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Abstract. In this paper, we have introduced a five‐parameter bivariate model by taking a geometric 

minimum of the modified exponential distributions. It is observed that the maximum likelihood 
estimators of the unknown parameters cannot be obtained in closed form. We propose to use the 

EM algorithm to compute the maximum likelihood estimators of the unknown parameters. Several 

simulation experiments have been performed to determine the effectiveness of the proposed EM 

algorithm. We analyzed two datasets for illustrative purposes, and it is observed that the proposed 

models and the expectation‐maximization algorithm perform at a satisfactory level. 
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1. Introduction 

In 1997, Marshall and Olkin developed a general method to introduce a new model by 

adding an extra parameter to a family of distributions, and they discussed the exponential 

and Weibull families in detail. Many researchers have investigated the same approach for 

different other distributions. For instance, Ghitany et al. [7] investigated the properties of 

a new parametric distribution generated by Marshall and Olkin’s [14] extended family of 

distributions based on the Baldwin–Lomax model. Moreover, Barreto‐Souza et al. [2] 

provided general expansions for the density function, explicit expressions for the moments, 

and moments of order statistics for the Marshall‐Olkin family of distributions. In addition, 

Ristić and Kundu [18] adopted the Marshall‐Olkin approach to introduce the two-

parameter generalized exponential distribution. Alizadeh et al. [1] introduced the 

Kumaraswamy Marshal‐Olkin generalized family of distributions using an extension of 

the Marshall‐ Olkin family and the Kumaraswamy distribution as a baseline distribution. 

Using the Marshall‐Olkin extended method, Tomy and Gillariose [20] introduced a new 

class of continuous models, i.e., the Marshall‐Olkin extended‐inverted Kumaraswamy 

distribution. 

Moreover, Marshall and Olkin [14] introduced a class of distributions, which can be 

obtained by the minimum or maximum of a sequence of independent and identically 

distributed (i.i.d.) continuous random variables, where the sample size follows a geometric 

distribution. Similarly, the modified exponential‐Poisson distribution is considered by 

Preda et al. [17] through a compounding operation using the Marshall-Olkin approach.   
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Louzada et al. [12] proposed a new family of distributions, such as the exponentiated 

exponential‐geometric distribution. Bordbar and Nematollahi [4] introduced a modified 

exponential‐geometric distribution and showed that the failure rate of the new distribution 

could decrease or increase.  
Along with introducing the bivariate extension, Marshall and Olkin [14] discussed 

several exciting properties of the general model. Unfortunately, they did not discuss any 

estimation procedures for the unknown parameters of the bivariate model, mainly due to 

the analytical intractability of the general model. Kundu and Gupta [10] and Kundu [9] 

applied that method for the bivariate Weibull and the bivariate generalized exponential 

distributions, respectively. Nekoukhou et al. [16] evaluated a three‐parameter bivariate 

distribution obtained by taking the geometric minimum of Rayleigh distributions. The 

main objective of the current paper is to consider the bivariate modified exponential 

geometric (BMEG) distribution, which can be obtained by taking a geometric minimum of 

the modified exponential distributions.; Its marginals include the univariate modified 

exponential distributions introduced by Bordbar and Nematollahi [4]. The BMEG 

distribution has five parameters. Due to the presence of these five parameters, the BMEG 

distribution is a very flexible bivariate distribution. Since the maximum likelihood 

estimators (MLEs) of the unknown parameters of the BMEG distribution cannot be 

obtained in closed form, we have proposed to use the EM algorithm to compute the MLEs 

of the unknown parameters. The rest of this paper is organized as follows: 

 In Section 2, we will provide the BMEG distribution and discuss its marginals. The 

estimation of the unknown parameters using the EM algorithm and the statistical inference 

is provided in Section 3. The results of the simulation experiments and the analyses of the 

two datasets are presented in Sections 4. Finally, we will conclude the paper in Section 5. 

2. Bivariate modified exponential-geometric distribution (minimum) 

Consider 𝐺 (𝑡; Ω) as the representation of the cumulative distribution function (CDF) of 

a continuous random variable 𝑇, which depends on a parameter vector Ω = (𝜔1, . . . , 𝜔𝑟). 

Then according to Marshall and Olkin [14], the corresponding Marshal-Olkin extended 

distribution would have a cumulative distribution function defined by the following 

formula: 

𝐹(𝑡; 𝛼, 𝛀) =
𝐺(𝑡; 𝛀)

𝐺(𝑡; 𝛀) + 𝛼(1 − 𝐺(𝑡; 𝛀))
,           − ∞ < 𝑡 < +∞,   𝛼 > 0. (1) 

According to this parameterization scheme, the random variable 𝑋 is concluded to follow 

a modified exponential distribution with parameters 𝛼  and 𝛽  if the CDF of 𝑋  is as 

described below: 

𝐹𝑀𝐸(𝑥; 𝛼, 𝛽) =
1 − 𝑒−𝛽𝑥

1 − (1 − 𝛼)𝑒−𝛽𝑥
,            𝑥 > 0 , 𝛼, 𝛽 > 0, (2) 

and 0 in other cases. It will be denoted by  ME(𝛼, 𝛽) with the survival distribution function 

as illustrated below: 

�̅�𝑀𝐸(𝑥; 𝛼, 𝛽) =
𝛼𝛽e−βx

1 − (1 − 𝛼)e−βx
,     𝑥 > 0, 𝛼, 𝛽 > 0, (3) 

and the probability density function  (PDF) is as follows: 

𝑓𝑀𝐸(𝑥; 𝛼, 𝛽) =
𝛼𝛽e−βx

(1 − (1 − 𝛼)e−βx)2
. (4) 

Suppose  {𝑋𝑖: 𝑖 = 1,2, … }  and  {𝑌𝑗: 𝑗 = 1,2, … }  are two sequences of independent and 
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identically distributed (i.i.d.) random variables with common distributions ME(𝛼1, 𝛽1) 

and ME(𝛼2, 𝛽2) , respectively. It is also assumed that 𝑋𝑖′𝑠  and 𝑌𝑗′𝑠  are independent. 

Consider 𝑁  is a geometric random variable with probability mass function of 

𝑃(𝑁 = 𝑛) = 𝑝(1 − 𝑝)𝑛−1 ; for 𝑛 ∈ {1,2, … } and 0 < 𝑝 < 1. From now on, it will be 

denoted by GM(p). Moreover, 𝑁 is independent of 𝑋𝑖′𝑠 and 𝑌𝑗′𝑠. Consider two new 

random variables X and Y, in such a way that 

𝑋 = min{𝑋1, … , 𝑋𝑁},           𝑌 = min{𝑌1, … , 𝑌𝑁}. (5) 

Then we could say that the bivariate vector (𝑋, 𝑌) has the Bivariate Modified Exponential 

Geometric (BMEG) distribution, with parameters 𝚯 = (𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝑝)  and will be 

denoted by 𝐵𝑀𝐸𝐺(𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝑝). 
The joint survival function (𝑋, 𝑌) is as follows: 

�̅�𝐵𝑀𝐸𝐺(𝑥, 𝑦; 𝚯) = 𝑃(𝑋 > 𝑥, 𝑌 > 𝑦) 

                             = ∑ 𝑃(𝑋 > 𝑥, 𝑌 > 𝑦|𝑁 = 𝑛)𝑃(𝑁 = 𝑛)

∞

𝑛=1

 

                            = ∑ �̅�𝑀𝐸
𝑛

∞

𝑛=1

(𝑥; 𝛼1, 𝛽1)�̅�𝑀𝐸
𝑛 (𝑦; 𝛼2, 𝛽2)𝑝(1 − 𝑝)𝑛−1 

                            = 𝑝�̅�𝑀𝐸(𝑥; 𝛼1, 𝛽1)�̅�𝑀𝐸(𝑦; 𝛼2, 𝛽2) 

                                 × ∑(�̅�𝑀𝐸(𝑥; 𝛼1, 𝛽1)�̅�𝑀𝐸(𝑦; 𝛼2, 𝛽2)(1 − 𝑝))
𝑛−1

∞

𝑛=1

 

                            =
𝑝�̅�𝑀𝐸(𝑥; 𝛼1, 𝛽1)�̅�𝑀𝐸(𝑦; 𝛼2, 𝛽2)

1 − (1 − 𝑝)�̅�𝑀𝐸(𝑥; 𝛼1, 𝛽1)�̅�𝑀𝐸(𝑦; 𝛼2, 𝛽2)
.  

(6) 

Therefore, the joint survival function of (𝑋, 𝑌) is as follows:  

�̅�𝐵𝑀𝐸𝐺(𝑥, 𝑦; 𝚯) =
𝑝𝛼1𝛼2𝑒−𝛽1𝑥𝑒−𝛽2𝑦

(1−(1−𝛼1)𝑒−𝛽1𝑥)(1−(1−𝛼2)𝑒−𝛽2𝑦)−𝛼1𝛼2(1−𝑝)𝑒−𝛽1𝑥𝑒−𝛽2𝑦 . (7) 

Using (6), the joint PDF of (𝑋, 𝑌) can be obtained as 𝑓𝑋,𝑌(𝑥, 𝑦) = 𝜕2�̅�𝑋,𝑌(𝑥, 𝑦)/𝜕𝑥𝜕𝑦 

and it is 

𝑓𝐵𝑀𝐸𝐺(𝑥, 𝑦; 𝚯)

=
𝑝𝑓𝑀𝐸(𝑥; 𝛼1, 𝛽1)𝑓𝑀𝐸(𝑦; 𝛼2, 𝛽2)(1 + (1 − 𝑝)�̅�𝑀𝐸(𝑥; 𝛼1, 𝛽1)�̅�𝑀𝐸(𝑦; 𝛼2, 𝛽2))

(1 − (1 − 𝑝)�̅�𝑀𝐸(𝑥; 𝛼1, 𝛽1)�̅�𝑀𝐸(𝑦; 𝛼2, 𝛽2))3
; 

(8) 

then the joint PDF of (𝑋, 𝑌) is as follows: 

𝑓𝐵𝑀𝐸𝐺(𝑥, 𝑦; 𝚯) = 𝑝𝛼1𝛼2𝛽1𝛽2𝑒−𝛽1𝑥𝑒−𝛽2𝑦 
                                  

×
(1 − (1 − 𝛼1)𝑒−𝛽1𝑥)(1 − 𝛼2)𝑒−𝛽2𝑦) + (1 − 𝑝)(1 − 𝑒−𝛽1𝑥)(1 − 𝑒−𝛽2𝑦)

((1 − (1 − 𝛼1)𝑒−𝛽1𝑥)(1 − (1 − 𝛼2)𝑒−𝛽2𝑦) − (1 − 𝑝)(1 − 𝑒−𝛽1𝑥)(1 − 𝑒−𝛽2𝑦)3
 . 

(9) 

Regarding (8), when 𝑝 = 1, we have the following result: 

𝑓𝐵𝑀𝐸𝐺(𝑥, 𝑦) = 𝑓𝑀𝐸(𝑥; 𝛼1, 𝛽1)𝑓𝑀𝐸(𝑦; 𝛼2, 𝛽2), (10) 

meaning that X and Y are independent. The parameter p can thus be taken into account as 

the correlation coefficient. We have provided the PDF with contour plots of the BMEG 

distribution for different parameter values in Figure 1. The joint density function of  

(𝑋, 𝑌, 𝑁) is given by 
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𝑓𝑋,𝑌,𝑁(𝑥, 𝑦, 𝑛; 𝚯) = 𝑛2𝑓𝑀𝐸(𝑥; 𝛼1, 𝛽1)�̅�𝑀𝐸
𝑛−1(𝑥; 𝛼1, 𝛽1)𝑓𝑀𝐸(𝑦; 𝛼2, 𝛽2) 

                                          × �̅�𝑀𝐸
𝑛−1(𝑦; 𝛼2, 𝛽2)𝑝(1 − 𝑝)𝑛−1 

(11) 

Now using the joint density function of (𝑋, 𝑌, 𝑁)  and that of (𝑋, 𝑌)  the conditional 

distribution of 𝑁 (𝑋, 𝑌) is as follows: 

𝑃(𝑁 = 𝑛|𝑋 = 𝑥, 𝑌 = 𝑦; 𝚯) 

=
𝑓𝑋,𝑌,𝑁(𝑥, 𝑦, 𝑛; 𝚯)

𝑓𝐵𝑀𝐸𝐺(𝑥, 𝑦; 𝚯)
 

= 𝑛2(1 − 𝑝)𝑛−1�̅�𝑀𝐸
𝑛−1(𝑥; 𝛼1, 𝛽1)�̅�𝑀𝐸

𝑛−1(𝑦; 𝛼2, 𝛽2) 

×
(1 − (1 − 𝑝)�̅�𝑀𝐸(𝑥; 𝛼1, 𝛽1)�̅�𝑀𝐸(𝑦; 𝛼2, 𝛽2))3

(1 + (1 − 𝑝)𝑛−1�̅�𝑀𝐸(𝑥; 𝛼1, 𝛽1)�̅�𝑀𝐸(𝑦; 𝛼2, 𝛽2))
 . 

(12) 

Set 𝑔(𝑥, 𝑦; 𝚯) = (1 − 𝑝)�̅�𝑀𝐸(𝑥; 𝛼1, 𝛽1)�̅�𝑀𝐸(𝑦; 𝛼2, 𝛽2), then the conditional distribution 

of 𝑁, given (𝑋, 𝑌), becomes: 

𝑃(𝑁 = 𝑛|𝑋 = 𝑥, 𝑌 = 𝑦; 𝚯) = 𝑛2𝑔𝑛−1(𝑥, 𝑦; 𝚯)  
(1 − 𝑔(𝑥, 𝑦; 𝚯))3

1 + 𝑔(𝑥, 𝑦; 𝚯)
 (13) 

In view of the fact that if 𝑁~𝐺𝑀(1 − 𝑟) then 𝐸(𝑁3) = (𝑟2 + 4𝑟 + 1)/(1 − 𝑟)3 , we 

consequently obtain the following formula: 

𝐸(𝑁|𝑋 = 𝑥, 𝑌 = 𝑦; 𝚯) = ∑ 𝑛

∞

𝑛=1

𝑃(𝑁 = 𝑛|𝑋 = 𝑥, 𝑌 = 𝑦) 

              = ∑ 𝑛3𝑔𝑛−1(𝑥, 𝑦; 𝚯)
(1−𝑔(𝑥,𝑦;𝚯))

3

1+𝑔(𝑥,𝑦;𝚯)
∞
𝑛=1                      

                    =
(1 − 𝑔(𝑥, 𝑦; 𝚯))

3

(1 + 𝑔(𝑥, 𝑦; 𝚯))(1 − 𝑔(𝑥, 𝑦; 𝚯))
×             

                    ∑ 𝑛3∞
𝑛=1 (1 − 𝑔(𝑥, 𝑦; 𝚯))𝑔𝑛−1(𝑥, 𝑦; 𝚯)  

                                         =
(1 − 𝑔(𝑥, 𝑦; 𝚯))

3

(1 + 𝑔(𝑥, 𝑦; 𝚯))(1 − 𝑔(𝑥, 𝑦; 𝚯))
 

            ×
𝑔2(𝑥, 𝑦; 𝚯) + 4𝑔(𝑥, 𝑦; 𝚯) + 1

(1 − 𝑔(𝑥, 𝑦; 𝚯))
3  

             =
 𝑔2(𝑥, 𝑦; 𝚯) + 4𝑔(𝑥, 𝑦; 𝚯) + 1

(1 − 𝑔2𝑔(𝑥, 𝑦; Θ))
 ,                 

(14) 

where 𝐸(𝑁|𝑋 = 𝑥, 𝑌 = 𝑦) will be used for developing the EM algorithm. 

As a result of the Marshall and Olkin distribution [14], the family of distributions of 

(3) is the geometric minimum stability, and the BMEG distribution is also closed under 

the geometric minimum. We thus have the following results: 

Proposition 1. If (𝑋, 𝑌)~𝐵𝑀𝐸𝐺(𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝑝), then 

i) 𝑋~𝑀𝐸(𝛼1𝑝, 𝛽1) 

ii) 𝑌~𝑀𝐸(𝛼2𝑝, 𝛽2) 



A. R. Zanboori et al./𝐼𝐽𝑀2𝐶, 11 -04 (2021) 1-16.                          5 
 

Proof. We will only prove part (i); part (ii) can be similarly obtained. To obtain the survival 

function of random variable 𝑋, it is enough to find �̅�𝑋,𝑌(𝑥, 0). Using (6), we have the 

following formula: 

�̅�𝑋(𝑥) = �̅�𝑋,𝑌(𝑥, 0) =
𝑝�̅�𝑀𝐸(𝑥; 𝛼1, 𝛽1)

1 − (1 − 𝑝)�̅�𝑀𝐸(𝑥; 𝛼1, 𝛽1)
 

              =
𝑝𝛼1𝑒−𝛽1𝑥

1−(1−𝛼1𝑝)𝑒−𝛽1𝑥.    

(15) 

Comparison of survival functions of (15) and (3), yields 𝑋~𝑀𝐸(𝛼1𝑝, 𝛽1).                                                    

Proposition 2. Consider (𝑈1, 𝑉1), (𝑈2, 𝑉2), ….  as a sequence of independent and 

identically-distributed random vectors with distribution 𝐵𝑀𝐸𝐺(𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝑝) . Let 

𝑁~𝐺𝑀(𝑞), and suppose that N and (𝑈𝑖 , 𝑉𝑖), 𝑖 = 1,2, …. are independent. Also, define the 

two new random variables: 

𝑈 = min{𝑈1, 𝑈2, … . }   𝑎𝑛𝑑  𝑉 = min{ 𝑉1, 𝑉2, … }; (16) 

then (𝑈, 𝑉)~𝐵𝑀𝐸𝐺(𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝑝𝑞). 

 
Figure 1. PDF with contour plots of BMEG(𝛼1, 𝛼2, 𝛽1, 𝛽2,𝑝) distribution. 

Proof The joint survival function (𝑈, 𝑉) is written as follows: 

�̅�𝑈,𝑉(𝑢, 𝑣) = 𝑝(min{𝑈1, 𝑈2, … 𝑈𝑁} > 𝑢, min{𝑉1, 𝑉2, … 𝑉𝑛} > 𝑣) 

                    =  ∑ ∏ 𝑃(

𝑛

𝑖=1

∞

𝑛=1

𝑈𝑖 > 𝑢 , 𝑉𝑖 > 𝑛 |𝑁 = 𝑛)𝑞(1 − 𝑞)𝑛−1 

                    = ∑ �̅�𝐵𝑀𝐸𝐺
𝑛

∞

𝑛=1

 (𝑢, 𝑣; 𝚯)𝑞(1 − 𝑞)𝑛−1 
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= 𝑞�̅�𝐵𝑀𝐸𝐺(𝑢, 𝑣; 𝚯) ∑(�̅�𝐵𝑀𝐸𝐺(𝑢, 𝑣; 𝚯)

∞

𝑛=1

(1 − 𝑞))𝑛−1  

                        =
𝑞�̅�𝐵𝑀𝐸𝐺(𝑢, 𝑣; 𝚯)

1 − (1 − 𝑞)𝑞�̅�𝐵𝑀𝐸𝐺(𝑢, 𝑣; 𝚯)
 

                        =
𝑝𝑞�̅�𝑀𝐸(𝑢; 𝛼1, 𝛽1) �̅�𝑀𝐸(𝑣; 𝛼2, 𝛽2)

1 − (1 − 𝑝𝑞)�̅�𝑀𝐸(𝑢; 𝛼1, 𝛽1) �̅�𝑀𝐸(𝑣; 𝛼2, 𝛽2)
 

(17) 

Comparison of the joint survival functions of formulas (17) and (6) yield 

(𝑈, 𝑉)~𝐵𝑀𝐸𝐺(𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝑝𝑞).                                                                        ◼ 

According to Basu [3], the scalar hazard rate function for a bivariate random variable  

(𝑋, 𝑌) with the joint PDF 𝑓(𝑥, 𝑦), and the joint survival function �̅�(𝑥, 𝑦) is defined as: 

ℎ𝐵(𝑥, 𝑦) =
𝑓(𝑥, 𝑦)

 �̅�(𝑥, 𝑦)
. (18) 

The scalar hazard rate function defined in (18) does not uniquely define the joint PDF. 

Johnson and Kotz [8] introduced a joint bivariate hazard rate function as follows: 

ℎ(𝑥, 𝑦) = (ℎ1(𝑥, 𝑦), ℎ2(𝑥, 𝑦)) = (
−𝜕 log  �̅�(𝑥, 𝑦)

𝜕𝑥
,
−𝜕 log  �̅�(𝑥, 𝑦)

𝜕𝑦
). (19) 

According to Marshall [13], the bivariate hazard function ℎ(𝑥, 𝑦) uniquely determines the 

joint PDF. Now, the scalar hazard rate function of the 𝐵𝑀𝐸𝐺(𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝑝) 

distribution using (18), is: 

ℎ𝐵𝑀𝐸𝐺(𝑥, 𝑦) =
𝑓𝐵𝑀𝐸𝐺(𝑥, 𝑦; 𝚯)

�̅�𝐵𝑀𝐸𝐺(𝑥, 𝑦; 𝚯)
. (20) 

Figure 2 shows the scalar hazard rate functions of BMEG distributions. The joint hazard 

rate function of a 𝐵𝑀𝐸𝐺(𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝑝) distribution is as follows: 

(ℎ1(𝑥, 𝑦), ℎ2(𝑥, 𝑦)) = (−
𝜕

𝜕𝑥
, −

𝜕

𝜕𝑦
) log �̅�𝐵𝑀𝐸𝐺(𝑥, 𝑦; 𝚯). (21) 

 

The plots of the joint hazard rate function of a 𝐵𝑀𝐸𝐺(𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝑝) distribution are 

illustrated in Figure 3. 

3. Maximum likelihood estimation 

This section demonstrates how EM-type algorithms are employed for estimating unknown 

parameters of BMEG distributions. Consider (𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚) as a bivariate sample 

of size 𝑚  from BMEG with parameters 𝚯 = (𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝑝) . The log-likelihood 

function based on the observation is as follows: 

𝑙(𝚯) = log ∏ 𝑓𝐵𝑀𝐸𝐺(𝑥𝑖, 𝑦𝑖; 𝚯)

𝑛

𝑖=1

 

         = log ∏(𝑝𝛼1𝛼2𝛽1𝛽2

𝑛

𝑖=1

𝑒−𝛽1𝑥𝑖𝑒−𝛽2𝑦𝑖 

 ×
(1−(1−𝛼1)𝑒−𝛽1𝑥𝑖(1−(1−𝛼2)𝑒−𝛽2𝑦𝑖)+(1−𝑝)(1−𝑒−𝛽1𝑥𝑖)(1−𝑒−𝛽2𝑦𝑖)

((1−(1−𝛼1)𝑒−𝛽1𝑥𝑖(1−(1−𝛼2)𝑒−𝛽2𝑦𝑖)+(1−𝑝)(1−𝑒−𝛽1𝑥𝑖)(1−𝑒−𝛽2𝑦𝑖))3
). 

(22) 
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Hence, the MLEs of the unknown parameters can be obtained by maximizing (22) with 

respect to the unknown parameters. MLEs cannot be obtained in closed forms. Since the 

proposed BMEG model has five parameters, the MLEs of the unknown parameters can be 

obtained through solving a five-dimensional optimization problem. Therefore, numerical 

methods can be applied both to solve non-linear equations and to obtain the MLEs. 

 
Figure 2. The scalar hazard rate function plots of 𝐵𝑀𝐸𝐺(𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝑝) distributions. 

To avoid solving the five-dimensional optimization problem, we propose to use the 

EM-type algorithm to compute the MLEs. The EM algorithm is a well-known technique 

for ML estimation when unobserved (or missing) data or latent variables are present in the 

process of modeling. For more detail, please refer to McLachlan and Krishnan [15]. 

To pose this model to an incomplete data problem, it is conceivable to introduce the 

hypothetical random variable 𝑁1, … , 𝑁𝑚  corresponding to the random 

vectors (𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚) . According to (11), based on observed data 
(𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚) and latent data 𝑛1, … , 𝑛𝑚the complete data log-likelihood function 

of the unknown parameters Θ = (𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝑝),  given (𝑥𝑖 , 𝑦𝑖 , 𝑛𝑖), 𝑖 = 1, … , 𝑚 

ignoring constant, is as follows: 

 𝑙𝑐(𝜣) = 𝑚 log 𝛼1 + 𝑚 log 𝛽1 − 𝛽1 ∑ log(1 − (1 −𝑚
𝑖=1 𝛼1)𝑒−𝛽1𝑥𝑖) 

      + ∑ (𝑛𝑖 − 1)(log 𝛼1𝑒−𝛽1𝑥𝑖) − log(1 − 𝛼1)𝑒−𝛽1𝑥𝑖  𝑚
𝑖=1 )) 

          +𝑚 log 𝛼2 + 𝑚 log 𝛽2 − 𝛽2 ∑ log(1 − (1 − 𝛼2)𝑒−𝛽2𝑦𝑖)𝑚
𝑖=1   

           + ∑ (𝑛𝑖 − 1)(log 𝛼1𝑒−𝛽2𝑦𝑖) − log(1 − (1 − 𝛼2)𝑒−𝛽2𝑦𝑖))𝑚
𝑖=1  

 +𝑚 log 𝑝 + ∑ (𝑛𝑖 − 1) log(1 − 𝑝) .𝑚
𝑖=1                         

(23) 
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Figure 3. The joint hazard rate function of a BMEG (𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝑝) distribution. 
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Using (23), given the current estimate of  �̂�(𝑘) = (�̂�1
(𝑘)

, �̂�2
(𝑘)

, �̂�1

(𝑘)
, �̂�2

(𝑘)
, �̂�(𝑘)) at the  𝑘𝑡ℎ 

iteration, the expected complete data log-likelihood function or the Q-function as asserted 

in Dempster et al. [6] is as follows: 

𝑄(𝚯|�̂�(𝑘)) = 𝑚 log 𝛼1 + 𝑚 log 𝛽1 − 𝛽1 ∑ 𝑥𝑖 − 2 ∑ log(1 − (1 − 𝛼1)𝑒−𝛽1𝑥𝑖)

𝑚

𝑖=1

𝑚

𝑖=1

  

                          + ∑ (𝜂𝑖
(𝑘)

− 1) (log(𝛼1𝑒−𝛽1𝑥𝑖) − log(1 − (1 − 𝛼1)𝑒−𝛽1𝑥𝑖))

𝑚

𝑖=1

 

                          +𝑚 log 𝛼2 + 𝑚 log 𝛽2 − 𝛽2  ∑ 𝑦𝑖 − 2 ∑ log(1 − (1 − 𝛼2)𝑒−𝛽2𝑦𝑖))

𝑚

𝑖=1

𝑚

𝑖=1

 

          + ∑ (𝜂𝑖
(𝑘)

− 1) (log(𝛼2𝑒−𝛽2𝑥𝑖) − log(1 − (1 − 𝛼2)𝑒−𝛽2𝑥𝑖))

𝑚

𝑖=1

    

       +𝑚 log 𝑝 + ∑ (𝜂𝑖
(𝑘)

− 1) log(1 − 𝑝).

𝑚

𝑖=1

                                           

where 

𝜂𝑖
(𝑘)

= 𝐸(𝑁𝑖|𝑋𝑖 = 𝑥𝑖 , 𝑌𝑖 = 𝑦𝑖;  Θ̂(𝑘)) 

         =
𝑔2(𝑥, 𝑦; Θ̂(𝑘)) + 4𝑔(𝑥, 𝑦; Θ̂(𝑘)) + 1

(1 − 𝑔2(𝑥, 𝑦; Θ̂(𝑘)))
. 

(25) 

In summary, the implementation of the EM-type (ECME) algorithm is as follows: 

E-step: Given Θ = Θ̂(𝑘) compute 𝜂𝑖
(𝑘)

 using (25) for 𝑖 = 1, … , 𝑚. 

CM-step 1: Update �̂�(𝑘) by maximizing (24) over p, which leads to 

�̂�(𝑘+1) =
𝑚

∑ 𝜂𝑖
(𝑘)𝑚

𝑖=1

. (26) 

CM-step 2: Obtain  �̂�1
(𝑘+1)

 as the solution of 

𝑚

𝛼1
− 2 ∑

𝑒−�̂�1
(𝑘)

𝑥𝑖

1 − (1 − 𝛼1)𝑒−�̂�1
(𝑘)

𝑥𝑖

+ ∑(

𝑚

𝑖=1

𝑚

𝑖=1

𝜂𝑖
(𝑘)

− 1) (
1

𝛼1
−

𝑒−�̂�1
(𝑘)

𝑥𝑖

1 − (1 − 𝛼1)𝑒−�̂�1
(𝑘)

𝑥𝑖

) = 0 

(27) 

with respect to 𝛼1, 

CM-step 3: Obtain  �̂�1
(𝑘+1)

 as the solution of 

𝑚

𝛽1
− ∑ 𝑥𝑖 − 2 ∑

(1 − �̂�1
(𝑘+1)

)𝑥𝑖𝑒−𝛽1𝑥𝑖

1 − (1 − �̂�1
(𝑘+1)

)𝑥𝑖𝑒−𝛽1𝑥𝑖

𝑚

𝑖=1

𝑚

𝑖=1

 

+ ∑ (𝜂𝑖
(𝑘)

− 1) (−𝑥𝑖 −
(1 − �̂�1

(𝑘+1)
)𝑥𝑖𝑒

−𝛽1𝑥𝑖

1 − (1 − �̂�1
(𝑘+1)

)𝑥𝑖𝑒−𝛽1𝑥𝑖

)

𝑚

𝑖=1

= 0 

(28) 



10                              A. R. Zanboori et al./𝐼𝐽𝑀2𝐶, 11 -04 (2021) 1-16. 

 

with respect to 𝛽1. 

CM-step 4: Obtain �̂�2
(𝑘+1)

 as the solution of 

𝑚

𝛼2
− 2 ∑

𝑒−�̂�2
(𝑘)

𝑦𝑖

1 − (1 − 𝛼2)𝑒−�̂�2
(𝑘)

𝑦𝑖

+ ∑(

𝑚

𝑖=1

𝑚

𝑖=1

𝜂𝑖
(𝑘)

− 1) 

× (
1

𝛼2
−

𝑒−�̂�2
(𝑘)

𝑦𝑖

1 − (1 − 𝛼2)𝑒−�̂�2
(𝑘)

𝑦𝑖

) = 0 

(29) 

with respect to 𝛼2. 

CM-step 5: Obtain �̂�2
(𝑘+1)

 as the solution of 

𝑚

𝛽2
− ∑ 𝑦𝑖 − 2 ∑

(1 − �̂�2
(𝑘+1)

)𝑦𝑖𝑒−𝛽2𝑦𝑖

1 − (1 − �̂�2
(𝑘+1)

)𝑒−𝛽2𝑦𝑖

𝑚

𝑖=1

𝑚

𝑖=1

 

+ ∑ (𝜂𝑖
(𝑘)

− 1) (−𝑦𝑖 −
(1 − �̂�2

(𝑘+1)
)𝑦𝑖𝑒−𝛽2𝑦𝑖

1 − (1 − �̂�2
(𝑘+1)

)𝑒−𝛽2𝑦𝑖

)

𝑚

𝑖=1

= 0 

(30) 

with respect to 𝛽2. 
CM-Steps 2, 3, 4 and 5 require a one-dimensional search for the root of 𝛼1, 𝛽1, 𝛼2, and 

𝛽2 , respectively, which can be easily achieved using the MATLAB 𝑓 𝑠𝑜𝑙𝑣𝑒  built-in 

function. 

The iterations of the above algorithm are repeated until a suitable convergence rule is 

satisfied, e.g., the iteration stops when the absolute difference between the two consecutive 

log-likelihood values is less than  10−4 . 

 

4. Simulation and data analysis 

4.1 Simulation study 

This section provides the results of the simulation study. Some simulation experiments 

have been performed to investigate how the proposed EM algorithm works in computing 

the MLEs. 

It may be observed that it is simple to use the definition of the model to generate from a 

BMEG(𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝑝) distribution. To this end, the following algorithm can be used: 

1. Generate 𝑛 from 𝐺𝑀(𝑝) 

2. Generate {𝑥1, . . . , 𝑥𝑛}  and {𝑦1, . . . , 𝑦𝑛}  from 𝑀𝐸(𝛼1, 𝛽1)  and 𝑀𝐸(𝛼2, 𝛽2) , 

respectively 

3. Compute the desired (𝑥, 𝑦) as 𝑥 =  𝑚𝑖𝑛{𝑥1, . . . , 𝑥𝑛} and 𝑦 =  𝑚𝑖𝑛{𝑦1, . . . , 𝑦𝑛}  

The samples of size m = 100, 200, 500, and 1000 are simulated from the BMEG 

distributions with parameter 𝛼1  =  0.2 , 𝛼2  =  0.2 , 𝛽1 =  1 , 𝛽2 =  1 ; 𝑝 =
0.25, 0.5, 0.75 , and 0.99  chosen arbitrarily. The process is repeated 1000 times to 

compute the average estimate (AE) and the mean squared errors (MSE) of the MLEs. The 

results are reported in Table 1. 
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Table 1. The AEs (MSEs) of the MLEs based on 1000 simulations of the BMEG distribution. 

BMEG 𝑚 = 100 𝑚 = 200 𝑚 = 500 𝑚 = 1000 

𝛼1 = 0.2 0.37666 (0.27771) 0.26158 (0.03563) 0.22678 (0.00864) 0.21336 (0.00374) 

𝛼2 = 0.2 0.38748 (0.28435) 0.26624 (0.03645) 0.22480 (0.00837) 0.21292 (0.00395) 

𝛽1 = 1 1.41938 (0.96642) 1.18956 (0.35947) 1.09412 (0.11719) 1.04009 (0.05024) 

𝛽2 = 1 1.47413 (1.12661) 1.21158 (0.3839) 1.08233 (0.11328) 1.03752 (0.05562) 

𝑝 =  0.025 0.27588 (0.02089) 0.26402 (0.00941) 0.25616 (0.00374) 0.25134 (0.0017) 

𝛼1 = 0.2 0.28661 (0.06429) 0.24486 (0.01824) 0.21763 (0.00482) 0.20790 (0.002) 

𝛼2 = 0.2 0.28953 (0.10453) 0.24234 (0.01676) 0.22153 (0.0053) 0.20879 (0.00215) 

𝛽1 = 1 1.23865 (0.43498) 1.13195 (0.17733) 1.04935 (0.05613) 1.01614 (0.02617) 

𝛽2 = 1 1.21370 (0.41962) 1.11941 (0.18845) 1.06872 (0.06174) 1.01977 (0.02627) 

𝑝 =  0.5 0.52796 (0.03886) 0.51378 (0.02125) 0.50406 (0.00848) 0.49941 (0.00406) 

𝛼1 = 0.2 0.28630 (0.04763) 0.23503 (0.01215) 0.21313 (0.00332) 0.20785 (0.00168) 

𝛼2 = 0.2 0.28084 (0.04742) 0.23208 (0.01119) 0.21397 (0.00365) 0.20434 (0.0016) 

𝛽1 = 1 1.17021 (0.25565) 1.09274 (0.11943) 1.03263 (0.03845) 1.02489 (0.02017) 

𝛽2 = 1 1.15461 (0.23019) 1.09036 (0.11618) 1.03059 (0.03823) 1.00968 (0.01777) 

𝑝 =  0.75 0.73298 (0.04113) 0.75574 (0.02494) 0.75042 (0.01202) 0.75447 (0.0064) 

𝛼1 = 0.2 0.23370 (0.01232) 0.21250 (0.00437) 0.20560 (0.00186) 0.20321 (0.00081) 

𝛼2 = 0.2 0.23784 (0.01324) 0.21047 (0.00462) 0.20402 (0.0016) 0.20268 (0.00078) 

𝛽1 = 1 1.10852 (0.15729) 1.03901 (0.06975) 1.01964 (0.02964) 1.00952 (0.01263) 

𝛽2 = 1 1.12702 (0.17959) 1.03344 (0.06977) 1.01141 (0.02591) 1.00619 (0.01258) 

𝑝 =  0.99 0.98894 (0.00041) 0.98999 (0.00002) 0.99038 (0.00001) 0.98899 (0.00001) 

Some of the points are quite clear in the simulation results: (i) generally, as the sample 

size increases, the MSEs decrease in each case. These results suggest that the EM 

estimates have performed consistently. MLEs show better performances as p increases 

because when p = 1, the two marginals are independent. As a result, the model becomes 

simple. 

Based on the simulation results, it can be concluded that the proposed EM algorithm 

works quite well in small and medium-size samples as well and can be used quite 

effectively for data analysis purposes. 

4.2 Data analysis 

This section analyzes a data set using the BMEG model for illustrative purposes. We 

illustrate our proposed methods with a data set obtained from the study conducted by 

Kundu and Gupta [11]. A sample of size 30 is generated from a singular bivariate modified 

Sarhan–Balakrishnan (SBVMSB) distribution by Kundu and Gupta [11]. The data are 

presented in Table 2 for ease of reference. 

Table 2. Simulated data from SBVMSB distribution (see [11]). 

No. 𝑥 𝑦 No. 𝑥 𝑦 No. 𝑥 𝑦 

1 0.4180 0.4240 11 0.3620 0.6450 21 0.9450 0.9450 

2 0.1060 0.8510 12 0.2570 1.4640 22 0.8500 0.8500 

3 1.1470 1.1470 13 1.6080 1.6080 23 0.3540 0.3540 

4 0.5290 1.7950 14 0.6280 0.6280 24 0.3450 2.3080 

5 0.4460 0.4460 15 0.3510 0.3510 25 1.1980 0.6200 

6 0.3260 0.3260 16 0.8850 0.7910 26 0.5250 0.5040 

7 0.2050 0.2050 17 0.0490 0.2000 27 0.5480 0.5480 

8 1.1060 1.1060 18 1.0880 1.1280 28 2.8370 1.0570 

9 0.4350 0.9730 19 1.4530 1.1550 29 0.2120 1.6970 

10 0.9350 0.8500 20 0.8780 0.8780 30 2.3560 1.3480 
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The BMEG distribution has been fitted to these data. The EM algorithm has been used 

to compute the MLEs of the unknown parameters. Different starting values have been 

utilized, which have provided the same estimates in all cases. Figure 4 shows that the initial 

estimates of the unknown parameters are not problematic regarding the convergence of the 

EM algorithm. 

Table 3 demonstrates the MLEs, the associated 95% bootstrap confidence intervals, the 

Akaike information criterion (AIC), and estimated log-likelihood value for fitted BMEG 

and SBVMSB distribution. Based on the results provided in Table 3, it is evident that AIC 

and log-likelihood are lower for the BMEG distribution as compared with the SBVMSB 

distributions. Figure 5 displays the scatter plot of simulated data from the SBVMSB (data 

in Table 1) distribution and probability density contour plot for the fitted BMEG 

distribution. 

Table 3. Summary of results obtained from fitting the BMEG and SBVMSB distributions to 

data in Table 2. 

Model MLEs (Confidence Intervals) 𝑙 AIC 

BMEG 𝛼1=2.8622 (2.6617, 3.0626) 

𝛼2=12.4245 (11.5142, 13.3349) 

𝛽1= 2.0660 (2.0169, 2.1152) 

𝛽2=3.0192 (2.9682, 3.0703) 

𝑝= 0.9517(0.9216, 0.9818) 

−41.2054 92.4109 

SBV MSB 𝛼1= 1.5725 (1.0367, 2.8692) 

𝛼2= 3.1405 (1.7187,4.7924) 

𝛼3= 1.9585 (1.3833,3.8889) 

𝜆= 1.0932 (0.7640,1.4650) 

−64.8979 137.7958 

 

 

Figure 4. Plots of the iteration number versus likelihood with respect to different initial 

values for EM algorithm used to obtain MLEs of the BMEG model for data in Table 2. 
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Figure 5. Scatter plot of simulated data from SBVMSB distribution (data of Table 2) and 

probability density contour plot for fitted the BMEG distribution. 

The marginals are tested. The results for the Kolmogorov-Smirnov distances and the 

associated p-values are reported in Table 4. Regarding Proposition 1, the marginal 

distribution of X and Y is 𝑀𝐸(𝛼1𝑝, 𝛽1) and 𝑀𝐸(𝛼2𝑝, 𝛽2), respectively. According to the 

p-values in Table 4, it is clear that ME fits X and Y very well. Due to very high p-values, 

we cannot reject the null hypothesis that the data come from the BMEG model. However, 

the data have been generated from the SBVMSB distribution. The plots of the densities 

and cumulative distribution functions are given in Figure 6. 

 
Figure 6. The fitted PDF and CDF of the ME model for data generated from SBVMSB 

distribution (data of Table 2). 
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Table 4. The results of the goodness-of-fit test of data of Table 1. 

Data 𝛼 𝛽 KS-stat Critical value p-value 

𝑋 

𝑌 

2.7239 

11.8244 

2.06604 

3.01922 

0.0977 

0.0717 

0.2417 

0.2417 

0.9103 

0.9948 

4.3 Real data analysis: Electromyographic (EMG) data 

In this section, the BMEG distribution is fitted to a dataset obtained from the study 

conducted by Davis [5]. This dataset has been derived from studying affective facial 

expressions conducted on 22 individuals. In this study, several pieces of music were 

played for each individual in two stages for 90 seconds. The first stage is relaxation 

music condition, and the second stage is designed to create positive effects. The response 

variable at each stage is the average EMG amplitudes of the left eyebrow region. The 

dataset is presented in Table 5. 

Table 5. Average electromyography (EMG) amplitudes from the left eyebrow for 22 subjects. 

No. Stage 1 Stage 2 No. Stage 1 Stage 2 

1 143 368 12 148 378 

2 142 155 13 130 142 

3 109 167 14 119 171 

4 123 135 15 102 94 

5 276 216 16 279 204 

6 235 386 17 244 365 

7 208 175 18 196 168 

8 267 358 19 279 358 

9 183 193 20 167 183 

10 245 268 21 345 238 

11 324 507 22 524 507 

Roozegar and Kundu [19] fit the bivariate generalized exponential-geometric (BGEG) 

and bivariate generalized exponential-Poisson (BGEP) distributions to this data; they 

demonstrated that the BGEG distribution provides a better fit than the BGEP distribution 

for this dataset, based on the log-likelihood value. Therefore, the results are compared only 

with the BGEG model. Similar to the study conducted by Roozegar and Kundu [19], we 

divided all the data points by 100 and then fit the BMEG distribution to this dataset. Figure 

7 illustrates the scatter plot of EMG data and the contour plot of the probability density of 

the fitted BMEG distribution. 

 
Figure 7. Scatter plot of electromyographic data and probability density contour plot for 

fitted BMEG distribution. 
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Table 6 presents the results of fitting the BMEG and BGEG distributions to EMG data. 

Table 7 depicts the results of the Kolmogorov-Smirnov goodness-of-fit test for fitting the 

ME model to the marginal of fitted BMEG distribution. Figure 8 also displays the fitted 

PDFs and CDFs of the ME distribution for EMG data. 

Table 6. A summary of the results of fitting the BMEG and BGEG distributions to EMG data. 

Model MLEs (Confidence intervals) 𝑙 AIC 

BMEG 𝛼1=38.3648 (37.1427, 39.5831)  

𝛼2=25.3992 (24.6048, 26.1912)  

𝛽1=1.7440 (1.7322, 1.7558)  

𝛽1=1.2943 (1.2849, 1.3037)  

𝑝=0.9049 (0.8952, 0.9146) 

-64.0818 138.1636 

BGEG 𝜆1= 1.2083 (1.0205, 1.3961) 

𝜆2=0.7998 (0.7100, 0.8896) 

𝛼1= 31.5221 (28.8438, 34.2004) 

𝛼2=19.2061 (18.0905, 20.3217) 

𝛼=0.2031 (0.2019, 0.2043) 

𝜃=0.1582 (0.1577, 0.1587) 

-138.324 288.6480 

 
Table 7. The results of the Kolmogorov-Smirnov (KS) goodness-of-fit test for EMG data. 

Data 𝛼 𝛽 KS-stat Critical value p-value 

Stage 1 

Stage 2 

34.7163 

22.9837 

1.7440 

1.2943 

0.1242 

0.1796 

0.2809 

0.2809 

0.8457 

0.4272 

 

 
Figure 8. The fitted PDF and CDF of the ME model for electromyographic data. 
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5. Conclusions 

This paper proposed a five-parameter bivariate model called the bivariate modified 

exponential-geometric (BMEG) distribution, whose marginals are univariate modified 

exponential distributions. The MLEs of the unknown parameters cannot be obtained in 

closed forms. The expectation-maximization (EM) algorithm was introduced to compute 

the MLEs of the unknown parameters quite effectively. Two datasets were analyzed, 

indicating the excellent performance of the proposed models and the EM algorithm. 
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