The Chromatic Number of the Square of the Cartesian Product of Cycles and Paths

S. S. Hesan ${ }^{\text {a }}$, F. Rahbarnia ${ }^{\text {a,* }}$ and M. Tavakoli ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Applied Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran.

Abstract

Given any graph G, its square graph G^{2} has the same vertex set $V(G)$, with two vertices adjacent in G^{2} whenever they are at distance 1 or 2 in G. A set $S \subseteq V(G)$ is a 2-distance independent set of a graph G if the distance between every two vertices of S is greater than 2. The 2-distance independence number $\alpha_{2}(G)$ of G is the maximum cardinality over all 2-distance independent sets in G. In this paper, we establish the 2-distance independence number and 2-distance chromatic number for $C_{3} \square C_{6} \square C_{m}, C_{n} \square P_{3} \square P_{3}$ and $C_{4} \square C_{7} \square C_{n}$ where $m \equiv 0(\bmod 3)$ and $n, m \geqslant 3$.

Received: 12 March 2022, Revised: 25 April 2022, Accepted: 12 August 2022.

Keywords: 2-Distance coloring; Chromatic number; Cartesian product; 2-Distance independent set.

AMS Subject Classification: 05C15, 05C69, 05C76, 05C38.

Index to information contained in this paper
1 Introduction
2 Main results

1. Introduction

Let $G=(V, E)$ be a finite and simple graph. For any graph G, we denote the vertex-set and the edge-set of G by $V(G)$ and $E(G)$, respectively. A proper vertex k-coloring of a graph G is a mapping $c: V(G) \rightarrow\{1, \ldots, k\}$, with the property that $c(u) \neq c(v)$ whenever $u v \in E(G)$. The smallest k for which there exists a k-coloring of G, called the chromatic number of G, is denoted by $\chi(G)$, see $[1,7]$ for more details. The square of a graph G, denoted by G^{2}, is a graph with $V(G)=V\left(G^{2}\right)$, in which two vertices are adjacent if their distance in G is at most two. A 2-distance coloring of G is a vertex coloring of G such that any two

[^0]distinct vertices at distance less than or equal to 2 are assigned different colors. The 2-distance chromatic number of a graph G is the minimum number of colors necessary to have a 2 -distance coloring of G, which is denoted by $\chi_{2}(G)$. Hence $\chi_{2}(G)$ is equal to $\chi\left(G^{2}\right)$. The 2-distance coloring of graphs was introduced by Wegner in [16]. The problem of determining the chromatic number of the square of particular graphs has attracted a lot of attention, with a particular focus on the square of planar graphs (see, e.g., $[4,5,8,10,15]$). The Cartesian product of graphs $G_{1}, G_{2}, \ldots, G_{k}$ is the graph $G_{1} \square G_{2} \square \cdots \square G_{k}=\square_{i=1}^{k} G_{i}$ with vertex set $\left\{\left(x_{1}, x_{2}, \ldots, x_{k}\right) \mid x_{i} \in V\left(G_{i}\right)\right\}$ and for which two vertices $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ are adjacent whenever $x_{i} y_{i} \in E\left(G_{i}\right)$ for exactly one index $1 \leqslant i \leqslant k$ and $x_{j}=y_{j}$ for each index $1 \leqslant j \leqslant k$ that $i \neq j$. The subgraph of $G \square H$ induced by $\{u\} \times V(H)$ is isomorphic to H. It is called an H-fiber and is denoted by H^{u}. A set $S \subseteq V(G)$ is a k-distance independent set of a graph G if the distance between every two vertices of S is greater than k. The k-distance independence number $\alpha_{k}(G)$ of G is the maximum cardinality over all k-distance independent sets in G. For $k=1$, we use $\alpha_{k}(G)$ as $\alpha(G)$. There are many results for the chromatic number of the square of the Cartesian product of tree, paths, and cycles (see, e.g., $[2,3,6,9,11,13]$). Shao et al. [12] established that the 2-distance chromatic number of G equals $\left\lceil\frac{|V(G)|}{\alpha\left(G^{2}\right)}\right\rceil$ for $G=C_{m} \square C_{n} \square C_{k}$ where $k \geqslant 3$ and $(m, n) \in\{(3,3),(3,4),(3,5),(4,4)\}$ or k, m, and n are all multiples of seven. Moreover, it is shown that the 2 -distance chromatic number of the three-dimensional square lattice is equal to seven and proved the following theorems.

Theorem 1.1 [12] If $j, k, l \geqslant 1$, then

$$
\alpha_{2}\left(C_{7 j} \square C_{7 k} \square C_{7 l}\right)=49 j k l .
$$

Theorem 1.2 [12] If $j, k, l \geqslant 1$, then

$$
\chi_{2}\left(C_{7 j} \square C_{7 k} \square C_{7 l}\right)=7 .
$$

In this paper, as an extension of Theorems 1.1 and 1.2 , we establish the 2distance independence number and 2-distance chromatic number for $C_{3} \square C_{6} \square C_{m}$, $C_{n} \square P_{3} \square P_{3}$ and $C_{4} \square C_{7} \square C_{n}$ where $m \equiv 0(\bmod 3)$ and $n, m \geqslant 3$.

2. Main results

The aim of this section is to find lower and upper bounds and exact values for the spcial cases 2-distance chromatic number of the families $G=$ $\left\{C_{3} \square C_{6} \square C_{m}, C_{n} \square P_{3} \square P_{3}, C_{4} \square C_{7} \square C_{n}\right.$ where $m \equiv 0(\bmod 3)$ and $n, m \geqslant 3$.\} The following two lemmas are essential for proving the main theorems.
Let G be a graph and f be a proper 2 -coloring of G. Since every color class under f is a 2 -independent set, we have the following lemma,
Lemma 2.1 If G is a graph, then $\chi_{2}(G) \geqslant\left\lceil\frac{|V(G)|}{\alpha\left(G^{2}\right)}\right\rceil$.
Let H be a graph, $m \geqslant 3$ and f denote a proper t-coloring of $\left(C_{m} \square H\right)^{2}$. We denote by $f_{i, p}, 0 \leqslant i \leqslant m-p$ and $1 \leqslant p \leqslant m$, the restriction of f to $V\left(H^{i}\right), \ldots, V\left(H^{i+p-1}\right)$. The following lemma is a natural generalization of [11, Lemma 1].

Lemma 2.2 Let $m, n, p \geqslant 3, s \geqslant 1$ and let f be a proper t-coloring of $\left(C_{m} \square H\right)^{2}$. If $f_{0, p}$ is a proper t-coloring of $\left(C_{p} \square H\right)^{2}$, then

$$
\chi\left(\left(C_{m+(s-1) p} \square H\right)^{2}\right) \leqslant t .
$$

Proof Let $f^{\prime}: V\left(C_{m+(s-1) p} \square H\right) \longrightarrow\{1,2, \ldots, k\}$ be a function and f_{i}^{\prime} the restriction of f^{\prime} to $V\left(H^{i}\right)$. We define the function f^{\prime} by

$$
f_{i}^{\prime}= \begin{cases}f_{i} & i<m \\ f_{(i-m) \bmod p} & i \geqslant m\end{cases}
$$

Consider first the vertex (j, m). In this case vertex (j, m) is adjacent to $\{(j-l, m-1) ; l \in\{0,1,-1\}\}$ and $(j, m-2)$ in the subgraph induced by $V\left(H^{0}\right), \ldots, V\left(H^{m-1}\right)$, as illustrated in Figure 1. By definition f_{i}^{\prime} we have $f^{\prime}(j, m)=f(j, 0)$. Since f is a proper t-coloring of $\left(C_{m} \square H\right)^{2}$ and $(j, 0)$ is adjacent to $\{(j-l, m-1) ; l \in 0,1,-1\}$ and $(j, m-2)$ in $\left(C_{n} \square H\right)^{2}$, this case is settled. Similarly for any two adjacent vertices (x, y) and $\left(x^{\prime}, y^{\prime}\right) \in\{(j, m+1),(j, m+s p),(j, m+s p+1), s \geqslant 1\}$ of $V\left(C_{m+(s-1) p} \square H\right)^{2}$, we have $f^{\prime}(x, y) \neq f^{\prime}\left(x^{\prime}, y^{\prime}\right)$ and can be proved analogously. Therefore the proof is completed.

Figure 1. vertex-set of $\left(C_{m+(s-1) p} \square H\right)^{2}$ for $s \geqslant 1$.

Before presenting our main results we need to obtain the 2-distance independent number of families G. We first mention two lemmas that need for proof of next lemmas. Let H be a graph. If I is a d-distance independent set of $C_{k} \square H$, then, for $i=0, \ldots, k-1$, we set $I^{i}:=I \cap V\left(H^{i}\right)$, that is, I^{i} is the subset of I induced by the vertices of H^{i}.

Lemma 2.3 [12] Let H be a graph, $k, p \geqslant 3$ and $s \geqslant 1$. If I is a d-distance independent set of $C_{k} \square H$ and $I^{0} \cup I^{1} \cup \cdots \cup I^{p-1}$ is a d-distance independent set of $C_{p} \square H$ such that $\left|I^{0}\right|+\left|I^{1}\right|+\cdots+\left|I^{p-1}\right|=l$, then $\alpha_{d}\left(C_{k+(s-1) p} \square H\right) \geqslant|I|+(s-1) l$.
Lemma 2.4 [12] Let H be a graph, $k \geqslant 3, k \geqslant q \geqslant 1$ and $d \geqslant 1$. Then $\alpha_{d}\left(C_{k} \square H\right) \leqslant$ $\frac{k \alpha_{d}\left(P_{q} \square H\right)}{q}$.

Lemma 2.5 If k is an integer, then $\alpha_{2}\left(C_{3} \square C_{6} \square C_{3 k}\right)=6 k$.

Proof By computer calculations, we have $\alpha_{2}\left(C_{3} \square C_{6} \square C_{3}\right)=6$ and $\alpha_{2}\left(C_{3} \square C_{6} \square P_{3}\right)=6$. Thus by Lemma 2.4 and since $\alpha_{2}\left(C_{3} \square C_{6} \square P_{3}\right)=6$, we have,

$$
\alpha_{2}\left(C_{3} \square C_{6} \square C_{3 k}\right) \leqslant \frac{3 k \alpha_{2}\left(C_{3} \square C_{6} \square P_{3}\right)}{3}=6 k .
$$

To prove the lower bound, it is enough to find a 2 -independent set with cardinality $6 k$ for graph $\left(C_{3} \square C_{6} \square C_{3 k}\right)$.

We define S as follows,

$$
S=\{(i(\bmod 6), i(\bmod 3), i),(i+3(\bmod 6), i(\bmod 3), i), \quad i=0,1, \ldots, 3 k-1\}
$$

It is obvious that the cardinality of set S is $6 k$. We show that S is a 2-distance independent set of $\left(C_{3} \square C_{6} \square C_{3 k}\right)$. Let $A=\left(x_{1}, x_{2}, x_{3}\right)$ and $B=\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$ be two arbitrary vertices in S. We show that the distance between them is greater than 2 . Then we consider the following cases.
Case 1: If $x_{3}=x_{3}^{\prime}$, then by the definition of Cartesian product, $|A-B|=\mid x_{1}-$ $x_{1}^{\prime}\left|+\left|x_{2}-x_{2}^{\prime}\right|=3\right.$. Thus the distance between A and B is greater than 2 .
Case 2: If $x_{3}-x_{3}^{\prime}=1$, then there are 2 cases for A and B vertices.
(1) If both A and B are $(i(\bmod 6), i(\bmod 3), i)$, or $(i+3(\bmod 6), i(\bmod 3), i)$ then $|A-B|=\left|x_{1}-x_{1}^{\prime}\right|+\left|x_{2}-x_{2}^{\prime}\right|+1 \geqslant 3$.
(2) If A is $(i(\bmod 6), i(\bmod 3), i)$, and B is $(i+3(\bmod 6), i(\bmod 3), i)$ then $|A-B|=\left|x_{1}-x_{1}^{\prime}\right|+\left|x_{2}-x_{2}^{\prime}\right|+1 \geqslant 6$.

Case 3: If $x_{3}-x_{3}^{\prime}=2$, it is clear that the distance between A and B is equal or greater than 3. This implies that $\alpha_{2}\left(C_{3} \square C_{6} \square C_{3 k}\right) \geqslant 6 k$ and the proof is completed.

Lemma $2.6 \alpha_{2}\left(C_{3} \square C_{6 k}\right)=3 k$ and $\alpha_{2}\left(C_{3} \square P_{6 k}\right)=3 k$.
Proof Since $\alpha_{2}\left(C_{3} \square P_{6}\right)=3$, then

$$
\alpha_{2}\left(C_{3} \square P_{6 k}\right) \leqslant \alpha_{2}\left(C_{3} \square P_{6}\right) \times k=3 k .
$$

To reach the lower bounds, we define the set S as follows,

$$
S=\{(6 i, 0),(1,2+6 i),(2,4+6 i) \mid i=0,1, \cdots, k-1\} .
$$

By definition of the Cartesian product, if (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are vertices of S, $d_{G \square H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=d_{G}\left(g, g^{\prime}\right)+d_{H}\left(h, h^{\prime}\right) \geqslant 3$, hence S is a 2-distance independent set of $\left(C_{3} \square P_{6 k}\right)$ with cardinality $3 k$. Therefore $\alpha_{2}\left(C_{3} \square P_{6 k}\right) \geqslant 3 k$ and this completes the proof of the first statement. To prove the second part, by Lemma 2.4 we have,

$$
\alpha_{2}\left(C_{3} \square C_{6 k}\right) \leqslant \alpha_{2}\left(C_{3} \square P_{6 k}\right) \leqslant k \alpha_{2}\left(C_{3} \square P_{6}\right)=3 k .
$$

Also, since $\alpha_{2}\left(C_{3} \square C_{6}\right)=3$, Lemma 2.3 implies

$$
\alpha_{2}\left(C_{3} \square C_{6 k}\right) \geqslant 3+(s-1) \times 3=3 s
$$

Lemma 2.7 Let $G=C_{k} \square P_{3} \square P_{3}$ and $k=3 t$, then $\alpha_{2}(G)=5 t$.

Proof We obtain,
$\alpha_{2}\left(P_{3} \square P_{3} \square P_{3}\right)=5, \alpha_{2}\left(C_{3} \square P_{3} \square P_{3}\right)=5, \alpha_{2}\left(C_{6} \square P_{3} \square P_{3}\right)=10, \alpha_{2}\left(C_{9} \square P_{3} \square P_{3}\right)=15$
by a computer search. Since $k=3 t$, then Lemma 2.4 implies

$$
\alpha_{2}\left(C_{3 t} \square P_{3} \square P_{3}\right) \leqslant \alpha_{2}\left(P_{3 t} \square P_{3} \square P_{3}\right) \leqslant t \alpha_{2}\left(P_{3} \square P_{3} \square P_{3}\right)=5 t
$$

In order to prove the lower bound when $k=3 t$, from Lemma 2.3 and since $\alpha_{2}\left(C_{3} \square P_{3} \square P_{3}\right)=5$, depicted in Fig. 2 we have,

$$
\alpha_{2}\left(C_{3 t} \square P_{3} \square P_{3}\right) \geqslant 5+(t-1) 5=5 t
$$

This assertion completes the proof.

Figure 2. 5 vertices of 2-distance independent set of ($C_{3} \square P_{3} \square P_{3}$)

Lemma 2.8 If $G=C_{4} \square C_{7} \square C_{n}, n=4 k$ then $\alpha_{2}(G)=14 k$
Proof Using a computer program, we have $\alpha_{2}\left(C_{4} \square C_{7}\right)=4, \alpha_{2}\left(C_{4} \square C_{7} \square P_{4}\right)=14$, $\alpha_{2}\left(C_{4} \square C_{7} \square C_{4}\right)=14$. Since $n=4 k$, then by Lemma 2.4 we have

$$
\alpha_{2}\left(C_{4} \square C_{7} \square C_{4 k}\right) \leqslant \alpha_{2}\left(C_{4} \square C_{7} \square P_{4 k}\right) \leqslant k \alpha_{2}\left(C_{4} \square C_{7} \square P_{4}\right)=14 k .
$$

To reach the lower bounds, we found fourteen vertices of 2-distance independent set of $\left(C_{4} \square C_{7} \square C_{4}\right)$ depicted in Fig. 3. Therefore, by Lemma 2.3 we have,

Figure 3. 14 vertices of a $2-$ distance independent set of $\left(C_{4} \square C_{7} \square C_{4}\right)$
$\alpha_{2}\left(C_{4} \square C_{7} \square C_{4 k}\right)=\alpha_{2}\left(C_{4} \square C_{7} \square C_{4+(k-1) 4}\right) \geqslant|I|+(k-1)|i|=14+(k-1) 14=14 k$, which completes our proof.

Given two integers x and y, let $S(x, y)$ denote the set of all nonnegative integer combinations of x and y defined as follows,

$$
S(x, y)=\{\alpha x+\beta y: \alpha, \beta \text { are nonnegative integers }\}
$$

Lemma 2.9 [14] Let x and y be relatively prime integers greater than 1, then $n \in S(x, y)$ for all $n \geqslant(x-1)(y-1)$.

Theorem 2.10 If $k \geqslant 1$, then

$$
\chi\left(C_{3} \square C_{6} \square C_{3 k}\right)^{2}=9
$$

Proof Fig. 4 presents a proper 9-coloring of $\left(C_{3} \square C_{6} \square C_{3}\right)^{2}$. By Lemmas 2.2 and

$$
\begin{aligned}
& 142365 \\
& 25146892 \\
& 51495143 \\
& 367514
\end{aligned} 91423855758976
$$

Figure 4. A proper $9-$ coloring of $\chi_{2}\left(C_{3} \square C_{6} \square C_{3}\right)$.
2.9 we have,

$$
\chi\left(\left(C_{3} \square C_{6}\right) \square C_{3+(k-1) 3}\right)^{2}=\chi\left(\left(C_{3} \square C_{6}\right) \square C_{3 k}\right)^{2} \leqslant 9
$$

where $k \geqslant 1$. It is sufficient to show that $\chi\left(C_{3} \square C_{6} \square C_{3 k}\right)^{2} \geqslant 9$. By Lemmas 2.1 and 2.5 , we have,

$$
\chi_{2}\left(C_{3} \square C_{6} \square C_{3 k}\right) \geqslant\left\lceil V\left(C_{3} \square C_{6} \square C_{3 k}\right) / \alpha_{2}\left(C_{3} \square C_{6} \square C_{3 k}\right)\right\rceil=\lceil(3 \times 6 \times 3 k) / 6 k\rceil=9
$$

Theorem 2.11 If $k \geqslant 1$, then $\chi_{2}\left(C_{n} \square P_{3} \square P_{3}\right) \geqslant 6$ if $n=3 k$ and

$$
\chi_{2}\left(C_{n} \square P_{3} \square P_{3}\right) \leqslant \begin{cases}7 & n=3 k \\ 8 & n=3 k+1 \\ 9 & n=3 k+2 .\end{cases}
$$

Proof Let $n=3 k$, by Lemmas 2.1 and 2.7 we have,

$$
\chi_{2}\left(C_{3 k} \square P_{3} \square P_{3}\right) \geqslant\left\lceil V\left(C_{3 k} \square P_{3} \square P_{3}\right) / \alpha_{2}\left(C_{3 k} \square P_{3} \square P_{3}\right)\right\rceil=\lceil 3 k \times 3 \times 3 / 5 k\rceil=6 .
$$

For an upper bound, Fig. 5 presents a proper 7 -coloring of $\left(C_{3} \square P_{3} \square P_{3}\right)^{2}$. By

$$
\begin{array}{lll}
123 & 345 & 561 \\
456 & 217 & 732 \\
371 & 563 & 145
\end{array}
$$

Figure 5. A proper $7-$ coloring of $\chi_{2}\left(C_{3} \square P_{3} \square P_{3}\right)$.
Lemmas 2.2 and 2.9, we have $\chi_{2}\left(C_{3 k} \square P_{3} \square P_{3}\right) \leqslant 7$. Therefore,

$$
6 \leqslant \chi_{2}\left(C_{3 k} \square P_{3} \square P_{3}\right) \leqslant 7
$$

A proper 8-coloring of $\left(C_{4} \square P_{3} \square P_{3}\right)^{2}$ is illustrated in Fig. 6 such that the leftmost three blocks induce a proper 8 -coloring of $\left(C_{3} \square P_{3} \square P_{3}\right)^{2}$. Thus, for $n=3 k+1$, by Lemmas 2.2 and 2.9, we get $\chi_{2}\left(C_{3 k+1} \square P_{3} \square P_{3}\right) \leqslant 8$.
Figure 7 presents a proper 9-coloring of $\left(C_{5} \square P_{3} \square P_{3}\right)^{2}$ and the leftmost three blocks of Fig. 7 induce a proper 9 -coloring of $\left(C_{3} \square P_{3} \square P_{3}\right)^{2}$. Hence, by Lemmas 2.2 and 2.9 , we have

$$
\chi_{2}\left(C_{3 k+2} \square P_{3} \square P_{3}\right) \leqslant 9
$$

$$
\begin{array}{llll}
123 & 341 & 568 & 875 \\
456 & 287 & 732 & 614 \\
871 & 563 & 145 & 328
\end{array}
$$

Figure 6. A proper $8-$ coloring of $\chi_{2}\left(C_{4} \square P_{3} \square P_{3}\right)$.
whenever $n=3 k+2$.

$$
\begin{array}{lllll}
129 & 456 & 938 & 641 & 875 \\
347 & 672 & 815 & 723 & 568 \\
296 & 138 & 574 & 389 & 412
\end{array}
$$

Figure 7. A proper $9-$ coloring of $\chi_{2}\left(C_{5} \square P_{3} \square P_{3}\right)$.

Theorem 2.12 If $k \geqslant 1$ then, $\chi_{2}\left(C_{4} \square C_{7} \square C_{n}\right)=8$ if $n=4 k$ and,

$$
\chi_{2}\left(C_{4} \square C_{7} \square C_{n}\right) \leqslant \begin{cases}11 & n=4 k+1, k \neq 1 \\ 11 & n=4 k+2 \\ 12 & n=4 k+3 .\end{cases}
$$

Proof Let $n=4 k$, by Lemma 2.1 and Lemma 2.8 we have,

$$
\chi_{2}\left(C_{4} \square C_{7} \square C_{n}\right) \geqslant\left\lceil V\left(C_{4} \square C_{7} \square C_{n}\right) / \alpha_{2}\left(C_{4} \square C_{7} \square C_{n}\right)\right\rceil=\lceil 4 \times 7 \times 4 k / 14 k\rceil=8
$$

Fig. 8 presents a proper 8 -coloring of $\left(C_{4} \square C_{7} \square C_{4}\right)^{2}$, by Lemmas 2.2 and 2.9 we have $\chi_{2}\left(C_{4} \square C_{7} \square C_{n}\right) \leqslant 8$, therefore,

$$
\chi_{2}\left(C_{4} \square C_{7} \square C_{n}\right)=8 .
$$

Figure 9 presents a proper 11-coloring of $\left(C_{4} \square C_{7} \square C_{9}\right)^{2}$ such that the leftmost

$$
\begin{aligned}
& 1234658734128765 \\
& 3412876512346587 \\
& 5678214378564321 \\
& 1234658734128765 \\
& 3412876512346587 \\
& 5678214378564321 \\
& 7856432156782143
\end{aligned}
$$

Figure 8. A proper $8-$ coloring of $\chi_{2}\left(C_{4} \square C_{7} \square C_{4}\right)$.
four blocks induce a proper 11-coloring of $\left(C_{4} \square C_{7} \square C_{4}\right)^{2}$. Thus, by Lemmas 2.2 and 2.9, we get for $t>1$,

$$
\chi_{2}\left(C_{4} \square C_{7} \square C_{5+4 s}\right)=\chi_{2}\left(C_{4} \square C_{7} \square C_{1+4 t}\right) \leqslant 11 .
$$

A proper 11-coloring of $\left(C_{4} \square C_{7} \square C_{6}\right)^{2}$ is illustrated in Fig. 10 such that the leftmost three blocks of Fig. 10 induce a proper 11-coloring of $\left(C_{4} \square C_{7} \square C_{4}\right)^{2}$. Thus, for $n=4 k+2$, by Lemmas 2.2 and 2.9, we get

$$
\chi_{2}\left(C_{4} \square C_{7} \square C_{n}\right) \leqslant 11
$$

```
110114698103412876512346587 9412 81165 3527
9412 8116512346587341287651210410987 11736
56711 10193785643215678 2143 7856 4321 21048
12104}66587 3412876512346587 3492 11765 9813
34119 8765 1234658734128765 123469810 11527
5978 11143 7856432156782143 785643119 26101
7856 4321 56782143 78564321 5678 9243 101911
```

Figure 9. A proper $11-$ coloring of $\chi_{2}\left(C_{4} \square C_{7} \square C_{9}\right)$.

A proper 12-coloring of $\left(C_{4} \square C_{7} \square C_{7}\right)^{2}$ is illustrated in Fig. 11 such that the left-

$$
\begin{gathered}
1234 \\
104587 \\
104412
\end{gathered} 87672346587219109856
$$

Figure 10. A proper $11-$ coloring of $\chi_{2}\left(C_{4} \square C_{7} \square C_{6}\right)$.
most four blocks of Fig. 11 induce a proper 12 -coloring of $\left(C_{4} \square C_{7} \square C_{4}\right)^{2}$. Thus, for $n=4 k+3$, by Lemmas 2.2 and 2.9 we have,

$$
\chi_{2}\left(C_{4} \square C_{7} \square C_{n}\right) \leqslant 12 .
$$

This assertion completes the proof.

```
11034 6587 3412 8765 1234 11587 37912
    9412 8795 12346587 3412 89105101168
56711 2143 7865432156710 2143 4359
110349510734128765 1234 95117 61028
3111108795 123465873101287105 2946
    9678 2143 78564321 5678 10143 75112
11896442156782143 78564311962105
```

Figure 11. A proper $12-$ coloring of $\chi_{2}\left(C_{4} \square C_{7} \square C_{7}\right)$.

The following theorem summarizes the above discussion.
Theorem 2.13 Let $G=C_{m} \square C_{n} \square C_{k}$ if $k \geqslant 1$ and (m, n, k) $\in S=$ $\{(3,6,3 t),(4,7,4 t), t \geqslant 1\}$ then,

$$
\chi_{2}(G)=\left\lceil\frac{|V(G)|}{\alpha_{2}(G)}\right\rceil .
$$

References

[1] S. Bakaein, M. Tavakoli, A. R. Ashrafi and O. Ori, Coloring of fullerenes, Fullerenes, Nanotubes and Carbon Nanostructures, 26 (2018) 1-4.
[2] A. G. Chegini, M. Hasanvand, E. S. Mahmoodian and F. Moazam, The square chromatic number of the torus, Discrete Math., 339 (2016) 447-456.
[3] S. H. Chiang and J. H. Yan, On L.d; 1-labeling of Cartesian product of a cycle and a path, Discrete Appl. Math., 156 (2008) 2867-2881.
[4] Z. Dvok, D. Krl, P. Nejedl and R. krekovski, Coloring squares of planar graphs with girth six, European J. Combin., 4 (2008) 838-849.
[5] F. Havet, J. van den Heuvel, C. J. H. McDiarmid and B. Reed, List colouring squares of planar graphs, in: Proc. 2007 Europ. Conf. on Combin, Graph Theory and Applications, EuroComb'07, in: Electr. Notes in Discrete Math., 29 (2007) 515-519.
[6] R. E. Jamison, G. L. Matthews and J. Villalpando, Acyclic colorings of products of trees, Inform. Process. Lett., 99 (2006) 7-12.
[7] S. Klavžar and M. Tavakoli, Dominated and dominator colorings over (edge) corona and hierarchical products, Appl. Math. Comput., 390 (2021) 125647.
[8] K. W. Lih and W. Wang, Coloring the square of an outerplanar graph, Taiwanese J. Math., 10 (2006) 1015-1023.
[9] T. Manjula and R. Rajeswari, Domiator chromatic number of some graphs, International Journal of Pure and Applied Mathematics, 119 (2018) 787-795.
[10] M. Molloy and M. R. Salavatipour, A bound on the chromatic number of the square of a planar graph, J. Combin. Theory Ser. B , 94 (2) (2005) 189-213.
[11] Z. Shao and A. Vesel, A note on the chromatic number of the square of the Cartesian product of two cycles, Discrete Math., 313 (9) (2013) 999-1001.
[12] Z. Shao, A. Vesel and J. Xu, The k-distance independence number and 2-distance chromatic number of Cartesian products of cycles, Bull. Malays. Math. Sci. Soc., 41 (2016) 1377-1391.
[13] E. Sopena and J. Wu, Coloring the square of the Cartesian product of two cycles, Discrete Math. 310 (2010) 2327-2333.
[14] J. J. Sylvester, Mathematical questions with their solutions, Educ. Times, 41 (1884) 171-178.
[15] J. Van den Heuvel and S. McGuinness, Coloring the square of a planar graph, Probab. Engrg. Inform. Sci. J. Graph Theory, 42 (2002) 110-124.
[16] G. Wegner, Graphs with given diameter and a colouring problem, Technical Report, University of Dortmund, (1977).

[^0]: *Corresponding author. Email: rahbarnia@um.ac.ir

