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1. Introduction 

Applications of fuzzy set theory can already be found in many different areas. One could 

probably classify those applications as follows: 1. Applications to mathematics, that is 

generalizations of traditional mathematics such as topology, graph theory, algebra, logic, and 

so on. 2. Applications to algorithms such as clustering methods, control algorithms, 

mathematical programming, and so on. 3. Applications to standard models such as "the 
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transportation model," "inventory control models," "maintenance models," and so on. 4. 

Finally, applications to real-world problems of different kinds. The first type of "applications" 

will be covered by looking at fuzzy logic and approximate reasoning. The second type of 

application will be illustrated by considering fuzzy clustering, fuzzy linear programming, and 

fuzzy dynamic programming. The third type will be covered by looking at fuzzy versions of 

standard operations research models and multicriteria approaches. The fourth type, eventually, 

will be illustrated on the one hand by describing the operations research (OR) model. In fact, 

in conventional linear programming, the decision problem coefficients are generally 

determined by experts with precise values. However, in fuzzy environments, the assumption 

of accurate data by experts seems far-fetched. Nowadays, the decisions of humans are 

increasingly dependent on information than ever. But, most information is not deterministic 

and in this situation, a human can make a rational decision based on this uncertainty. This is a 

hard challenge for the decision-maker to design an intelligent system that makes a decision the 

same as the human. So, it was led to propose a new concept of decision making in a fuzzy 

environment by Bellman and Zadeh [1]. Here, it is worth mentioning that the concept of fuzzy 

mathematical programming was first suggested by Tanaka et al., in the framework of fuzzy 

decision-making [2]. The initial formulation of the fuzzy linear programming problem was 

proposed by Zimmermann [3]. Afterward, several models of fuzzy linear programming 

problems were presented and then several methods were suggested for solving them [4–10]. 

On the other hand, what is very important is that it is not sufficient to take into account only 

fuzziness when dealing with real-world imperfect information. The other essential property of 

information is its partial reliability. Indeed, any estimation of values of interest, be it precise 

or soft, is subject to the confidence in sources of information we deal with – knowledge, 

assumptions, intuition, envision, experience – which, in general, cannot completely cover the 

whole complexity of real-world phenomena. Thus, fuzziness from t one side and partial 

reliability from the other side are strongly associated with each other. To take into account this 

fact, L.A. Zadeh suggested the concept of a Z-number as a more adequate formal construct for 

a description of real-world information. A Z-number is an ordered pair 𝑍 = (𝐴, 𝐵) of fuzzy 

numbers used to describe a value of a variable X, where 𝐴 is an imprecise constraint on values 

of X and B is an imprecise estimation of reliability of A and is considered as a value of 

probability measure of A. After introducing Z-numbers, Yager used these numbers for 

decision-making in a fuzzy environment [11]. Other researchers also used these Z-numbers to 

decide an ambiguous environment (for more information, see references [1,11-16]). Since the 

concept of Z-numbers is relatively new. Fuzzy sets, their theoretical aspects have not yet been 

identified. This paper facilitates this mentioned gap by developing a fully Z-number 

programming problem (FZLPP) model using the basic concepts of classic LP described in a 

fuzzy and Z-number condition. finally, an practical algorithm with Z-number solution is 

suggested to solve this model. The outline of this paper is as follows. In Section 2 we review 

some preliminaries of the fuzzy set theory, fuzzy calculation, and Z-number. In Section 3, 

mathematical model of a fuzzy problem is introduced. Also, the optimal solution for a fully Z-

linear programming problem is presented using the ranking function. Section 4, describes the 
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numerical result using the ranking function are presented. In the fifth section, a practical 

example is presented, Finally, section 6 brings the conclusion. 

2. Preliminaries and methodology 

This section presents a general outline of the theories that support our ideas. 

2.1. Fuzzy set theory 

A fuzzy set is defined by a membership function in which the numerical range of input and 

output values are the universe of discourse and the membership functions assign a membership 

degree from 0 to 1 for each data set. A fuzzy number on the 𝑅 of the universe is defined as a 

convex and normal fuzzy set. A fuzzy set 𝐴 is characterized on a universe X may be given as:  

. 

where 𝜇𝐴
 
is the membership function of 𝐴. The membership value 𝜇𝐴(𝑥)describes the grade 

of belongingness of x X  in A [18]. 

  Triangular Fuzzy Number can be defined by a triplet ( , , )l m u , where the membership can be 

defined as follow: 

𝜇𝐴(𝑥) =

{
 
 

 
 
0𝑥 ∈ (−∞, 𝑙),
𝑥 − 𝑙

𝑚 − 𝑙
𝑥 ∈ [𝑙,𝑚],

𝑢 − 𝑥

𝑢 −𝑚
𝑥 ∈ [𝑚, 𝑢],

0𝑥 ∈ (𝑢,+∞).

 

 

 

Definition 2.1 [19] Let �̃� = (𝑙,𝑚, 𝑢) be a triangular fuzzy number. Then �̃� is called a non-

negative fuzzy number if and only if 𝑙 ≥ 0 [21] 

Definition 2.2 [19] Let �̃� = (𝑙,𝑚, 𝑢) be a triangular fuzzy number. Then �̃� is called an 

unrestricted fuzzy number if 𝑙, 𝑚, 𝑢 ∈ 𝑅. 

Definition 2.3 [19] Consider �̃� = (𝑙,𝑚, 𝑢) and �̃� = (𝑙′, 𝑚′, 𝑢′) as two triangular fuzzy 

numbers, then: 

�̃� ⊕ �̃� = (𝑙,𝑚, 𝑢) ⊕ (𝑙′, 𝑚′, 𝑢′) = (𝑙 + 𝑙′,𝑚 +𝑚′, 𝑢 + 𝑢′), 

�̃� − �̃� = (𝑙,𝑚, 𝑢) ⊕ (−𝑢′, −𝑚′, −𝑙′) = (𝑙 − 𝑢′, 𝑚 −𝑚′, 𝑢 − 𝑙′), 

( )( ) , AA x x x X= 
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�̃� ⊗ �̃� = (𝑙,𝑚, 𝑢) ⊗ (𝑙′, 𝑚′, 𝑢′) = (𝑙𝑙′, 𝑚𝑚′, 𝑢𝑢′), ∀𝑙 ≥ 0, 

�̃� ⊗ �̃� = (𝑙,𝑚, 𝑢) ⊗ (𝑙′, 𝑚′, 𝑢′) = (𝑙𝑢′, 𝑚𝑚′, 𝑢𝑙′), ∀𝑙 < 0, 𝑢 ≥ 0, 

�̃� ⊗ �̃� = (𝑙,𝑚, 𝑢) ⊗ (𝑙′, 𝑚′, 𝑢′) = (𝑙𝑢′, 𝑚𝑚′, 𝑢𝑙′), ∀𝑢 < 0. 

Definition 2.4 [19] Consider �̃� = (𝑙,𝑚, 𝑢) and �̃� = (𝑙′, 𝑚′, 𝑢′) as two triangular fuzzy 

numbers. Then these numbers are equal if and only if  𝑙 = 𝑙′,𝑚 = 𝑚′, 𝑢 = 𝑢′. 

Definition 2.5 [19] (fuzzy ranking) Consider �̃� = (𝑙,𝑚, 𝑢) and �̃� = (𝑙′,𝑚′, 𝑢′) as two 

triangular fuzzy numbers. Then the fuzzy number �̃�is bigger than the fuzzy number �̃� if and 

only if  

�̃� = (𝒍,𝒎,𝒖) ≤ �̃� = (𝒍′,𝒎′, 𝒖′) ⇔ 𝒍 ≤ 𝒍′,𝒎 ≤ 𝒎,𝒖 ≤ 𝒖′. 

2.2 Z-number 

Decisions are based on information. To be useful, information must be reliable. The concept 

of a Z-number relates to the issue of reliability of the information. A Z-number, Z, has two 

components, Z= (𝐴,𝐵). The first component, 𝐴, is a restriction (constraint) on the values which 

a real-valued uncertain variable, X, is allowed to take. The second component, 𝐵, is a measure 

of reliability (certainty) of the first component. Typically, 𝐴and 𝐵 are described in a natural 

language. The concept of a Z-number has the potential for many applications, especially in the 

realms of economics, decision analysis, risk assessment, prediction, anticipation, and rule-

based characterization of imprecise functions and relations. In the real world, uncertainty is a 

pervasive phenomenon. Much of the information on which decisions are based is uncertain. 

Humans have a remarkable capability to make rational decisions based on information that is 

uncertain, imprecise, and/or incomplete. The formalization of this capability, at least to some 

degree, is a challenge that is hard to meet. It is this challenge that motivates the concepts and 

ideas outlined in this note. The concept of a restriction has greater generality than the concept 

of a constraint. 𝐴 probability distribution is a restriction but is not a constraint [20]. 𝐴 restriction 

may be viewed as a generalized constraint [21]. In this paper, the restriction and constraint of 

the term are used interchangeably. 

The restriction   

𝑅(𝑋): 𝑋𝑖𝑠𝐴, 

is referred to as a possibilistic restriction (constraint), with A playing the role of the possibility 

distribution of X. More specifically,     

𝑅(𝑋) = 𝑋𝑖𝑠𝐴 → 𝑝𝑜𝑠𝑠(𝑋 = 𝑢) = 𝜇𝐴(𝑢), 

where 𝜇𝐴 is the membership function of 𝐴 and u is a generic value of X. 𝜇𝐴 may be viewed as 

a constraint which is associated with R(X), meaning that 𝜇𝐴(𝑢) is the degree to which u 

satisfies the constraint. When X is a random variable, the probability distribution of X plays 

the role of a probabilistic restriction on 𝑋. A probabilistic restriction is expressed as follows: 
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𝑅(𝑋): 𝑋𝑖𝑠𝑝 

Where 𝑝 is the probability density function of X. In this case,  

𝑅(𝑋): 𝑋𝑖𝑠𝑝 → 𝑝𝑟𝑜𝑏(𝑢 ≤ 𝑋 ≤ 𝑢 + 𝑑𝑢) = 𝑝(𝑢)𝑑𝑢. 

Generally, the term ‘‘restriction’’ applies to X is 𝑅. Occasionally, ‘‘restriction’’ applies to 𝑅. 

Context serves to disambiguate the meaning of ‘‘restriction.’’ The ordered triple (X, 𝐴, B) is 

referred to as a Z-valuation. A Z-valuation is equivalent to an assignment statement, X is (𝐴 , 

𝐵). X is an uncertain variable if 𝐴 is not a singleton. In a related way, uncertain computation 

is a system of computation in which the objects of computation are not values of variables but 

restrictions on values of variables. In this paper, unless stated to the contrary, X is assumed to 

be a random variable. For convenience, 𝐴 is referred to as a value of X, with the understanding 

that strictly speaking,𝐴 is not a value of X but a restriction on the values which X can take. 

The second component, 𝐵, is referred to as certainty. Closely related to certainty are the 

concepts of sureness, confidence, reliability, the strength of belief, probability, possibility, etc. 

When X is a random variable, certainty may be equated to probability. Informally, 𝐵 may be 

interpreted as a response to the question: How sure are you that X is 𝐴? Typically, 𝐴and 𝐵 are 

perception-based and are described in a natural language. A collection of Z-valuations is 

referred to as Z-information. It should be noted that much of everyday reasoning and decision-

making is based, in effect, on Z-information. For purposes of computation, when 𝐴 and 𝐵 are 

described in a natural language, the meaning of 𝐴  and 𝐵 is precisiated (graduated) through 

association with membership functions, 𝜇𝐴and 𝜇𝐵, respectively (Fig.1).  The membership 

function of 𝐴, 𝜇𝐴, may be elicited by asking a succession of questions of the form: To what 

degree does the number, a, fit your perception of 𝐴? Example: To what degree does 50 min fit 

your perception of about 45 min? The same applies to 𝐵. The fuzzy set, 𝐴, may be interpreted 

as the possibility distribution of X. The concept of a Z-number may be generalized in various 

ways. In particular, X may be assumed to take values in n R, in which case 𝐴  is a Cartesian 

product of fuzzy numbers. Simple examples of Z-valuations are: (anticipated budget deficit, 

close to 2 million dollars, very likely) (the price of oil in the near future, significantly over 100 

dollars/barrel, very likely) 

   If 𝑋is a random variable, then 𝑋 is 𝐴  represents a fuzzy event in R, the real line. The 

probability of this event, 𝑃, may be expressed as [22]: 

where𝑝𝑋 is the underlying (hidden) probability density of 𝑋. In effect, the Z-valuation (𝑋, 𝐴, 

𝐵) may be viewed as a restriction (generalized constraint) on 𝑋defined by: 

𝑃𝑟 𝑜 𝑏(𝑋𝑖𝑠𝐴)𝑖𝑠𝐵. 

What should be underscored is that in a Z-number, (𝐴,𝐵), the underlying probability 

distribution, 𝑝𝑋, is not known. What is known is a restriction on 𝑝𝑋 which may be expressed 

as: 
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Figur 1. Membership function of A and probability density Function of X. 

𝐴 subtle point is that 𝐵 is a restriction on the probability measure of𝐴rather than on the 

probability of 𝐴. Conversely, if 𝐵 is a restriction on the probability of 𝐴  rather than on the 

probability measure of 𝐴, then(𝐴,𝐵) is not a Z-number.[1] 

2.3. Converting a Z-Number into a Fuzzy Number 

In order to make more computations, the Z-number should be transformed into a usual fuzzy 

number. Kang et al. [24] presented an efficient and very easy to implement approach, called 

Kang et al.’s method, for turning a Z-number into a classical fuzzy number based on the 

fuzzy expectation. Kang et al.’s method is described as follows: Suppose a Z-number is Z 

=(𝐴, 𝐵), where𝐴 = {(𝑥, 𝜇𝐴(𝑥))|𝑥 ∈ [0,1]}𝑎𝑛𝑑𝐵 = {(𝑥, 𝜇𝐵(𝑥))|𝑥 ∈ [0,1]}, 𝜇𝐴(𝑥), 𝜇𝐵(𝑥) are 

triangular membership functions. To convert a Z-number to a regular fuzzy number, the 

following three steps are suggested: 

Step 1: First, convert the second part (reliability) into a crisp number. 

 𝛼 =
∫𝑥𝜇𝐵(𝑥)𝑑𝑥

∫𝜇𝐵(𝑥)𝑑𝑥
.                                                                                                        (1) 

Step 2: The weighted Z-number can be defined as: 

�̃�𝛼 = {(𝑥, 𝜇𝐴𝛼(𝑥))|𝜇𝐴𝛼(𝑥) = 𝛼µ𝐴(𝑥), 𝑥 ∈ [0,1]} .                                                  (2) 

𝛼 represents the weight of the reliability component of Z-number. 

Step3: convert the irregular fuzzy number to a regular fuzzy number. The regular fuzzy set is 

given by 

𝑍𝛼 = {(𝑥, 𝜇𝑍𝛼(𝑥))|𝜇𝑍(𝑥) = 𝛼µ𝐴 (
𝑥

√𝛼
) , 𝑥 ∈ [0,1]} .                                             (3) 

3. Mathematical model of FZLP problem 

As mentioned before, linear programming is one of the applied methods of research in 

operation. In the initial model, the values of the linear programming model parameters should 

be defined both properly and precisely. Nevertheless, in the real-world environment, this 
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assumption is not conformed to reality and therefore will not be satisfied. In real problems, 

there is a lack of reliability in the parameters. In such a situation, the parameters of the linear 

programming problems should be inevitably presented as Z-numbers. 

Definition 3.1. Let F(S) be the set of all Z-numbers. 

The model 

𝑀𝑎𝑥[𝑍]𝑍 = ([𝐶]𝑍 × [𝑋]𝑍) 
𝑠. 𝑡: [𝐴]𝑍 × [𝑋]𝑍(≤=≥)[𝐵]𝑍 

[𝑋]𝑍 ≥ [0]𝑍,                                                         (4) 

where [𝐴]𝑍, [𝑋]𝑍, [𝐵]𝑍, [𝐶]𝑧 ∈ 𝐹(𝑆) is called a full Z-linear programming problem (FZLPP) 

in which[. ]𝑍 shows valuation with Z-number. This model, [𝐴]𝑍 = [𝑎𝑖𝑗]
𝑧 shows the 

coefficients matrix that 

[𝐴]𝑧 = (�̃�𝑖𝑗𝐴, �̃�𝑖𝑗𝐵), 

�̃�𝑖𝑗𝐴 = (𝑙𝑖𝑗𝐴
𝑎 ,𝑚𝑖𝑗𝐴

𝑎 , 𝑢𝑖𝑗𝐴
𝑎 ), 

�̃�𝑖𝑗𝐵 = (𝑙𝑖𝑗𝐵
𝑎 ,𝑚𝑖𝑗𝐵

𝑎 , 𝑢𝑖𝑗𝐵
𝑎 ), 

and  [𝐶]𝑍 = [𝑐𝑗]
𝑍 is the vector of variables coefficients in the objective function that 

[𝑪𝒋]
𝒁 = (�̃�𝒋𝑨, �̃�𝒋𝑩), 

�̃�𝒋𝑨 = (𝒍𝑨
𝒄 ,𝒎𝑨

𝒄 , 𝒖𝑨
𝒄 ), 

�̃�𝒋𝑩 = (𝒍𝑩
𝒄 ,𝒎𝑩

𝒄 , 𝒖𝑩
𝒄 ), 

and  [𝐵]𝑧 = [𝑏𝑖]
𝑧 shows a vector of the right-side numbers that  

[𝐵]𝑍 = (�̃�𝑖𝐴, �̃�𝑖𝐵), 

�̃�𝑖𝐴 = (𝑙𝑖𝐴
𝑏 ,𝑚𝑖𝐴

𝑏 , 𝑢𝑖𝐴
𝑏 ), 

�̃�𝑖𝐵 = (𝑙𝑖𝐵
𝑏 ,𝑚𝑖𝐵

𝑏 , 𝑢𝑖𝐵
𝑏 ), 

and [𝑥]𝑍 = [𝑥𝑖𝑗]
𝑍 are decision variables that 

[𝑥]𝑍 = (�̃�𝑖𝑗𝐴, �̃�𝑖𝑗𝐵), 

�̃�𝑖𝑗𝐴 = (𝑙𝑖𝑗𝐴
𝑥 , 𝑚𝑖𝑗𝐴

𝑥 , 𝑢𝑖𝑗𝐴
𝑥 ), 

�̃�𝑖𝑗𝐵 = (𝑙𝑖𝑗𝐵
𝑥 ,𝑚𝑖𝑗𝐵

𝑥 , 𝑢𝑖𝑗𝐵
𝑥 ).   

In this paper, all parameters and variables are shown with Z-valuation so that the component 

related to their constraint is triangular fuzzy numbers and the component related to the 
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reliability of their constraint component triangular fuzzy numbers. 

Finding the optimal solution for FZLP using the ranking function:  

Consider the FZLPP in (4), by substituting the mentioned cases in the previous part (4), the 

model can be rewritten to (5): 

𝑀𝑎𝑥[𝑧]𝑧 =∑(�̃�𝑗𝐴, �̃�𝑗𝐵)

𝑛

𝑗=1

⊗ (�̃�𝑖𝑗𝐴, �̃�𝑖𝑗𝐵) 

𝑠. 𝑡∑(�̃�𝑖𝑗𝐴, �̃�𝑖𝑗𝐵)

𝑛

𝑗=1

⊗ (�̃�𝑖𝑗𝐴, �̃�𝑖𝑗𝐵) ≤=≥ (�̃�𝑖𝐴, �̃�𝑖𝐵) 

�̃�𝑖𝑗𝐴, �̃�𝑖𝑗𝐵 ≥ 0.                                                                    (5) 

We can Convert Z- numbers into generalized fuzzy numbers. Then we have   

𝑀𝑎𝑥𝑍𝛼 =∑(𝑙𝛼𝑗𝐴
𝑐 ,𝑚𝑗𝐴

𝛼𝑐 , 𝑢𝑗𝐴
𝛼𝑐)

𝑛

𝑗=1

⊗ (𝑙𝑖𝑗𝐴
𝛼𝑥 , 𝑚𝑖𝑗𝐴

𝛼𝑥 , 𝑢𝑖𝑗𝐴
𝛼𝑥 ) 

𝑠. 𝑡∑(𝑙𝑖𝑗𝐴
𝛼𝑎 , 𝑚𝑖𝑗𝐴

𝛼𝑎 , 𝑢𝑖𝑗𝐴
𝛼𝑎 )

𝑛

𝑗=1

⊗ (𝑙𝑖𝑗𝐴
𝛼𝑥 ,𝑚𝑖𝑗𝐴

𝛼𝑥 , 𝑢𝑖𝑗𝐴
𝑥 ) ≤ (𝑙𝑖𝐴

𝛼𝑏, 𝑚𝑖𝐴
𝛼𝑏, 𝑢𝑖𝐴

𝛼𝑏) 

𝑙𝑖𝑗𝐴
𝛼𝑥 ≤ 𝑚𝑖𝑗𝐴

𝛼𝑥 ≤ 𝑢𝑖𝑗𝐴
𝛼𝑥 .                                                                        (6) 

The fuzzy model (6) can be transformed by Definition 3, into the following model; 

𝑀𝑎𝑥𝑍𝛼 =∑(𝑙𝑗𝐴
𝛼𝑐𝑙𝑖𝑗𝐴

𝛼𝑥 , 𝑚𝑗𝐴
𝛼𝑐𝑚𝑖𝑗𝐴

𝛼𝑥 , 𝑢𝑗𝐴
𝛼𝑐𝑢𝑖𝑗𝐴

𝛼𝑥 )

𝑛

𝑗=1

 

𝑠. 𝑡∑(𝑙𝑖𝑗𝐴
𝛼𝑎 𝑙𝑖𝑗𝐴

𝛼𝑥 , 𝑚𝑖𝑗𝐴
𝛼𝑎𝑚𝑖𝑗𝐴

𝛼𝑥 , 𝑢𝑖𝑗𝐴
𝛼𝑎𝑢𝑖𝑗𝐴

𝛼𝑥 )

𝑛

𝑗=1

≤ (𝑙𝑖𝐴
𝛼𝑏,𝑚𝑖𝐴

𝛼𝑏, 𝑢𝑖𝐴
𝛼𝑏) 

𝑙𝑖𝑗𝐴
𝛼𝑥 ≥ 0𝑖 = 1, . . . , 𝑚 

𝑙𝑖𝑗𝐴
𝛼𝑥 ≤ 𝑚𝑖𝑗𝐴

𝛼𝑥 ≤ 𝑢𝑖𝑗𝐴
𝛼𝑥 𝑖 = 1, . . . , 𝑚.                          (7) 

With the ranking function in definition 5, we have the following model: 
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𝑀𝑎𝑥𝑍𝛼 =∑(𝑙𝑗𝐴
𝛼𝑐𝑙𝑖𝑗𝐴

𝛼𝑥 ,𝑚𝑗𝐴
𝛼𝑐𝑚𝑖𝑗𝐴

𝛼𝑥 , 𝑢𝑗𝐴
𝛼𝑐𝑢𝑖𝑗𝐴

𝛼𝑥 )

𝑛

𝑗=1

 

𝑠. 𝑡∑𝑙𝑖𝑗𝐴
𝛼𝑎 𝑙𝑖𝑗𝐴

𝛼𝑥

𝑛

𝑗=1

≤ 𝑙𝑖𝐴
𝛼𝑏𝑖 = 1, . . . , 𝑚 

∑𝑚𝑖𝑗𝐴
𝛼𝑎𝑚𝑖𝑗𝐴

𝛼𝑥

𝑛

𝑗=1

≤ 𝑚𝑖𝐴
𝛼𝑏𝑖 = 1, . . . , 𝑚 

∑𝑢𝑖𝑗𝐴
𝛼𝑎𝑢𝑖𝑗𝐴

𝛼𝑥

𝑛

𝑗=1

≤ 𝑢𝑖𝐴
𝛼𝑏𝑖 = 1, . . . , 𝑚 

𝑙𝑖𝑗𝐴
𝛼𝑥 ≥ 0𝑖 = 1, . . . , 𝑚 

𝑙𝑖𝑗𝐴
𝛼𝑥 ≤ 𝑚𝑖𝑗𝐴

𝛼𝑥 ≤ 𝑢𝑖𝑗𝐴
𝛼𝑥 𝑖 = 1, . . . , 𝑚.                                                                 (8) 

When the objective function will be in a maximum form, each objective function 𝑍𝛼 converts 

into three real objective functions in the form of the model (9). By these changes, the problem 

of Z linear programming with the objective function of Z̃, n variable, and m constraint converts 

into a programming problem with three targets, 3n variable, and 5m constraint. For this three-

objective problem, each of the multi-objective methods of solving the problem can be used. 

However, according to the objective function to maximize the core, minimize the left spread, 

and maximize the right spread. So, another popular technique called the fuzzy programming 

method for solving fuzzy transportation problem (FTP) (8) will be explored [25]. 

𝑀𝑎𝑥𝑍2 =∑𝑚𝑗𝐴
𝑐 𝑚𝑖𝑗𝐴

𝑥

𝑛

𝑗=1

 

𝑀𝑎𝑥𝑍3 =∑(𝑢𝑗𝐴
𝑐 𝑢𝑖𝑗𝐴

𝑥 −𝑚𝑗𝐴
𝑐

𝑛

𝑗=1

𝑚𝑖𝑗𝐴
𝑥 ) 

𝑀𝑖𝑛𝑍1 =∑(𝑚𝑗𝐴
𝑐 𝑚𝑖𝑗𝐴

𝑥

𝑛

𝑗=1

− 𝑙𝑗𝐴
𝑐 𝑙𝑖𝑗𝐴

𝑥 ) 

𝑠. 𝑡∑𝑙𝑖𝑗𝐴
𝛼𝑎 𝑙𝑖𝑗𝐴

𝛼𝑥

𝑛

𝑗=1

≤ 𝑙𝑖𝐴
𝛼𝑏𝑖 = 1, . . . , 𝑚 

∑𝑚𝑖𝑗𝐴
𝛼𝑎𝑚𝑖𝑗𝐴

𝛼𝑥

𝑛

𝑗=1

≤ 𝑚𝑖𝐴
𝛼𝑏𝑖 = 1, . . . , 𝑚 

∑𝑢𝑖𝑗𝐴
𝛼𝑎𝑢𝑖𝑗𝐴

𝑥

𝑛

𝑗=1

≤ 𝑢𝑖𝐴
𝛼𝑏𝑖 = 1, . . . , 𝑚 
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𝑙𝑖𝑗𝐴
𝛼𝑥 ≥ 0𝑖 = 1, . . . , 𝑚 

𝑙𝑖𝑗𝐴
𝛼𝑥 ≤ 𝑚𝑖𝑗𝐴

𝛼𝑥 ≤ 𝑢𝑖𝑗𝐴
𝛼𝑥 𝑖 = 1, . . . , 𝑚.                                                (9) 

To solve model (9), the positive ideal solution (PIS) and negative ideal solution (NIS) are 

obtained by solving the following linear programming problems: 

𝑧1
𝑃𝐿𝑆 = 𝑀𝑖𝑛∑𝑚𝑗𝐴

𝑐 𝑚𝑖𝑗𝐴
𝑥

𝑛

𝑗=1

− 𝑙𝑗𝐴
𝑐 𝑙𝑖𝑗𝐴

𝑥 𝑧1
𝑁𝐿𝑆 = 𝑀𝑎𝑥∑𝑚𝑗𝐴

𝑐 𝑚𝑖𝑗𝐴
𝑥

𝑛

𝑗=1

− 𝑙𝑗𝐴
𝑐 𝑙𝑖𝑗𝐴

𝑥  

𝑠. 𝑡𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑠𝑜𝑓𝑀𝑜𝑑𝑒𝑙(9). 𝑠. 𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑠𝑜𝑓𝑀𝑜𝑑𝑒𝑙(9). 

𝑧2
𝑃𝐿𝑆 = 𝑀𝑎𝑥∑𝑚𝑗𝐴

𝑐 𝑚𝑖𝑗𝐴
𝑥

𝑛

𝑗=1

𝑧2
𝑁𝐿𝑆 = 𝑀𝑖𝑛∑𝑚𝑗𝐴

𝑐 𝑚𝑖𝑗𝐴
𝑥

𝑛

𝑗=1

 

𝑠. 𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑠𝑜𝑓𝑀𝑜𝑑𝑒𝑙(9). 𝑠. 𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑠𝑜𝑓𝑀𝑜𝑑𝑒𝑙(9). 

𝑧3
𝑃𝐿𝑆 = 𝑀𝑎𝑥∑𝑢𝑗𝐴

𝑐 𝑢𝑖𝑗𝐴
𝑥 −𝑚𝑗𝐴

𝑐

𝑛

𝑗=1

𝑚𝑖𝑗𝐴
𝑥 𝑧3

𝑁𝐿𝑆 = 𝑀𝑖𝑛∑𝑢𝑗𝐴
𝑐 𝑢𝑖𝑗𝐴

𝑥 −𝑚𝑗𝐴
𝑐

𝑛

𝑗=1

𝑚𝑖𝑗𝐴
𝑥  

𝑠. 𝑡.        𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑠𝑜𝑓𝑀𝑜𝑑𝑒𝑙(9). 𝑠. 𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑠𝑜𝑓𝑀𝑜𝑑𝑒𝑙(9).                                 (10) 

Hence, the linear membership function of 

𝜇𝑧1(𝑧1) =

{
 

 
1, 𝑧1 < 𝑧1

𝑃𝐿𝑆

𝑧1
𝑁𝐼𝑆−𝑧1

𝑧1
𝑁𝐼𝑆−𝑧1

𝑃𝐼𝑆 , 𝑧1
𝑃𝐼𝑆 < 𝑧1 < 𝑧1

𝑁𝐼𝑆

0, 𝑧1 > 𝑧1
𝑁𝐼𝑆

                                                               (11) 

 

𝜇𝑧2(𝑧2) =

{
 

 
1, 𝑧2 > 𝑧2

𝑃𝐿𝑆

𝑧2−𝑧2
𝑁𝐼𝑆

𝑧1
𝑃𝐼𝑆−𝑧1

𝑁𝐼𝑆 , 𝑧2
𝑁𝐼𝑆 < 𝑧2 < 𝑧2

𝑃𝐼𝑆

0, 𝑧2 < 𝑧2
𝑁𝐼𝑆

                                                                (12) 

 

𝜇𝑧3(𝑧`3) =

{
 

 
1, 𝑧3 > 𝑧3

𝑃𝐿𝑆

𝑧2−𝑧2
𝑁𝐼𝑆

𝑧1
𝑃𝐼𝑆−𝑧1

𝑁𝐼𝑆 , 𝑧3
𝑁𝐼𝑆 < 𝑧3 < 𝑧3

𝑃𝐼𝑆

0, 𝑧3 < 𝑧3
𝑁𝐼𝑆.

                                                             (13) 

Finally, according to the fuzzy programming approach, the following model is solved: 

𝑚𝑎𝑥 𝛼 

𝑠. 𝑡𝜇𝑧𝑖(𝑧𝑖) ≥ 𝛼, 𝑖 = 1,2,3 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎 𝑖𝑛𝑡 𝑠 𝑜𝑓𝑀𝑜𝑑𝑒𝑙𝑀𝑎𝑥𝑛 
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𝑠. 𝑡𝜇𝑧𝑖(𝑧𝑖) ≥ 𝑛, 𝑖 = 1,2,3 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑠𝑜𝑓𝑀𝑜𝑑𝑒𝑙(9)                                                                                     (14) 

By substituting the membership functions of (11)-(13) into the problem (14), the following 

problem is obtained: 

𝑚𝑎𝑥 𝛼 

𝑠. 𝑡𝑧1 ≤ 𝑧1
𝑁𝐼𝑆 − (𝑧1

𝑁𝐼𝑆 − 𝑧1
𝑃𝐼𝑆)𝛼, 

𝑧2 ≥ 𝑧2
𝑁𝐼𝑆 + (𝑧2

𝑃𝐼𝑆 − 𝑧2
𝑁𝐼𝑆)𝛼, 

𝑧3 ≥ 𝑧3
𝑁𝐼𝑆 + (𝑧3

𝑃𝐼𝑆 − 𝑧3
𝑁𝐼𝑆)𝛼, 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎 𝑖𝑛𝑡 𝑠 𝑜𝑓𝑀𝑜𝑑𝑒𝑙(). 

𝑀𝑎𝑥𝑛 

𝑠. 𝑡𝑧1 ≤ 𝑧1
𝑁𝐼𝑆 − (𝑧1

𝑁𝐼𝑆 − 𝑧1
𝑃𝐼𝑆)𝑛, 

𝑧2 ≥ 𝑧2
𝑁𝐼𝑆 + (𝑧2

𝑃𝐼𝑆 − 𝑧2
𝑁𝐼𝑆)𝑛, 

𝑧3 ≥ 𝑧3
𝑁𝐼𝑆 + (𝑧3

𝑃𝐼𝑆 − 𝑧3
𝑁𝐼𝑆)𝑛, 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑠𝑜𝑓𝑀𝑜𝑑𝑒𝑙(9).                                                                                                (15)  

Example 3.1. Consider the following FZLP as the following: 

𝑀𝑎𝑥𝑧 = ((10,12,14), (0.25,0.35,0.45))⊗ ((𝑙1𝐴
𝑥 ,𝑚1𝐴

𝑥 , 𝑢1𝐴
𝑥 ), (𝑙1𝐵

𝑥 ,𝑚1𝐵
𝑥 , 𝑢1𝐵

𝑥 ))

⊕ ((8,10,12), (0.41,0.51,0.61)) 
⊗ ((𝑙2𝐴

𝑥 ,𝑚2𝐴
𝑥 , 𝑢2𝐴

𝑥 ), (𝑙2𝐵
𝑥 ,𝑚2𝐵

𝑥 , 𝑢2𝐵
𝑥 ))⊕ ((4,6,8), (0.32,0.52,0.72))

⊗ ((𝑙3𝐴
𝑥 ,𝑚3𝐴

𝑥 , 𝑢3𝐴
𝑥 ), (𝑙3𝐵

𝑥 ,𝑚3𝐵
𝑥 , 𝑢3𝐵

𝑥 )) 

𝑠. 𝑡((5,6,7), (0.75,0.85,0.95))⊗ ((𝑙1𝐴
𝑥 , 𝑚1𝐴

𝑥 , 𝑢1𝐴
𝑥 ), (𝑙1𝐵

𝑥 , 𝑚1𝐵
𝑥 , 𝑢1𝐵

𝑥 ))

⊕ ((4,5,6), (0.32,0.52,0.72))⊗ ((𝑙2𝐴
𝑥 , 𝑚2𝐴

𝑥 , 𝑢2𝐴
𝑥 ), (𝑙2𝐵

𝑥 , 𝑚2𝐵
𝑥 , 𝑢2𝐵

𝑥 )) 

⊕ ((2,3,4), (0.41,0.51,0.61))⊗ ((𝑙3𝐴
𝑥 , 𝑚3𝐴

𝑥 , 𝑢3𝐴
𝑥 ), (𝑙3𝐵

𝑥 , 𝑚3𝐵
𝑥 , 𝑢3𝐵

𝑥 ))

≤ ((20,24,26), (0.25,0.35,0.45)) 

((1,2,3), (0.41,0.51,0.61))⊗ ((𝑙1𝐴
𝑥 ,𝑚1𝐴

𝑥 , 𝑢1𝐴
𝑥 ), (𝑙1𝐵

𝑥 ,𝑚1𝐵
𝑥 , 𝑢1𝐵

𝑥 ))⊕ ((1,2,3), (0.5,0.75,1))

⊗ ((𝑙2𝐴
𝑥 ,𝑚2𝐴

𝑥 , 𝑢2𝐴
𝑥 ), (𝑙2𝐵

𝑥 ,𝑚2𝐵
𝑥 , 𝑢2𝐵

𝑥 )) 

⊕ ((1,2,3), (0.32,0.52,0.72))⊗ ((𝑙3𝐴
𝑥 , 𝑚3𝐴

𝑥 , 𝑢3𝐴
𝑥 ), (𝑙3𝐵

𝑥 , 𝑚3𝐵
𝑥 , 𝑢3𝐵

𝑥 ))

≤ ((10,12,14), (0.75,0.85,0.95)) 

((1,2,3), (0.41,0.51,0.61))⊗ ((𝑙1𝐴
𝑥 ,𝑚1𝐴

𝑥 , 𝑢1𝐴
𝑥 ), (𝑙1𝐵

𝑥 ,𝑚1𝐵
𝑥 , 𝑢1𝐵

𝑥 ))⊕ ((1,2,3), (0.5,0.75,1))

⊗ ((𝑙2𝐴
𝑥 ,𝑚2𝐴

𝑥 , 𝑢2𝐴
𝑥 ), (𝑙2𝐵

𝑥 ,𝑚2𝐵
𝑥 , 𝑢2𝐵

𝑥 )) 

⊕ ((2,4,6), (0.25,0.35,0.45))⊗ ((𝑙3𝐴
𝑥 ,𝑚3𝐴

𝑥 , 𝑢3𝐴
𝑥 ), (𝑙3𝐵

𝑥 ,𝑚3𝐵
𝑥 , 𝑢3𝐵

𝑥 )) ≤

((12,16,24), (0.75,0.85,0.95)) (16) 
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𝑀𝑎𝑥𝑧 = (5.9,7.08,8.26)⊗ (𝑙1
𝑥 ,𝑚1

𝑥, 𝑢1
𝑥)⊕ ((5.68,7.1,8.52)⊗ (𝑙2

𝑥,𝑚2
𝑥, 𝑢2

𝑥)

⊕ (2.88,4.32,5.76)⊗ (𝑙3
𝑥, 𝑚3

𝑥 , 𝑢3
𝑥) 

𝑠. 𝑡(4.6,5.52,6.44)⊗ (𝑙1
𝑥, 𝑚1

𝑥, 𝑢1
𝑥)⊕ (2.88,3.6,4.32)⊗ (𝑙2

𝑥, 𝑚2
𝑥, 𝑢2

𝑥)⊕ (1.42,2.13,2.84)

⊗ (𝑙3
𝑥 ,𝑚3

𝑥, 𝑢3
𝑥) 

≤ (11.8,14.16,15.34) 

(0.71,1.42,2.13)⊗ (𝑙1
𝑥 ,𝑚1

𝑥, 𝑢1
𝑥)⊕ (0.86,1.72,2.58)⊗ (𝑙2

𝑥,𝑚2
𝑥 , 𝑢2

𝑥)⊕ (0.71,1.44,2.16)

⊗ (𝑙3
𝑥 ,𝑚3

𝑥, 𝑢3
𝑥) 

≤ (9.2,11.04,12.88) 

(0.71,1.42,2.13)⊗ (𝑙1
𝑥 ,𝑚1

𝑥, 𝑢1
𝑥)⊕ (0.86,1.72,2.58)⊗ (𝑙2

𝑥,𝑚2
𝑥 , 𝑢2

𝑥)⊕ (1.18,2.36,3.54)

⊗ (𝑙3
𝑥 ,𝑚3

𝑥, 𝑢3
𝑥) 

≤ (11.04,14.72,22.08) (17) 

Finally, according to the problem (14), we should solve the following  

𝑴𝒊𝒏𝟕. 𝟎𝟖𝒎𝟏
𝒙 + 𝟕. 𝟏𝒎𝟐

𝒙 + 𝟒. 𝟑𝟐𝒎𝟑
𝒙 − 𝟓.𝟗𝒍𝟏

𝒙 − 𝟓. 𝟔𝟖𝒍𝟐
𝒙 − 𝟐. 𝟖𝟖𝒍𝟑

𝒙 

𝑴𝒂𝒙𝟕. 𝟎𝟖𝒎𝟏
𝒙 + 𝟕. 𝟏𝒎𝟐

𝒙 + 𝟒. 𝟑𝟐𝒎𝟑
𝒙 

𝑴𝒂𝒙𝟖. 𝟐𝟔𝒖𝟏
𝒙 + 𝟖. 𝟓𝟐𝒖𝟐

𝒙 + 𝟓. 𝟕𝟔𝒖𝟑
𝒙 − 𝟕. 𝟎𝟖𝒎𝟏

𝒙 − 𝟕. 𝟏𝒎𝟐
𝒙 − 𝟒. 𝟑𝟐𝒎𝟑

𝒙 

𝒔. 𝒕𝟒. 𝟔𝒍𝟏
𝒙 + 𝟐. 𝟖𝟖𝟖𝒍𝟐

𝒙 + 𝟏. 𝟒𝟐𝒍𝟑
𝒙 ≤ 𝟏𝟏. 𝟖 

𝟓. 𝟓𝟐𝒎𝟏
𝒙 + 𝟑. 𝟔𝒎𝟐

𝒙 + 𝟐. 𝟏𝟑𝒎𝟑
𝒙 ≤ 𝟏𝟒. 𝟏𝟔 

𝟔. 𝟒𝟒𝟔𝒖𝟏
𝒙 + 𝟒. 𝟑𝟐𝒖𝟐

𝒙 + 𝟐. 𝟖𝟒𝟔𝒖𝟑
𝒙 ≤ 𝟏𝟓. 𝟑𝟒 

𝟎. 𝟕𝟏𝒍𝟏
𝒙 + 𝟎. 𝟖𝟔𝟖𝒍𝟐

𝒙 + 𝟎. 𝟕𝟏𝒍𝟑
𝒙 ≤ 𝟗. 𝟐 

𝟏. 𝟒𝟐𝒎𝟏
𝒙 + 𝟏. 𝟕𝟐𝒎𝟐

𝒙 + 𝟏. 𝟒𝟒𝒎𝟑
𝒙 ≤ 𝟏𝟏.𝟎𝟒 

𝟐. 𝟏𝟑𝒖𝟏
𝒙 + 𝟐. 𝟓𝟖𝒖𝟐

𝒙 + 𝟐. 𝟏𝟔𝒖𝟑
𝒙 ≤ 𝟏𝟐.𝟖𝟖 

𝟎. 𝟕𝟏𝒍𝟏
𝒙 + 𝟎. 𝟖𝟔𝟖𝒍𝟐

𝒙 + 𝟏. 𝟏𝟖𝒍𝟑
𝒙 ≤ 𝟏𝟏.𝟎𝟒 

𝟏. 𝟒𝟐𝒎𝟏
𝒙 + 𝟏. 𝟕𝟐𝒎𝟐

𝒙 + 𝟐. 𝟑𝟔𝒎𝟑
𝒙 ≤ 𝟏𝟒.𝟕𝟐 

𝟐. 𝟏𝟑𝒖𝟏
𝒙 + 𝟐. 𝟓𝟖𝒖𝟐

𝒙 + 𝟑. 𝟓𝟒𝒖𝟑
𝒙 ≤ 𝟐𝟐.𝟎𝟖 

𝒍𝟏
𝒙 ≥ 𝟎,𝒎𝟏

𝒙 − 𝒍𝟏
𝒙 ≥ 𝟎,𝒖𝟏

𝒙 −𝒎𝟏
𝒙 ≥ 𝟎 

𝒍𝟐
𝒙 ≥ 𝟎,𝒎𝟐

𝒙 − 𝒍𝟐
𝒙 ≥ 𝟎,𝒖𝟐

𝒙 −𝒎𝟐
𝒙 ≥ 𝟎 

                        𝒍𝟑
𝒙 ≥ 𝟎,𝒎𝟑

𝒙 − 𝒍𝟑
𝒙 ≥ 𝟎,𝒖𝟑

𝒙 −𝒎𝟑
𝒙 ≥ 𝟎                                                    (18) 
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𝑧1
𝑃𝐼𝑆= Min z1= 7.08m1

𝑥+7.1m2
𝑥+4.32m3

𝑥

− 5.9𝑙1
𝑥 − 5.6𝑙2

𝑥 − 2.88𝑙3
𝑥 

𝑠. 𝑡4.6l1
𝑥+2.88l2

𝑥+1.42l3
𝑥 ≤ 11.8 

5.52m1
𝑥+3.6m2

𝑥+2.13m3
𝑥 ≤ 14.16 

6.44u1
𝑥+4.32u2

𝑥+2.84u3
𝑥 ≤ 15.34 

0.71l1
𝑥+0.86l2

𝑥+0.71l3
𝑥 ≤ 9.2 

1.42m1
𝑥+1.72m2

𝑥+1.44m3
𝑥 ≤ 11.04 

2.13u1
𝑥+2.58u2

𝑥+2.16u3
𝑥 ≤ 12.88 

0.71l1
𝑥+0.86l2

𝑥+1.18l3
𝑥 ≤ 11.04 

1.42m1
𝑥+1.72m2

𝑥+2.36m3
𝑥 ≤ 14.72 

2.13u1
𝑥+2.58u2

𝑥+3.54u3
𝑥 ≤ 22.08 

𝑙1
𝑥>=0, m1

𝑥-l1
𝑥>=0, u1

𝑥-m1
𝑥>=0 

𝑙2
𝑥>=0, m2

𝑥-l2
𝑥>=0, u2

𝑥-m2
𝑥>=0 

                      l3
𝑥>=0, m3

𝑥-l3
𝑥>=0, u3

𝑥-

m3
𝑥>=0 

𝑧1
𝑁𝐼𝑆= Max z1= 7.08m1

𝑥+7.1m2
𝑥+4.32m3

𝑥

− 5.9𝑙1
𝑥 − 5.6𝑙2

𝑥 − 2.88𝑙3
𝑥 

𝑠. 𝑡4.6l1
𝑥+2.88l2

𝑥+1.42l3
𝑥 ≤ 11.8 

5.52m1
𝑥+3.6m2

𝑥+2.13m3
𝑥 ≤ 14.16 

6.44u1
𝑥+4.32u2

𝑥+2.84u3
𝑥 ≤ 15.34 

0.71l1
𝑥+0.86l2

𝑥+0.71l3
𝑥 ≤ 9.2 

1.42m1
𝑥+1.72m2

𝑥+1.44m3
𝑥 ≤ 11.04 

2.13u1
𝑥+2.58u2

𝑥+2.16u3
𝑥 ≤ 12.88 

0.71l1
𝑥+0.86l2

𝑥+1.18l3
𝑥 ≤ 11.04 

1.42m1
𝑥+1.72m2

𝑥+2.36m3
𝑥 ≤ 14.72 

2.13u1
𝑥+2.58u2

𝑥+3.54u3
𝑥 ≤ 22.08 

𝑙1
𝑥>=0, m1

𝑥-l1
𝑥>=0, u1

𝑥-m1
𝑥>=0 

𝑙2
𝑥>=0, m2

𝑥-l2
𝑥>=0, u2

𝑥-m2
𝑥>=0 

                      l3
𝑥>=0, m3

𝑥-l3
𝑥>=0, u3

𝑥-m3
𝑥>=0 

𝑧2
𝑃𝐼𝑆= Max z2=7.08m1

𝑥+7.1m2
𝑥+4.32m3

𝑥 

s.t4.6l1
𝑥+2.88l2

𝑥+1.42l3
𝑥 ≤ 11.8 

5.52m1
𝑥+3.6m2

𝑥+2.13m3
𝑥 ≤ 14.16 

6.44u1
𝑥+4.32u2

𝑥+2.84u3
𝑥 ≤ 15.34 

0.71l1
𝑥+0.86l2

𝑥+0.71l3
𝑥 ≤ 9.2 

1.42m1
𝑥+1.72m2

𝑥+1.44m3
𝑥 ≤ 11.04 

2.13u1
𝑥+2.58u2

𝑥+2.16u3
𝑥 ≤ 12.88 

0.71l1
𝑥+0.86l2

𝑥+1.18l3
𝑥 ≤ 11.04 

1.42m1
𝑥+1.72m2

𝑥+2.36m3
𝑥 ≤ 14.72 

2.13u1
𝑥+2.58u2

𝑥+3.54u3
𝑥 ≤ 22.08 

𝑙1
𝑥>=0, m1

𝑥-l1
𝑥>=0, u1

𝑥-m1
𝑥>=0 

𝑙2
𝑥>=0, m2

𝑥-l2
𝑥>=0, u2

𝑥-m2
𝑥>=0 

𝑙3
𝑥>=0, m3

𝑥-l3
𝑥>=0, u3

𝑥-m3
𝑥>=0 

𝑧2
𝑁𝐼𝑆= Min z2= 7.08m1

𝑥+7.1m2
𝑥+4.32m3

𝑥 

𝑠. 𝑡4.6l1
𝑥+2.88l2

𝑥+1.42l3
𝑥 ≤ 11.8 

5.52m1
𝑥+3.6m2

𝑥+2.13m3
𝑥 ≤ 14.16 

6.44u1
𝑥+4.32u2

𝑥+2.84u3
𝑥 ≤ 15.34 

0.71l1
𝑥+0.86l2

𝑥+0.71l3
𝑥 ≤ 9.2 

1.42m1
𝑥+1.72m2

𝑥+1.44m3
𝑥 ≤ 11.04 

2.13u1
𝑥+2.58u2

𝑥+2.16u3
𝑥 ≤ 12.88 

0.71l1
𝑥+0.86l2

𝑥+1.18l3
𝑥 ≤ 11.04 

1.42m1
𝑥+1.72m2

𝑥+2.36m3
𝑥 ≤ 14.72 

2.13u1
𝑥+2.58u2

𝑥+3.54u3
𝑥 ≤ 22.08 

𝑙1
𝑥>=0, m1

𝑥-l1
𝑥>=0, u1

𝑥-m1
𝑥>=0 

𝑙2
𝑥>=0, m2

𝑥-l2
𝑥>=0, u2

𝑥-m2
𝑥>=0 

𝑙3
𝑥>=0, m3

𝑥-l3
𝑥>=0, u3

𝑥-m3
𝑥>=0 
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By the graphic technique, we obtain 𝑧1
𝑃𝐼𝑆 = 0, 𝑧1

𝑁𝐼𝑆 = 28.5703, 𝑧2
𝑃𝐼𝑆 = 28.5703, 𝑧2

𝑁𝐼𝑆 =

0, 𝑧3
𝑃𝐼𝑆 = 31.1121, 𝑧3

𝑁𝐼𝑆 = −27.9266 thus, we solve the following problem with regard to 

the problem (15); 

Max=n; 

𝑠. 𝑡7.08𝑚1
𝑥 + 7.1𝑚2

𝑥 + 4.32𝑚3
𝑥 − 5.9𝑙1

𝑥 − 5.68𝑙2
𝑥 − 2.88𝑙3

𝑥 ≤ 28.5703 − 28.5703𝑛 

7.08𝑚1
𝑥 + 7.1𝑚2

𝑥 + 4.32𝑚3
𝑥 ≥ 28.5703𝑛 

8.26𝑢1
𝑥 + 8.52𝑢2

𝑥 + 5.76𝑢3
𝑥 − 7.08𝑚1

𝑥 − 7.1𝑚2
𝑥 − 4.32𝑚3

𝑥

≥ −27.9266 + 31.1121𝑛 + 27.9266𝑛 

4.6l1
𝑥+2.88l2

𝑥+1.42l3
𝑥 ≤ 11.8 

5.52m1
𝑥+3.6m2

𝑥+2.13m3
𝑥 ≤ 14.16 

6.44u1
𝑥+4.32u2

𝑥+2.84u3
𝑥 ≤ 15.34 

0.71l1
𝑥+0.86l2

𝑥+0.71l3
𝑥 ≤ 9.2 

1.42m1
𝑥+1.72m2

𝑥+1.44m3
𝑥 ≤ 11.04 

2.13u1
𝑥+2.58u2

𝑥+2.16u3
𝑥 ≤ 12.88 

0.71l1
𝑥+0.86l2

𝑥+1.18l3
𝑥 ≤ 11.04 

1.42m1
𝑥+1.72m2

𝑥+2.36m3
𝑥 ≤ 14.72 

2.13u1
𝑥+2.58u2

𝑥+3.54u3
𝑥 ≤ 22.08 

𝑙1
𝑥>=0,𝑚1

𝑥-l1
𝑥>=0,𝑢1

𝑥-m1
𝑥>=0 

𝑙2
𝑥>=0,𝑚2

𝑥-l2
𝑥>=0, u2

𝑥-m2
𝑥>=0 

𝑙3
𝑥>=0, m3

𝑥-l3
𝑥>=0,𝑢3

𝑥-m3
𝑥>=0 

  

𝑧3
𝑁𝐼𝑆= Min𝑧3=8.26u1

𝑥+8.52u2
𝑥+5.76u3

𝑥 -7.08m1
𝑥-7.1m2

𝑥-4.32m3
𝑥 

s.t       4.6l1
𝑥+2.88l2

𝑥+1.42l3
𝑥 ≤ 11.8 

5.52m1
𝑥+3.6m2

𝑥+2.13m3
𝑥 ≤ 14.16 

6.44u1
𝑥+4.32u2

𝑥+2.84u3
𝑥 ≤ 15.34 

0.71l1
𝑥+0.86l2

𝑥+0.71l3
𝑥 ≤ 9.2 

1.42m1
𝑥+1.72m2

𝑥+1.44m3
𝑥 ≤ 11.04 

                     2.13u1
𝑥+2.58u2

𝑥+2.16u3
𝑥

≤ 12.88 

                     0.71l1
𝑥+0.86l2

𝑥+1.18l3
𝑥 ≤ 11.04 

1.42m1
𝑥+1.72m2

𝑥+2.36m3
𝑥 ≤ 14.72 

2.13u1
𝑥+2.58u2

𝑥+3.54u3
𝑥 ≤ 22.08 

𝑙1
𝑥>0, m1

𝑥-l1
𝑥>=0, u1

𝑥-m1
𝑥>=0 

𝑙2
𝑥>=0, m2

𝑥-l2
𝑥>=0, u2

𝑥-m2
𝑥>=0 

𝑙3
𝑥>=0, m3

𝑥-l3
𝑥>=0, u3

𝑥-m3
𝑥>=0 

3 3 1 2 3 1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

z = Max z =8.26u +8.52u +5.76u  -7.08m -7.1m -4.32m

. 4.6l +2.88l +1.42l 11.8

5.52m +3.6m +2.13m 14.16

6.44u +4.32u +2.84u 15.34

0.71l +0.86l +0.71l 9.2

1.42m +1.72m +1.44m 1

PIS x x x x x x

x x x

x x x

x x x

x x x

x x x

s t 









1 2 3

1 2 3

1 2 3

1 2 3

1 1 1 1 1

2 2 2 2 2

3 3 3

1.04

2.13u +2.58u +2.16u 12.88

0.71l +0.86l +1.18l 11.04

1.42m +1.72m +2.36m 14.72

2.13u +2.58u +3.54u 22.08

l >=0, m -l >=0, u -m >=0

l >=0, m -l >=0, u -m >=0

l >=0, m -l

x x x

x x x

x x x

x x x

x x x x x

x x x x x

x x x









3 3>=0, u -m >=0x x
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After computations with Lingo, we have the following optimal solution: 

𝑛 = 0.6738 

𝑚1
𝑥 = 𝑚2

𝑥 = 𝑙1
𝑥 = 𝑙2

𝑥 = 𝑢1
𝑥 = 𝑢2

𝑥 = 0 

𝑙3
𝑥 = 4.4567,𝑚3

𝑥 = 4.4567, 𝑢3
𝑥 = 5.4014 

Solving using the method proposed we get the optimum solution as z= 

((12.83,19.25,31.11),0.76). where 0.76 is the center of gravity of the second component of 

the z-number, which can be expressed as follows 

Z=((12.83,19.25,31.11),(0.66,0.76,0.86)). 

4. Numerical example 

In this section, the presented example in the Kumar [25], Here is a case in point of a mixture 

of a motor vehicle for the journey to demonstrate the process of the projected loom. There are 

three dissimilar choices, namely train, auto, and bus. Take the three most important criteria (an 

outlay, trip time, soothe) into reflection. For every automobile, according to the meticulous 

case, the outlay is the mainly momentous aspect, which can be described by means of the 

linguistic variable” Very High”, and the sureness of the outlay is also very sturdy, described 

by means of linguistic variable” Very High”. Also, the linguistic variable ” High” and the 

sureness of the outlay is also sturdy, described by means of linguistic variable ” High”., and 

the linguistic variable ” medium” and the sureness of the outlay is also medium, described by 

means of linguistic variable ” medium”. Likewise, the trip time and the soothe can also be 

described by means of linguistic beneath the idea of Z-number. The linguistic criteria 

assessment of the three motor vehicles can be gained described in Table 1. 

Table1. Linguistic criterion table. 

 Outlay (Rupees) Trip time(min) soothe 

Train ((9,10,12), (VH)) ((70,100,120), (M)) ((4,5,6), (H)) 

Auto ((20,24,25), (H)) ((60,70,100), (VH) ((7,8,10), (H)) 

Bus ((15,15,15), (H)) ((70,80,90), (H)) ((1,4,7), (H)) 

Using to the membership function, the linguistic erratic can be renewed to mathematical 

assessment, which is described as Table 2. 

 

 



16                                                             M. Joghataeea etc. /𝐼𝐽𝑀2𝐶, 13 -01 (2023) 01-18. 

 

Table2: Mathematical assessment table 

 Outlay (Rupees) Trip time(min) soothe 

Train ((9,10,12), (0.75,1,1)) ((70,100,120), 

(0.25,0.5,0.75)) 

((4,5,6), (0.5,0.75,1)) 

Auto ((20,24,25), 

(0.5,0.75,1)) 

((60,70,100), (0.75,1,1) ((7,8,10), 

(0,5,0.75,1)) 

Bus ((15,15,15), 

(0.5,0.75,1)) 

((70,80,90), (0.5,0.75,1)) ((1,4,7), (0.5,0.75,1)) 

Now, simplify the fuzzy information to evade convolution of exact operations in the 

assessment progression, which is described as Table 3. 

Table3: Modified decision matrix with Z-number 

 Outlay (Rupees) Trip time(min) soothe 

Train ((0.10,0.11,0.14), 

(0.75,1,1)) 

((0.16,0.23,0.27), 

(0.25,0.5,0.75)) 

((0.13,0.16,0.19), 

(0.5,0.75,1)) 

Auto ((0.23,0.27,0.28), 

(0.5,0.75,1)) 

((0.14,0.16,0.23), 

(0.75,1,1) 

((0.22,0.25,0.32), 

(0,5,0.75,1)) 

Bus ((0.17,0.17,0.17), 

(0.5,0.75,1)) 

((0.16,0.18,0.20), 

(0.5,0.75,1)) 

((0.03,0.13,0.22), 

(0.5,0.75,1)) 

According to Eqs. (4) and (6) we have: 

𝑚𝑎𝑥 𝑧 = (0.09,0.10,0.13)⊗ (𝑙1
𝑥 ,𝑚1

𝑥, 𝑢1
𝑥)⊕ (0.19,0.23,0.24)⊗ (𝑙2

𝑥,𝑚2
𝑥 , 𝑢2

𝑥)⊕ 

(0.14,0.14,0.14)⊗ (𝑙3
𝑥,𝑚3

𝑥, 𝑢3
𝑥) 

𝑠. 𝑡(0.11,0.16,0.18)⊗ (𝑙1
𝑥, 𝑚1

𝑥, 𝑢1
𝑥) ⊕ (0.13,0.15,0.22)⊗ (𝑙2

𝑥 ,𝑚2
𝑥, 𝑢2

𝑥)⊕ 

(0.11,0.15,0.17)⊗ (𝑙3
𝑥,𝑚3

𝑥, 𝑢3
𝑥) ≤ (0.48,0.72,0.97) 

(0.11,0.13,0.16)⊗ (𝑙1
𝑥,𝑚1

𝑥, 𝑢1
𝑥)⊕ (0.18,0.21,0.27)⊗ (𝑙2

𝑥, 𝑚2
𝑥, 𝑢2

𝑥) ⊕ 

(0.02,0.11,0.18)⊗ (𝑙3
𝑥,𝑚3

𝑥, 𝑢3
𝑥) ≤ (0.24,0.48,0.72) 

Hence: 

(𝑙1
𝑥 ,𝑚1

𝑥, 𝑢1
𝑥) = (𝑙3

𝑥 ,𝑚3
𝑥, 𝑢3

𝑥) = (0,0,0), (𝑙2
𝑥, 𝑚2

𝑥 , 𝑢2
𝑥) = (0.81,1.64,2.66) 

Solving based on the proposed aigorithm, we get the optimum solution as z= ((0.155, 0.379, 

0.639),0.75). where 0.75 is the center of gravity of the second component of the Z-number, 

which can be expressed as follows 

Z=((0.155,0.379,0.639),(0.65,0.75,0.85)). 
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The answer obtained in reference [25] is 0.65. 

The advantage of our method compared to Kang's method [15] is that Kang's method is not 

able to calculate 𝑧 by Z- numbers. Therefore, first, the problem of linear programming based 

on z-numbers becomes a real problem and then it solves the problem. But we use our proposed 

method to solve the problem based on z numbers so that the value of 𝑧 is based on Z numbers. 

5. Conclusion 

In this paper, a new method is represented to solve FZLP problems. The suggested Z-number-

based LP model is closer to real-world optimization problems because of its ability to more 

adequately capture imprecise and partially reliable data.in fact, in the multi-objective functions 

approach to solving the fuzzy Z-linear programming problems, each objective function 

converts into three real objective functions. For these three-objective problems, we used the 

FTP method for solving problems. The main advantage of the modified solution approach is 

that the obtained fuzzy optimal solution is a non-negative fuzzy number. Another interesting 

topic for future work is to develop the proposed approach for solving DEA models and supply 

chain with Z-number. 
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