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Abstract. Given any graph G, its square graph G2 has the same vertex set V (G), with
two vertices adjacent in G2 whenever they are at distance 1 or 2 in G. A set S ⊆ V (G) is
a 2-distance independent set of a graph G if the distance between every two vertices of S
is greater than 2. The 2-distance independence number α2(G) of G is the maximum cardi-
nality over all 2-distance independent sets in G. In this paper, we establish the 2-distance
independence number and 2-distance chromatic number for C3□C6□Cm, Cn□P3□P3 and
C4□C7□Cn where m ≡ 0 (mod 3) and n,m ⩾ 3.
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1. Introduction

Let G = (V,E) be a finite and simple graph. For any graph G, we denote the
vertex-set and the edge-set of G by V (G) and E(G), respectively. A proper vertex
k-coloring of a graph G is a mapping c : V (G) → {1, . . . , k}, with the property
that c(u) ̸= c(v) whenever uv ∈ E(G). The smallest k for which there exists
a k-coloring of G, called the chromatic number of G, is denoted by χ(G), see
[1, 7] for more details. The square of a graph G, denoted by G2, is a graph with
V (G) = V (G2), in which two vertices are adjacent if their distance in G is at
most two. A 2-distance coloring of G is a vertex coloring of G such that any two
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distinct vertices at distance less than or equal to 2 are assigned different colors.
The 2-distance chromatic number of a graph G is the minimum number of colors
necessary to have a 2-distance coloring of G, which is denoted by χ2(G). Hence
χ2(G) is equal to χ(G2). The 2-distance coloring of graphs was introduced by
Wegner in [16]. The problem of determining the chromatic number of the square
of particular graphs has attracted a lot of attention, with a particular focus on
the square of planar graphs (see, e.g., [4, 5, 8, 10, 15]). The Cartesian product
of graphs G1, G2, . . . , Gk is the graph G1□G2□ · · ·□Gk = □k

i=1Gi with vertex
set {(x1, x2, . . . , xk)|xi ∈ V (Gi)} and for which two vertices (x1, x2, . . . , xk) and
(y1, y2, . . . , yk) are adjacent whenever xiyi ∈ E(Gi) for exactly one index 1 ⩽ i ⩽ k
and xj = yj for each index1 ⩽ j ⩽ k that i ̸= j. The subgraph of G□H induced by
{u}×V (H) is isomorphic to H. It is called an H-fiber and is denoted by Hu. A set
S ⊆ V (G) is a k-distance independent set of a graphG if the distance between every
two vertices of S is greater than k. The k-distance independence number αk(G) of G
is the maximum cardinality over all k-distance independent sets in G. For k = 1, we
use αk(G) as α(G). There are many results for the chromatic number of the square
of the Cartesian product of tree, paths, and cycles (see, e.g., [2, 3, 6, 9, 11, 13]). Shao

et al. [12] established that the 2-distance chromatic number of G equals ⌈ |V (G)|
α(G2)

⌉

for G = Cm□Cn□Ck where k ⩾ 3 and (m,n) ∈ {(3, 3), (3, 4), (3, 5), (4, 4)} or k, m,
and n are all multiples of seven. Moreover, it is shown that the 2-distance chromatic
number of the three-dimensional square lattice is equal to seven and proved the
following theorems.

Theorem 1.1 [12] If j, k, l ⩾ 1, then

α2(C7j□C7k□C7l) = 49jkl.

Theorem 1.2 [12] If j, k, l ⩾ 1, then

χ2(C7j□C7k□C7l) = 7.

In this paper, as an extension of Theorems 1.1 and 1.2, we establish the 2-
distance independence number and 2-distance chromatic number for C3□C6□Cm,
Cn□P3□P3 and C4□C7□Cn where m ≡ 0 (mod 3) and n,m ⩾ 3.

2. Main results

The aim of this section is to find lower and upper bounds and exact val-
ues for the spcial cases 2-distance chromatic number of the families G =
{C3□C6□Cm, Cn□P3□P3, C4□C7□Cn where m ≡ 0 (mod 3) and n,m ⩾ 3.} The
following two lemmas are essential for proving the main theorems.
Let G be a graph and f be a proper 2-coloring of G. Since every color class under
f is a 2-independent set, we have the following lemma,

Lemma 2.1 If G is a graph, then χ2(G) ⩾ ⌈ |V (G)|
α(G2)

⌉.

Let H be a graph, m ⩾ 3 and f denote a proper t-coloring of (Cm□H)2.
We denote by fi,p, 0 ⩽ i ⩽ m − p and 1 ⩽ p ⩽ m, the restriction of f to
V (H i), . . . , V (H i+p−1). The following lemma is a natural generalization of [11,
Lemma 1].
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Lemma 2.2 Let m,n, p ⩾ 3, s ⩾ 1 and let f be a proper t-coloring of (Cm□H)2.
If f0,p is a proper t-coloring of (Cp□H)2, then

χ((Cm+(s−1)p□H)2) ⩽ t.

Proof Let f ′ : V (Cm+(s−1)p□H) −→ {1, 2, ..., k} be a function and f ′
i the restric-

tion of f ′ to V (H i). We define the function f ′ by

f ′
i =

{
fi i < m,

f(i−m)mod p i ⩾ m.

Consider first the vertex (j,m). In this case vertex (j,m) is adjacent to
{(j − l,m − 1); l ∈ {0, 1,−1}} and (j,m − 2) in the subgraph induced by
V (H0), ..., V (Hm−1), as illustrated in Figure 1. By definition f ′

i we have
f ′(j,m) = f(j, 0). Since f is a proper t-coloring of (Cm□H)2 and (j, 0)
is adjacent to {(j − l,m − 1); l ∈ 0, 1,−1} and (j,m − 2) in (Cn□H)2,
this case is settled. Similarly for any two adjacent vertices (x, y) and
(x′, y′) ∈ {(j,m+ 1), (j,m+ sp), (j,m+ sp+ 1), s ⩾ 1} of V (Cm+(s−1)p□H)2, we
have f ′(x, y) ̸= f ′(x′, y′) and can be proved analogously. Therefore the proof is
completed.

■

(j, 0) (j,m − 2)

(j − 1,m − 1)

(j,m − 1)

(j + 1,m − 1)

(j,m)

Figure 1. vertex-set of (Cm+(s−1)p□H)2 for s ⩾ 1.

Before presenting our main results we need to obtain the 2-distance independent
number of families G. We first mention two lemmas that need for proof of next
lemmas. Let H be a graph. If I is a d-distance independent set of Ck□H, then, for
i = 0, . . . , k − 1, we set Ii := I ∩ V (H i), that is, Ii is the subset of I induced by
the vertices of H i.

Lemma 2.3 [12] Let H be a graph, k, p ⩾ 3 and s ⩾ 1. If I is a d-distance
independent set of Ck□H and I0∪ I1∪· · ·∪ Ip−1 is a d-distance independent set of
Cp□H such that |I0|+ |I1|+ · · ·+ |Ip−1| = l, then αd(Ck+(s−1)p□H) ⩾ |I|+(s−1)l.

Lemma 2.4 [12] Let H be a graph, k ⩾ 3, k ⩾ q ⩾ 1 and d ⩾ 1. Then αd(Ck□H) ⩽
kαd(Pq□H)

q
.

Lemma 2.5 If k is an integer, then α2(C3□C6□C3k) = 6k.
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Proof By computer calculations, we have α2(C3□C6□C3) = 6 and
α2(C3□C6□P3) = 6. Thus by Lemma 2.4 and since α2(C3□C6□P3) = 6 , we
have,

α2(C3□C6□C3k) ⩽
3kα2(C3□C6□P3)

3
= 6k.

To prove the lower bound, it is enough to find a 2-independent set with cardinality
6k for graph (C3□C6□C3k).
We define S as follows,

S = {(i (mod 6), i (mod 3), i), (i+ 3 (mod 6), i (mod 3), i), i = 0, 1, . . . , 3k − 1}.

It is obvious that the cardinality of set S is 6k. We show that S is a 2-distance
independent set of (C3□C6□C3k). Let A = (x1, x2, x3) and B = (x′1, x

′
2, x

′
3) be two

arbitrary vertices in S. We show that the distance between them is greater than 2.
Then we consider the following cases.
Case 1: If x3 = x′3, then by the definition of Cartesian product, |A − B| = |x1 −
x′1|+ |x2 − x′2| = 3. Thus the distance between A and B is greater than 2.
Case 2: If x3 − x′3 = 1, then there are 2 cases for A and B vertices.

(1) If both A and B are (i (mod 6), i (mod 3), i), or (i+ 3 (mod 6), i (mod 3), i)
then |A−B| = |x1 − x′1|+ |x2 − x′2|+ 1 ⩾ 3.

(2) If A is (i (mod 6), i (mod 3), i), and B is (i + 3 (mod 6), i (mod 3), i) then
|A−B| = |x1 − x′1|+ |x2 − x′2|+ 1 ⩾ 6.

Case 3: If x3 − x′3 = 2, it is clear that the distance between A and B is equal or
greater than 3. This implies that α2(C3□C6□C3k) ⩾ 6k and the proof is completed.
■

Lemma 2.6 α2(C3□C6k) = 3k and α2(C3□P6k) = 3k.

Proof Since α2(C3□P6) = 3, then

α2(C3□P6k) ⩽ α2(C3□P6)× k = 3k.

To reach the lower bounds, we define the set S as follows,

S = {(6i, 0), (1, 2 + 6i), (2, 4 + 6i)|i = 0, 1, · · · , k − 1}.

By definition of the Cartesian product, if (g, h) and (g′, h′) are vertices of S,
dG□H((g, h), (g′, h′)) = dG(g, g

′) + dH(h, h′) ⩾ 3, hence S is a 2-distance inde-
pendent set of (C3□P6k) with cardinality 3k. Therefore α2(C3□P6k) ⩾ 3k and this
completes the proof of the first statement. To prove the second part, by Lemma
2.4 we have,

α2(C3□C6k) ⩽ α2(C3□P6k) ⩽ kα2(C3□P6) = 3k.

Also, since α2(C3□C6) = 3, Lemma 2.3 implies

α2(C3□C6k) ⩾ 3 + (s− 1)× 3 = 3s.

■

Lemma 2.7 Let G = Ck□P3□P3 and k = 3t, then α2(G) = 5t.
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Proof We obtain,

α2(P3□P3□P3) = 5, α2(C3□P3□P3) = 5, α2(C6□P3□P3) = 10, α2(C9□P3□P3) = 15

by a computer search. Since k = 3t, then Lemma 2.4 implies

α2(C3t□P3□P3) ⩽ α2(P3t□P3□P3) ⩽ tα2(P3□P3□P3) = 5t.

In order to prove the lower bound when k = 3t, from Lemma 2.3 and since
α2(C3□P3□P3) = 5, depicted in Fig. 2 we have,

α2(C3t□P3□P3) ⩾ 5 + (t− 1)5 = 5t.

This assertion completes the proof. ■

Figure 2. 5 vertices of 2-distance independent set of (C3□P3□P3)

Lemma 2.8 If G = C4□C7□Cn, n = 4k then α2(G) = 14k

Proof Using a computer program, we have α2(C4□C7) = 4, α2(C4□C7□P4) = 14,
α2(C4□C7□C4) = 14. Since n = 4k, then by Lemma 2.4 we have

α2(C4□C7□C4k) ⩽ α2(C4□C7□P4k) ⩽ kα2(C4□C7□P4) = 14k.

To reach the lower bounds, we found fourteen vertices of 2-distance independent
set of (C4□C7□C4) depicted in Fig. 3. Therefore, by Lemma 2.3 we have,

Figure 3. 14 vertices of a 2− distance independent set of(C4□C7□C4)

α2(C4□C7□C4k) = α2(C4□C7□C4+(k−1)4) ⩾ |I|+(k−1)|i| = 14+(k−1)14 = 14k,

which completes our proof. ■

Given two integers x and y, let S(x, y) denote the set of all nonnegative integer
combinations of x and y defined as follows,

S(x, y) = {αx+ βy : α, β are nonnegative integers}.

Lemma 2.9 [14] Let x and y be relatively prime integers greater than 1, then
n ∈ S(x, y) for all n ⩾ (x− 1)(y − 1).

Theorem 2.10 If k ⩾ 1, then

χ(C3□C6□C3k)
2 = 9.
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Proof Fig. 4 presents a proper 9-coloring of (C3□C6□C3)
2. By Lemmas 2.2 and

1 4 2 3 6 5 7 3 6 8 9 2 8 9 5 1 4 3
2 5 1 4 8 7 6 8 9 7 5 1 4 7 3 6 2 9
3 6 7 5 1 4 9 1 4 2 3 8 5 2 8 9 7 6

Figure 4. A proper 9− coloring of χ2(C3□C6□C3).

2.9 we have,

χ((C3□C6)□C3+(k−1)3)
2 = χ((C3□C6)□C3k)

2 ⩽ 9,

where k ⩾ 1. It is sufficient to show that χ(C3□C6□C3k)
2 ⩾ 9. By Lemmas 2.1

and 2.5, we have,

χ2(C3□C6□C3k) ⩾ ⌈V (C3□C6□C3k)⧸α2(C3□C6□C3k)⌉ = ⌈(3×6×3k)⧸6k⌉ = 9.

■

Theorem 2.11 If k ⩾ 1, then χ2(Cn□P3□P3) ⩾ 6 if n = 3k and

χ2(Cn□P3□P3) ⩽


7 n = 3k,

8 n = 3k + 1,

9 n = 3k + 2.

Proof Let n = 3k, by Lemmas 2.1 and 2.7 we have,

χ2(C3k□P3□P3) ⩾ ⌈V (C3k□P3□P3)⧸α2(C3k□P3□P3)⌉ = ⌈3k × 3× 3⧸5k⌉ = 6.

For an upper bound, Fig. 5 presents a proper 7-coloring of (C3□P3□P3)
2. By

1 2 3 3 4 5 5 6 1
4 5 6 2 1 7 7 3 2
3 7 1 5 6 3 1 4 5

Figure 5. A proper 7− coloring of χ2(C3□P3□P3).

Lemmas 2.2 and 2.9, we have χ2(C3k□P3□P3) ⩽ 7. Therefore,

6 ⩽ χ2(C3k□P3□P3) ⩽ 7.

A proper 8-coloring of (C4□P3□P3)
2 is illustrated in Fig. 6 such that the leftmost

three blocks induce a proper 8-coloring of (C3□P3□P3)
2. Thus, for n = 3k+ 1, by

Lemmas 2.2 and 2.9, we get χ2(C3k+1□P3□P3) ⩽ 8.
Figure 7 presents a proper 9-coloring of (C5□P3□P3)

2 and the leftmost three
blocks of Fig. 7 induce a proper 9-coloring of (C3□P3□P3)

2. Hence, by Lemmas
2.2 and 2.9, we have

χ2(C3k+2□P3□P3) ⩽ 9,
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1 2 3 3 4 1 5 6 8 8 7 5
4 5 6 2 8 7 7 3 2 6 1 4
8 7 1 5 6 3 1 4 5 3 2 8

Figure 6. A proper 8− coloring of χ2(C4□P3□P3).

whenever n = 3k + 2. ■

1 2 9 4 5 6 9 3 8 6 4 1 8 7 5
3 4 7 6 7 2 8 1 5 7 2 3 5 6 8
2 9 6 1 3 8 5 7 4 3 8 9 4 1 2

Figure 7. A proper 9− coloring of χ2(C5□P3□P3).

Theorem 2.12 If k ⩾ 1 then, χ2(C4□C7□Cn) = 8 if n = 4k and,

χ2(C4□C7□Cn) ⩽


11 n = 4k + 1, k ̸= 1,

11 n = 4k + 2,

12 n = 4k + 3.

Proof Let n = 4k, by Lemma 2.1 and Lemma 2.8 we have,

χ2(C4□C7□Cn) ⩾ ⌈V (C4□C7□Cn)⧸α2(C4□C7□Cn)⌉ = ⌈4× 7× 4k⧸14k⌉ = 8

Fig. 8 presents a proper 8-coloring of (C4□C7□C4)
2, by Lemmas 2.2 and 2.9 we

have χ2(C4□C7□Cn) ⩽ 8, therefore,

χ2(C4□C7□Cn) = 8.

Figure 9 presents a proper 11-coloring of (C4□C7□C9)
2 such that the leftmost

1 2 3 4 6 5 8 7 3 4 1 2 8 7 6 5
3 4 1 2 8 7 6 5 1 2 3 4 6 5 8 7
5 6 7 8 2 1 4 3 7 8 5 6 4 3 2 1
1 2 3 4 6 5 8 7 3 4 1 2 8 7 6 5
3 4 1 2 8 7 6 5 1 2 3 4 6 5 8 7
5 6 7 8 2 1 4 3 7 8 5 6 4 3 2 1
7 8 5 6 4 3 2 1 5 6 7 8 2 1 4 3

Figure 8. A proper 8− coloring of χ2(C4□C7□C4).

four blocks induce a proper 11-coloring of (C4□C7□C4)
2. Thus, by Lemmas 2.2

and 2.9, we get for t > 1,

χ2(C4□C7□C5+4s) = χ2(C4□C7□C1+4t) ⩽ 11.

A proper 11-coloring of (C4□C7□C6)
2 is illustrated in Fig. 10 such that the left-

most three blocks of Fig. 10 induce a proper 11-coloring of (C4□C7□C4)
2. Thus,

for n = 4k + 2, by Lemmas 2.2 and 2.9, we get

χ2(C4□C7□Cn) ⩽ 11.
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1 10 11 4 6 9 8 10 3 4 1 2 8 7 6 5 1 2 3 4 6 5 8 7 9 4 1 2 8 11 6 5 3 5 2 7
9 4 1 2 8 11 6 5 1 2 3 4 6 5 8 7 3 4 1 2 8 7 6 5 1 2 10 4 10 9 8 7 11 7 3 6
5 6 7 11 10 1 9 3 7 8 5 6 4 3 2 1 5 6 7 8 2 1 4 3 7 8 5 6 4 3 2 1 2 10 4 8
1 2 10 4 6 5 8 7 3 4 1 2 8 7 6 5 1 2 3 4 6 5 8 7 3 4 9 2 11 7 6 5 9 8 1 3
3 4 11 9 8 7 6 5 1 2 3 4 6 5 8 7 3 4 1 2 8 7 6 5 1 2 3 4 6 9 8 10 11 5 2 7
5 9 7 8 11 1 4 3 7 8 5 6 4 3 2 1 5 6 7 8 2 1 4 3 7 8 5 6 4 3 11 9 2 6 10 1
7 8 5 6 4 3 2 1 5 6 7 8 2 1 4 3 7 8 5 6 4 3 2 1 5 6 7 8 9 2 4 3 10 1 9 11

Figure 9. A proper 11− coloring of χ2(C4□C7□C9).

A proper 12-coloring of (C4□C7□C7)
2 is illustrated in Fig. 11 such that the left-

1 2 3 4 6 5 8 7 3 4 1 2 8 7 6 5 4 3 2 1 5 6 7 8
10 4 1 2 8 7 6 5 1 2 3 4 6 5 8 7 2 1 9 10 9 8 5 6
5 9 10 8 11 1 4 3 7 8 5 6 4 3 2 1 9 6 4 11 3 10 2 7
1 2 3 4 10 5 8 7 3 4 10 2 8 7 6 9 10 5 1 3 6 4 9 5
3 11 1 2 8 7 6 5 1 2 3 11 6 5 8 7 2 9 11 4 9 8 10 6
5 6 7 8 2 1 4 3 7 8 5 6 9 3 2 1 8 7 6 5 1 2 3 4
7 8 5 6 4 3 2 1 5 6 7 8 2 1 4 3 6 5 8 7 3 4 1 2

Figure 10. A proper 11− coloring of χ2(C4□C7□C6).

most four blocks of Fig. 11 induce a proper 12-coloring of (C4□C7□C4)
2. Thus, for

n = 4k + 3, by Lemmas 2.2 and 2.9 we have,

χ2(C4□C7□Cn) ⩽ 12.

This assertion completes the proof. ■

1 10 3 4 6 5 8 7 3 4 1 2 8 7 6 5 1 2 3 4 11 5 8 7 3 7 9 12
9 4 1 2 8 7 9 5 1 2 3 4 6 5 8 7 3 4 1 2 8 9 10 5 10 11 6 8
5 6 7 11 2 1 4 3 7 8 6 5 4 3 2 1 5 6 7 10 2 1 4 3 4 3 5 9
1 10 3 4 9 5 10 7 3 4 1 2 8 7 6 5 1 2 3 4 9 5 11 7 6 10 2 8
3 11 1 10 8 7 9 5 1 2 3 4 6 5 8 7 3 10 1 2 8 7 10 5 2 9 4 6
9 6 7 8 2 1 4 3 7 8 5 6 4 3 2 1 5 6 7 8 10 1 4 3 7 5 11 2
11 8 9 6 4 3 2 1 5 6 7 8 2 1 4 3 7 8 5 6 4 3 11 9 6 2 10 5

Figure 11. A proper 12− coloring of χ2(C4□C7□C7).

The following theorem summarizes the above discussion.

Theorem 2.13 Let G = Cm□Cn□Ck if k ⩾ 1 and (m,n, k) ∈ S =
{(3, 6, 3t), (4, 7, 4t), t ⩾ 1} then,

χ2(G) = ⌈ |V (G)|
α2(G)

⌉.
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[7] S. Klavžar and M. Tavakoli, Dominated and dominator colorings over (edge) corona and hierarchical
products, Appl. Math. Comput., 390 (2021) 125647.

[8] K. W. Lih and W. Wang, Coloring the square of an outerplanar graph, Taiwanese J. Math., 10
(2006) 1015–1023.

[9] T. Manjula and R. Rajeswari, Domiator chromatic number of some graphs, International Journal of
Pure and Applied Mathematics, 119 (2018) 787–795.

[10] M. Molloy and M. R. Salavatipour, A bound on the chromatic number of the square of a planar
graph, J. Combin. Theory Ser. B , 94 (2) (2005) 189–213.

[11] Z. Shao and A. Vesel, A note on the chromatic number of the square of the Cartesian product of
two cycles, Discrete Math., 313 (9) (2013) 999–1001.

[12] Z. Shao, A. Vesel and J. Xu , The k-distance independence number and 2-distance chromatic number
of Cartesian products of cycles, Bull. Malays. Math. Sci. Soc., 41 (2016) 1377–1391.

[13] E. Sopena and J. Wu, Coloring the square of the Cartesian product of two cycles, Discrete Math.,
310 (2010) 2327–2333.

[14] J. J. Sylvester, Mathematical questions with their solutions, Educ. Times, 41 (1884) 171–178.
[15] J. Van den Heuvel and S. McGuinness, Coloring the square of a planar graph, Probab. Engrg. Inform.

Sci. J. Graph Theory, 42 (2002) 110–124.
[16] G. Wegner, Graphs with given diameter and a colouring problem, Technical Report, University of

Dortmund, (1977).


