j=1

η
(p,1)
j

∣∣∣ϕ̃(p)
j

∣∣∣2.
Since γ

(p)
j = j(p− 1− j)η

(p,1)
j , we obtain

∥ϕ∥2w(p) =

n∑
j=0

γ
(p)
j

∣∣∣ϕ̃(p)
j

∣∣∣2 = n∑
j=0

j(p− 1− j)η
(p,1)
j

∣∣∣ϕ̃(p)
j

∣∣∣2 ⩽ np
∥∥ϕ′∥∥2

w(p−2) ,

and

∥ϕ∥w(p) ⩽
√
np
∥∥ϕ′∥∥

w(p−2) .

Using the above inequality recursively leads to

∥ϕ∥w(p) ⩽ (np)1/m
∥∥∥∥ dm

dxm
ϕ

∥∥∥∥
w(p−2m)

.

■

Next, we derive an inverse inequality involving the same weight function for
derivatives of different order.

Theorem 3.2 For p > 2n+ 1 and any ϕ ∈ Pn,

∥∥∥∥ dm

dxm
ϕ

∥∥∥∥
w(p)

⩽ Cnm

(
max

0⩽k⩽n−1
{
γ
(p)
k

γ
(p)
∗

}

)1/m

∥ϕ∥w(p) ,

where γ
(p)
∗ = min

k
{γ(p)k+1, γ

(p)
k+2, . . . , γ

(p)
n }.

Proof For any ϕ ∈ Pn, we have

ϕ(x) =
n∑

j=0

ϕ̃
(p)
j N

(p)
j (x), with ϕ̃

(p)
j =

1

γ
(p)
j

∫ ∞

0
ϕ(x)N

(p)
j (x)w(p)(x)dx.

Hence, using differentiation in the frequency space, we get

ϕ′(x) =

n∑
j=1

ϕ̃
(p)
j

d

dx

(
N

(p)
j (x)

)
=

n∑
j=1

ϕ̃
(p)
j

(
j−1∑
k=0

ckN
(p)
j (x)

)
=

n−1∑
k=0

 n∑
j=k+1

ϕ̃
(p)
j

 ckN
(p)
k (x),

and

∥∥ϕ′∥∥2
w(p) =

n−1∑
k=0

 n∑
j=k+1

ϕ̃
(p)
j

2

c2kγ
(p)
k .
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By the Cauchy-Schwarz inequality, n∑
j=k+1

ϕ̃
(p)
j

2

⩽

 n∑
j=k+1

γ
(p)
j

∣∣∣ϕ̃(p)
j

∣∣∣2
 n∑

j=k+1

(
γ
(p)
j

)−1

 ,

we conclude that

∥∥ϕ′∥∥2
w(p) =

n−1∑
k=0

 n∑
j=k+1

ϕ̃
(p)
j

2

c2kγ
(p)
k

⩽ ∥ϕ∥2w(p)

n−1∑
k=0

c2kγ
(p)
k

 n∑
j=k+1

(
γ
(p)
j

)−1

 ⩽ Cn ∥ϕ∥2w(p)

n−1∑
k=0

γ
(p)
k

min
k

{γ(p)k+1, γ
(p)
k+2, . . . , γ

(p)
n }

⩽ Cn ∥ϕ∥2w(p)

n−1∑
k=0

γ
(p)
k

γ
(p)
∗

= Cn2 ∥ϕ∥2w(p) max
0⩽k⩽n−1

{
γ
(p)
k

γ
(p)
∗

}

and

∥∥ϕ′∥∥
w(p) ⩽ Cn

√√√√ max
0⩽k⩽n−1

{
γ
(p)
k

γ
(p)
∗

} ∥ϕ∥w(p) .

Using the above inequality recursively leads to

∥∥∥∥ dm

dxm
ϕ

∥∥∥∥
w(p)

⩽ Cnm

(
max

0⩽k⩽n−1
{
γ
(p)
k

γ
(p)
∗

}

)1/m

∥ϕ∥w(p) .

■

3.2 Orthogonal projections

A common procedure in error analysis is to compare the numerical solution un with
a suitable orthogonal projection Πnu (or interpolation Inu) of the exact solution
u in some appropriate Sobolev space with the norm ∥ . ∥S , and use the triangle
inequality,

∥u− un∥S ⩽ ∥u−Πnu∥S + ∥Πnu− un∥S .

Hence, one needs to estimate the errors ∥u−Πnu∥S and ∥Πnu− un∥S . Such esti-

mates involving N
(p)
n (x) polynomials will be the main concern of this subsection.

Consider the L2
w(p)-orthogonal projection Πn,p : L

2
w(p)(R+) → Pn, defined by

(Πn,pu− u, vn)w(p) = 0, ∀vn ∈ Pn,

so we have

Πn,pu(x) =
n∑

j=0

ũ
(p)
j N

(p)
j (x) with ũ

(p)
j =

1

γ
(p)
j

∫
R+

u(x)N
(p)
j (x)w(p)(x)dx.
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Introduce the space

Bm
p (R+) =

{
u :

dk

dxk
(u) ∈ L2

w(p−2k)(R+), 0 ⩽ k ⩽ m

}
,

equipped with the norm and semi-norm

∥u∥Bm
p
=

(
m∑
k=0

∥∥∥∥ dk

dxk
(u)

∥∥∥∥2
L2

w(p−2k)

)1/2

, |u|Bm
p
=

∥∥∥∥ dk

dxk
(u)

∥∥∥∥
L2

w(p−2k)

.

The space Bm
p (R+) distinguishes itself from the usual weighted Sobolev space

Hm
w(p)(R+) by involving different weight functions for derivatives of different or-

ders [5, 10, 11]. It is obvious that Hm
w(p)(R+) is a subspace of Bm

p (R+), that is, for
any m ⩾ 0,

∥u∥Bm
p (R+) ⩽ c∥u∥Hm

w(p) (R+).

Now, we are ready to state the first fundamental result.

Theorem 3.3 Let 0 ⩽ ℓ ⩽ m ⩽ n+ 1 < p+1
2 . If u ∈ Bm

p (R+), we have

∥∥∥∥ dℓ

dxℓ
(Πn,pu− u)

∥∥∥∥
w(p−2ℓ)

⩽
√

((p+ 1)/2− ℓ)!

((p+ 1)/2−m)!

∥∥∥∥ dm

dxm
(u)

∥∥∥∥
w(p−2m)

.

Proof Thanks to the orthogonality (19),

∥∥∥∥ dk

dxk
(u)

∥∥∥∥2
w(p−2k)

=
∞∑
j=k

η
(p,k)
j

∣∣∣ũ(p)j

∣∣∣2, k ⩾ 0,

so we have∥∥∥∥ dℓ

dxℓ
(Πn,pu− u)

∥∥∥∥2
w(p−2ℓ)

=

∞∑
j=n+1

η
(p,ℓ)
j

∣∣∣ũ(p)j

∣∣∣2 = ∞∑
j=n+1

η
(p,m)
j

η
(p,ℓ)
j

η
(p,m)
j

∣∣∣ũ(p)j

∣∣∣2

⩽ max
j⩾n+1

{
η
(p,ℓ)
j

η
(p,m)
j

} ∞∑
j=n+1

η
(p,m)
j

∣∣∣ũ(p)j

∣∣∣2
⩽ max

j⩾n+1

{
(j − ℓ)!(p− (j + ℓ+ 1))!

(j −m)!(p− (j +m+ 1))!

}∥∥∥∥ dm

dxm
(u)

∥∥∥∥2
w(p−2m)

⩽ max
j⩾n+1

{
(j − ℓ)!

(j −m)!

}∥∥∥∥ dm

dxm
(u)

∥∥∥∥2
w(p−2m)

⩽ ((p+ 1)/2− ℓ)!

((p+ 1)/2−m)!

∥∥∥∥ dm

dxm
(u)

∥∥∥∥2
w(p−2m)

,

and ∥∥∥∥ dℓ

dxℓ
(Πn,pu− u)

∥∥∥∥
w(p−2ℓ)

⩽
√

((p+ 1)/2− ℓ)!

((p+ 1)/2−m)!

∥∥∥∥ dm

dxm
(u)

∥∥∥∥
w(p−2m)

.

■
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Since Hm
w(p)(R+) is a Hilbert space, the best approximation polynomial for u is

the orthogonal projection of u upon Pn under the inner product

(u, v)m,w(p) =

m∑
k=0

(
dk

dxk
u,

dk

dxk
v

)
w(p)

,

which induces the norm ∥ . ∥m,w(p) of Hm
w(p)(R+). In fact, this type of approximation

results are often needed in analysis of spectral methods for second-order elliptic
PDEs [5, 11–13]. Therefore, we consider below the H1

w(p)-orthogonal projection.
Define the orthogonal projection Π1

n,p : H
1
w(p)(R+) → Pn by(

Π1
n,pu− u, vn

)
1,w(p) = 0, ∀vn ∈ Pn. (23)

By definition, Π1
n,pu is the best approximation of u in the sense that∥∥Π1

n,pu− u
∥∥
1,w(p) = inf

ϕ∈Pn

∥ϕ− u∥1,w(p) . (24)

Using Theorem 3.3, we can derive the following estimate.

Theorem 3.4 Let 1 ⩽ m ⩽ n+ 1 < p+1
2 . If d

dx(u) ∈ Bm−1
p (R+), we have

∥∥Π1
n,pu− u

∥∥
1,w(p) ⩽ c

√
((p− 1)/2)!

((p+ 1)/2−m)!

∥∥∥∥ dm

dxm
(u)

∥∥∥∥
w(p−2m−2)

,

where c is a positive constant independent of m,n, p and u.

Proof Let Πn−1,p be the L2
w(p) -orthogonal projection upon Pn−1. Set

ϕ(x) = ϕ(0) +

∫ x

0
Πn−1,pu

′(y)dy,

where the constant ϕ(0) is chosen such that ϕ(0) = u(0). In view of (24), we derive
from the Poincare inequality and Theorem 3.3 that∥∥π1

n,pu− u
∥∥
1,w(p) ⩽ ∥ϕ− u∥1,w(p) ⩽ c

∥∥(ϕ− u)′
∥∥
w(p)

⩽ c
∥∥πN−1,pu

′ − u′
∥∥
w(p)

⩽ c

√
((p− 1)/2)!

((p+ 1)/2−m)!

∥∥∥∥ dm

dxm
(u)

∥∥∥∥
w(p−2m−2)

.

■

The approximation results in the Sobolev norms are of great importance for
spectral approximation of boundary value problems. Oftentimes, it is necessary to
take the boundary conditions into account and consider the projection operators
onto the space of polynomials built in homogeneous boundary data [11]. To this
end, denote

H1
0,w(p)(R+) =

{
u ∈ H1

w(p)(R+) : u(0) = 0
}
,

P 0
n = {ϕ ∈ Pn : ϕ(0) = 0} .
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Then the orthogonal projection Π1,0
n,p : H1

0,w(p)(R+) → P 0
n is defined by(

(Π1,0
n,pu− u)

′
, v′n

)
w(p)

= 0, ∀vn ∈ P 0
n .

Theorem 3.5 If u ∈ H1
0,w(p)(R+) and d

dx(u) ∈ Bm−1
p (R+), then for 1 ⩽ m ⩽

n+ 1 < p+1
2 , we have

∥∥Π1,0
n,pu− u

∥∥
1,w(p) ⩽ c

√
((p− 1)/2)!

((p+ 1)/2−m)!

∥∥∥∥ dm

dxm
(u)

∥∥∥∥
w(p−2m−2)

,

where c is a positive constant independent of m,n, p and u.

Proof The desired result can be proved as in Theorem 3.4 by taking ϕ(x) =∫ x
0 Πn−1,pu

′(y)dy. ■

4. Spectral methods using N (p)
n (x) polynomials

In this section, we consider spectral-Galerkin methods using N
(p)
n (x) polynomials.

An advantage of using N
(p)
n (x) polynomials is that they are mutually orthogonal,

so we can work with the usual variational formulation.

4.1 N (p)
n (x)-Galerkin method

Consider the model equation:−uxx + γu = f, x ∈ R+, γ > 0

u(0) = 0, lim
x→+∞

u(x) = 0.
(25)

Let H1
0,w(p)(R+) and P 0

n be the spaces as defined before. Then, a weak formulation

of (25) is (
u′, v′

)
+ γ (u, v) = (f, v) , ∀v ∈ H1

0,w(p)(R+),

where (·, ·) is the usual (non-weighted) inner product in L2-space. The N
(p)
n (x)-

Galerkin approximation to (25) is(
u′n, v

′)+ γ (un, v) = (f, v) , ∀v ∈ P 0
n .

As in the Laguerre and Hermite cases, the N
(p)
n (x) polynomials are not very useful

in practice due to its wild behavior at infinity. Therefore, we consider the polyno-
mials functions defined by

φ
(p)
k (x) =

(
N

(p)
k (x) +N

(p)
k+1(x)

)
x

−p

2 e
−1

2x , p > 2k + 3.

So one verifies that

P 0
n = span

{
φ
(p)
0 , φ

(p)
1 , . . . , φ

(p)
n−1

}
.
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Hence, by setting un(x) =
n−1∑
k=0

ukφ
(p)
k (x) and v = φ

(p)
j (x) for j = 0, 1, · · · , n− 1, we

get

n−1∑
k=0

uk

(((
φ
(p)
k

)′
,
(
φ
(p)
j

)′)
+ γ
(
φ
(p)
k , φ

(p)
j

))
=
(
f, φ

(p)
j

)
.

and in matrix form

AU = F,

where

A = [ak,j ]n×n, U = [uj ]n×1, F = [fj ]n×1,

in which

ak,j =

((
φ
(p)
k

)′
,
(
φ
(p)
j

)′)
+ γ
(
φ
(p)
k , φ

(p)
j

)
,

fj =
(
f, φ

(p)
j

)
. (26)

Note that all integrals in (26), are solved by Gauss-Radau quadrature (see Theorem
2.2).

4.2 Numerical results

Now, we present some numerical results to illustrate the convergence behavior of
the proposed schemes. We consider (25) with two sets of exact solutions having
different decay properties.

Example 4.1 Exponential decay with oscillation at infinity:

u(x) = e−x sin(x), x ∈ (0,+∞) .

The exact solution u(x) = e−x sin(x) and the approximate solution un(x) for n =
10, p = 22 and n = 26, p = 54 are demonstrated in Figure 1. At the end, the plot
of logarithm error function |u(x)− un(x)| at different points in intervals [0, 1] and
[0, 1000] for n = 26, p = 54 is shown in Figure 2. In these figures, we clearly observe
that the desired solution is provided by the approximate solution as well.

Figure 1. The plots of exact solution u(x) = e−x sin(x) and the approximate solution
un(x) for n = 10, p = 22 and n = 26, p = 54.
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Figure 2. The plot of logarithm error function |e−x sin(x)− un(x)| at different points in
intervals [0, 1] and [0, 1000] for n = 26, p = 54.

Remark 4.2 Note that, according to [6, 14], the following relationship between

Laguerre polynomials L
(p)
n (x) and N

(p)
n (x) can be derived easily

N (p)
n (x) = n!xnL(p−(2n+1))

n

(
1

x

)
⇔ L(p)

n (x) =
xn

n!
N (p+2n+1)

n

(
1

x

)
.

Hence, the numerical results based on N
(p)
n (x)-Galerkin method are approximately

similar to Laguerre-Galerkin Method.

Example 4.3 Algebraic decay without oscillation at infinity:

u(x) =
x

1 + x2
, x ∈ (0,+∞) .

The exact solution u(x) = x
1+x2 and the approximate solution un(x) for n = 10, p =

22 and n = 26, p = 54 are demonstrated in Figure 3. At the end, the plot of
logarithm error function |u(x) − un(x)| at different points in intervals [0, 1] and
[0, 1000] for n = 26, p = 54 is shown in Figure 4. In these figures, we clearly
observe that the desired solution is provided by the approximate solution as well.

Figure 3. The plots of exact solution u(x) = x
1+x2 and the approximate solution un(x)

for n = 10, p = 22 and n = 26, p = 54.

Figure 4. The plot of logarithm error function | x
1+x2 −un(x)| at different points in intervals

[0, 1] and [0, 1000] for n = 26, p = 54.
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5. Conclusion

In this paper, we proposed a spectral method using the finite class of orthogonal

polynomial N
(p)
n (x) related to inverse Gamma distribution. Almost all properties

of this class of orthogonal polynomials were studied. In addition, error analysis
and convergence of the proposed spectral method were given. It is worth to point
out, in particular, this class is directly related to generalized Bessel polynomials
and has also relation with the Laguerre polynomials. Hence, the numerical results

based on N
(p)
n (x)-Galerkin method are approximately similar to Laguerre-Galerkin

method and we see a resemblance between the two numerical approaches.
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