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Abstract. This given paper can be considered as a continuation of previous work, doing on
cancer models and their control by a set-valued method, in the context of viability theory. We
analyze a class models of ordinary differential equations, taking into account the possibility to
directly acting on tumor. However we can augment the class by a simple ordinary differential
equation of the tumor control term, and join it to the other variables state. This will allow to
exploit results to generalize the approach.
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1. Introduction

The most of tumor growth models are developed in ordinary differential equations
tool, and take into consideration the advantage of applying various therapies simul-
taneously for better cancer control, by assuming their synergistic effect on tumor,
and limited side effects due to the over dosage of a particular therapy.
For example, by a partial analysis of the tumor free subspace, [17] shows how

coupled anti-angiogenic therapy and chemotherapy, promote a larger reduction of
the tumor, than use chemotherapy alone.
While [18] quantifies the anti-angiogenic effect of metronomic chemotherapy, by

means of a computational approach.
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Also there are some research works on the tumor growth models, with optimal
control strategies:

• [3] optimally controls model of tumor-immune interactions with chemotherapy.

• [12] proposes to model in [16], an optimal control method to reduce the tumor,
by minimal total amount of chemotherapy, with low immune levels.

• [19] uses a quadratic control, to minimize the number of tumor cells, with mini-
mal immunotherapeutic and chemotherapeutic drugs administration.

• [2] characterizes optimal control, that minimizes the tumor and usage of im-
munotherapy and anti-angiogenic drugs.

• [10] investigates as optimal control problems, four models from the literature: the
model by d’Onofrio et al. [9], the model by the Pillis et al. [4], the model in Ergun
et al. [11], the model of de Pillis et al. [5], which contain either immunotherapy,
anti-agiogenic therapy, chemotherapy, or combinations of these.

This paper set-valued analysis the problem of cancer control in viability expres-
sions. Section 2 generalizes results in [13], to model of ordinary differential equations
with control term on tumor dynamics. Section 3 defines advancement stage tumor
upon initial state of model. Section 4 applies method to the model of [9]. Section
5 stimulates numerically application issues.

2. Problem formulation

We consider the following dynamical system of ordinary differential equations:

ẋ = f(x, τ) + F (x, τ)v +G(x, τ)u, (1a)

τ̇ = ψ(x, τ) +H(x, τ)v, (1b)

where x ∈ Rn
+, denote densities of cells in competition with tumor cells of density

τ ∈ R+.
Both parameters u and v represent the control terms, but they are of different kind:
The control u acts indirectly on τ through x according to the x-dynamics (1a),
stands for rates of immunotherapeutic or anti-angiogenic agents (e.g., cytokines,
antibodies, angiogenesis inhibitors, etc.), and takes values within the constraint
subset

K =
[
0, umax

1

]
× · · · ×

[
0, umax

p

]
. (1c)

While the control v acts directly on τ according to the tumor dynamics (1b),
stands for rates of chemotherapeutic agents (e.g., cyclophosphamide), and takes
values within the constraint subset

L =
[
0, vmax

1

]
× · · · ×

[
0, vmax

q

]
. (1d)

The functions f and ψ map Rn × R into Rn and R respectively, the operator G
maps Rn×R into the spaces L(Rp,Rn), while the operators F and H map Rn×R
into the spaces L(Rp,Rn) and L(Rq,R) respectively.
The naturally arising problem is of how to administer the protocols u and v, with
respect to the constraints (1c) and (1d), in such way as to strictly decrease the
tumor cells density τ on the therapy horizon [0,∞), and asymptotically control τ
towards null values.
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Hence we have to consider the following control problem:
Find a protocol (u, v) such that

∀t ∈ [0,∞), (u(t), v(t)) ∈ K × L, (2a)

for which

∀t ∈ [0,∞), τ̇(t) < 0, (2b)

and

lim
t→∞

τ(t) = 0. (2c)

3. Viability context

3.1 Augmented model

It is more convenient to consider the second control v as a third variable, and
augment system (1) by the linear differential equations

v̇i = −wivi, (3a)

with the auxiliary controls

wi ∈ [0, wmax
i ] , (3b)

and the initial conditions

v0i ∈ [0, vmax
i ] , (3c)

so the augmented system is as follows

ż = f̄(z, τ) + Ḡ(z, τ)c, (4a)

τ̇ = ψ̄(z, τ), (4b)

where the state z = (x, v) ∈ Rn
+ × L, and the control c is such that

c = (u,w) ∈ K × P (4c)

with

P =
[
0, wmax

1

]
× · · · ×

[
0, wmax

q

]
, (4d)

while the dynamics f̄ and ψ̄ map Rn+q+1 into Rn+q and R respectively, and are
defined by the expressions

f̄(z, τ) = (f(x, τ) + F (x, τ)v, 0)′ and (4e)

ψ̄(z, τ) = ψ(x, τ) +H(x, τ)v, (4f)
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and the control operator Ḡ map Rn+q+1 into the space L(Rp+q,Rn+q), such that

Ḡ(z, τ)c = (G(x, τ)u,B(v)w)′ with (4g)

(B(v)w)i = −wivi. (4h)

We have to find a control c ∈ K × L, for which the solution τ satisfies (2b) and
(2c), subject to the dynamics (4a) and (4b). However, according to (3a), the vi’s
may be expressed for all t ≥ 0 as function of wi’s as

vi(t) = v0i exp

(
−
∫ t

0
wi(s) ds

)
, (5)

then by virtue of (3b) and (3c) we have v(t) ∈ L, for all t ≥ 0, and the constraint
(2a) still satisfied.

3.2 Viability problem

In this subsection we will formulate the problem in the frame-work of the viability
theory. We associate with a non-negative real number α the subset

Dα = {(z, τ) ∈ Rn
+ × L× R+ | ψα(z, τ) ≤ 0}, (6a)

where the function ψα maps Rn+q+1 into R, and depends on the function ψ̄ of (4f)
as follows

ψα(z, τ) = ψ̄(z, τ) + ατ. (6b)

Proposition 3.1 Assume that there exists α such that (z0, τ0) ∈ Dα, and a control
c : [0,∞) → K×P keeping system (4) globally viable in Dα, then the protocol (u, v)
solves problem (2).

Proof Let t ≥ 0, and let (z, τ) be the globally viable trajectory in Dα, leading by
the control c. According to (4b) and (6) we have the differential inequality

τ̇(t) = ψ̄(z(t), τ(t)) ≤ −ατ(t),

by applying Gronwall’s lemma we get the exponential estimate

0 ≤ τ(t) ≤ τ0 exp(−αt),

then in the limit ∞, the tumor is eradicated: lim
t→∞

τ(t) = 0, with the average speed

of therapy α. ■

3.3 Set-valued approach

We associate with the system (4), the set-valued map Fα of regulation defined on
the constraint viability Dα in the following way

Fα(z, τ) =
{
c ∈ K × P | (f̄(z, τ) + Ḡ(z, τ)c, ψ̄(z, τ))′ ∈ TDα

(z, τ)
}
, (7a)
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where

TDα
(z, τ) =

{
(y, ζ) ∈ Rn+q+1

∣∣∣ lim inf
h↓0

d((z + hy, τ + hζ), Dα)

h
= 0

}
, (7b)

stands for the contingent cone to the constraint viability Dα at point (z, τ).

Lemma 3.2 Let be α such that (z0, τ0) ∈ Dα. The system (4) is locally viable in
the constraint viability Dα if and only if

for all (z, τ) ∈ Dα, there exists cα ∈ K × P such that

(f̄(z, τ) + Ḡ(z, τ)cα, ψ̄(z, τ))
′ ∈ TDα

(z, τ).

Furthermore any single-valued selection of Fα leads to a local viable solution.

Lemma 3.3 Let be α such that (z0, τ0) ∈ Dα. If there exists functions m1 and m2

mapping bounded subsets of R into bounded images of R and such that

∥f̄(z, τ)∥ ≤ m1(τ)(∥z∥+ 1) and ∥Ḡ(z, τ)∥ ≤ m2(τ),

then the system (4) is globally viable in the constraint viability Dα.

Proof Let cα : Dα → K × P be a selection of the map Fα such that the control
(u, v) = cα(z, τ) leads to a local viable solution (z, τ) to system (4) in Dα. Let (z, τ)
be defined over a maximal interval [0, T ). We have to prove that T = ∞. Indeed,
assume that T < ∞. The non-negative function τ(·) is on the decreasing then for
all t in [0, T ) we have 0 ≤ τ(t) ≤ τ0, then there exists a non-negative constant M
such that

m1(τ(t)) ≤M and m2(τ(t)) ≤M,

which yields a linear growth for (4a)

∥ż(t)∥ ≤M (∥z(t)∥+ 1) +M∥cmax∥

≤M (∥z(t)∥+ ∥cmax∥+ 1)

and by applying Gronwall’s lemma we get the exponential estimate

∥z(t)∥ ≤ (∥z0∥+ ∥cmax∥+ 1) exp(Mt),

then z(t) has a limit denoted by z(T ) when t→ T−.
As τ is a non-negative decreasing function, we have

τ(t) → τ(T ) when t→ T−.

Therefore

(z(t), τ(t)) → (z(T ), τ(T )) when t→ T−,

and (z(T ), τ(T )) belongs to Dα because it is closed. Now, by considering
(z(T ), τ(T )) as an initial state it follows that (z, τ) may be prolonged to a vi-
able solution (z̄, τ̄) in Dα, starting at (z(T ), τ(T )) on some interval [T, S) where
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S > T , which is in contradiction with the maximality of T , then the solution (z, τ)
becomes globally viable in Dα. ■

Lemma 3.4 If the function ψα in (6b) is continuously differentiable on Dα, and
admits a partial derivative ∂iψα strictly negative on Dα. Then for each (z, τ) ∈ Dα

the tangent directions (y, ζ) of TDα
(z, τ) are characterized by

yi ≥ 0 if zi = 0, i = 1, . . . , n+ q,
ζ ≥ 0 if τ = 0,

ψ̇α(z, τ)(y, ζ) ≤ 0 if ψα(z, τ) = 0.

Proposition 3.5 If for all (x, τ) ∈ Rn
+ × R+, and (u, v) ∈ K × L we have{

πi
(
f(x, τ) +G(x, τ)u

)
≥ 0 if xi = 0, i = 1, . . . , n,

ψ(x, τ) +H(x, τ)v ≥ 0 if τ = 0,

then the map Fα may be expressed explicitly on the constraint viability Dα as

Fα(z, τ) =

{
K × P if ψ̄α(z, τ) < 0,
Cα(z, τ) if ψ̄α(z, τ) = 0,

(8a)

where

Cα(z, τ) = {c ∈ K × P | ⟨h(z, τ), c⟩ ≥ ℓα(z, τ)} , (8b)

with

h(z, τ) = −Ḡ′(z, τ)∇zψ̄(z, τ), (9a)

ℓα(z, τ) = ⟨∇zψ̄(z, τ), f̄(z, τ)⟩+ ψ̄(z, τ)
∂ψ̄

∂τ
(z, τ) + αψ̄(z, τ), (9b)

∇zψ̄(z, τ) =

(
∂ψ̄

∂x1
(z, τ), . . . ,

∂ψ̄

∂xn
(z, τ),

∂ψ̄

∂v1
(z, τ), . . . ,

∂ψ̄

∂vq
(z, τ)

)′
.

Proof For all (z, τ) ∈ Dα we have

ψ̇α(z, τ)(f̄(z, τ) + Ḡ(z, τ)c, ψ̄(z, τ))

= ⟨∇ψα(z, τ), (f̄(z, τ) + Ḡ(z, τ)c, ψ̄(z, τ))′⟩

= ⟨∇zψα(z, τ), f̄(z, τ) + Ḡ(z, τ)c⟩+ ψ̄(z, τ)
∂ψα

∂τ
(z, τ),

then by (6b)

ψ̇α(z, τ)(f̄(z, τ) + Ḡ(z, τ)c, ψ̄(z, τ))

= ⟨∇zψ̄(z, τ), f̄(z, τ) + Ḡ(z, τ)c⟩+ ψ̄(z, τ)
∂ψ̄

∂τ
(z, τ) + αψ̄(z, τ)

= ⟨∇zψ̄(z, τ), Ḡ(z, τ)c⟩+ ⟨∇zψ̄(z, τ), f̄(z, τ)⟩+ ψ̄(z, τ)
∂ψ̄

∂τ
(z, τ) + αψ̄(z, τ),
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then by (4e) and (4g)

ψ̇α(z, τ)(f̄(z, τ) + Ḡ(z, τ)c, ψ̄(z, τ))

= ⟨∇xψ̄(z, τ), G(x, τ)u⟩+ ⟨∇vψ̄(z, τ), B(v)w⟩+

⟨∇xψ̄(z, τ), f(z, τ)⟩+ ψ̄(z, τ)
∂ψ̄

∂τ
(z, τ) + αψ̄(z, τ)

= ⟨G′(x, τ)∇xψ̄(z, τ), u⟩+ ⟨B′(v)∇vψ̄(z, τ), w⟩+

⟨∇xψ̄(z, τ), f(z, τ)⟩+ ψ̄(z, τ)
∂ψ̄

∂τ
(z, τ) + αψ̄(z, τ),

then by (9)

ψ̇α(z, τ)(f̄(z, τ) + Ḡ(z, τ)c, ψ̄(z, τ)) = −⟨h(z, τ), c⟩+ ℓα(z, τ),

and by (7a) and Lemma 3.4 we get the characterization

c ∈ Fα(z, τ) ⇐⇒

 πi
(
f̄(z, τ) + Ḡ(z, τ)c

)
≥ 0 if zi = 0, i = 1, . . . , n+ q,

ψ̄(z, τ) ≥ 0 if τ = 0,
−⟨h(z, τ), c⟩+ ℓα(z, τ) ≤ 0 if ψ̄α(z, τ) = 0.

c ∈ Fα(z, τ) ⇐⇒


πi
(
f(x, τ) +G(x, τ)u

)
≥ 0 if xi = 0, i = 1, . . . , n,

π
i

(
B(v)w

)
≥ 0 if vi = 0, i = 1, . . . , q,

π
i

(
B(v)w

)
≤ 0 if vi = vmax

i , i = 1, . . . , q,
ψ(x, τ) +H(x, τ)v ≥ 0 if τ = 0,
−⟨h(z, τ), c⟩+ ℓα(z, τ) ≤ 0 if ψ̄α(z, τ) = 0.

or for all i = 1, . . . , q, the inequalities

π
i

(
B(v)w

)
= −viwi

{
≥ 0 if vi = 0,
≤ 0 if vi = vmax

i ,

are verified, then it follows that the regulation law c is characterized by

⟨h(z, τ), c⟩ ≥ ℓα(z, τ) if ψ̄α(z, τ) = 0.

■

Lemma 3.6 Selection of the set-valued map Fα may be given on the constraint
viability Dα by the expression

cα(z, τ) = πCα(z,τ)(0), (10)

where πCα(z,τ)(0) denotes the projection of 0 onto the closed convex set Cα(z, τ).

Proof See [13]. ■

4. Cancer control

Let be the sub-set

Ω =
{
(z, τ) ∈ Rn

+ × L× R+ | ψ̄(z, τ) < 0
}
, (11)
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where ψ̄ is the function expressed in (4f).

Theorem 4.1 Assume that there exists v0 ∈ L such that (z0, τ0) ∈ Ω, and there
exists α ∈ [0, α0], with α0 = −ψ̄(z0, τ0)/τ0. If moreover the linear growth condition
of Lemma 3.3 is also satisfied, then the selection cα (10) and its associate global
viable solution (z, τ) to the system (4), both provide a solution (uα, vα) to problem
2, defined for all t ∈ [0,∞) by the components

uαi (t) = πKi

(
cα(z(t), τ(t))

)
, for i = 1, . . . , p,

vαi (t) = v0i exp

(
−
∫ t

0
πPi

(
cα(z(s), τ(s))

)
ds

)
, for i = 1, . . . , q.

(12)

Proof By Lemma 3.6, the regulation map Fα admits a selection cα, or (z0, τ0)
belongs to Dα, then by Lemma 3.3, the selection cα leads to a solution (z, τ),
which is globally viable on Dα, then by Proposition 3.1, the protocol (uα, vα) given
by (4c) and (5), solves problem 2. ■

On the other hand, if (z0, τ0) ∈ Ωc, then there is no protocol that solves the
problem (2). Indeed, otherwise we will have for all t ∈ [0,∞)

ψ̄(z(t), τ(t)) = τ̇(t) < 0,

In particular for t = 0 we have

ψ̄(z0, τ0) < 0,

which is absurd.
To investigate this situation, we associate with a non-negative real number β, the
set-valued map C̄β defined by

C̄β(z, τ) =
{
c̄ ∈ K × P | ⟨h(z, τ), c̄⟩ ≥ ℓ̄(z, τ) + β

}
, (13a)

where h is given by (9a), and ℓ̄ is given by

ℓ̄(z, τ) = ⟨∇zψ̄(z, τ), f̄(z, τ)⟩+ ψ̄(z, τ)
∂ψ̄

∂τ
(z, τ). (13b)

Theorem 4.2 Let (z0, τ0) belongs to Ωc. The selection c̄β(·) = πC̄β(·)(0) steers the

system (4) from (z0, τ0) to Ω, at any time t̄ > ψ̄(z0, τ0)/β, i.e., (z̄(t̄), τ̄(t̄)) ∈ Ω,
where (z̄, τ̄) denotes the solution of system (4) leading on the interval [0, t̄] by the
selection c̄β, and the corresponding protocol (ūβ, v̄β) to system (1) is given for all
t ∈ [0, t̄] by the components ūβi (t) = πKi

(
c̄β(z̄(t), τ̄(t))

)
, for i = 1, . . . , p,

v̄βi (t) = v0i exp

(
−
∫ t

0
πPi

(
c̄β(z̄(s), τ̄(s))

)
ds

)
, for i = 1, . . . , q.

(14)

Proof By (4b) we have

ψ̄(z̄(t̄), τ̄(t̄)) = ψ̄(z0, τ0)+∫ t̄

0

[
⟨∇zψ̄(z̄(s), τ̄(s)), ˙̄z(s)⟩+ ˙̄τ(s)

∂ψ̄

∂τ
(z̄(s), τ̄(s))

]
ds,
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Figure 1. Schematic representation of interactions, and agents effects in the model (15).

then by (4a), (9a) and (13b) we get

ψ̄(z̄(t̄), τ̄(t̄)) = ψ̄(z0, τ0)−∫ t̄

0

[
⟨h(z̄(s), τ̄(s)), c̄β(z̄(s), τ̄(s))⟩ − ℓ̄(z̄(s), τ̄(s))

]
ds,

since c̄β is a selection of the map C̄β then we have

ψ̄(z̄(t̄), τ̄(t̄)) ≤ ψ̄(x0, τ0)− βt̄,

as βt̄ > ψ̄(x0, τ0) it follows that ψ̄(z̄(t̄), τ(t̄)) < 0.
The protocol (ūβ, v̄β) is given by (4c) and (5). ■

For a given initial stage cancer (x0, τ0), one of both opposites instances below
may arise:

• Non-advanced stage: There exists v0 ∈ L, such that (x0, v0, τ0) ∈ Ω, as Theorem
4.1, the tumor will exponentially decreases near to the null values, by the protocol
(12), derived from the selection (10).

• Advanced stage: There is no protocol in terms of problem (2), but as Theorem
4.2, for an appropriate β, the system (4) may be steered to non-advanced stage
at time t̄, by the selection c̄β of the set-valued map (13).

5. Application example

5.1 The model

We consider the model [9] for angiogenic signaling with an anti-angiogenic agent
u and a chemotherapeutic agent v. Treating the concentrations of these agents as
the controls gives the following controlled dynamics on carrying capacity of the
vasculature x and primary tumor volume τ .

ẋ = bτ − dτ
2

3x− µx− γxu− ηxv, (15a)

τ̇ = −ξτ ln
(τ
x

)
− φτv. (15b)

Descriptions of model entities are given in Tables 1 and 2 below.
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Table 1. Description of variables and controls.

Symbol Description Unit

x Carrying capacity of the vasculature mm3

τ Primary tumor volume mm3

u Anti-angiogenic agent
[
mg of dose

kg

]
v Chemotherapeutic agent

[
mg of dose

kg

]

Table 2. Descriptions of differential equations (15a) and (15b).

Equation Term Description

(15a) bτ Pro-angiogenic effect exerted by the tumor

−dτ
2
3 x Effect of the endogenous anti-angiogenic factors

−µx Rate of spontaneous vasculature loss
−γxu,−ηxv Rates of therapy-induced vasculature loss

(15b) −ξτ ln
( τ

x

)
Gompertzian tumor growth

−φτv Log-kill term

5.2 Protocol

Functions m1 et m2 in Lemma 3.3 are given here by

m1(τ) = max(bτ ; dτ
2

3 + ηvmax + µ),

and

m2(τ) = max(γumax;wmax).

The function ψ̄ in (4f) is explicitly expressed here by the formulas

ψ̄(x, v, τ) = −ξτ ln
(τ
x

)
− φτv,

and its partial derivatives are as follows

∂ψ̄

∂x
(x, v, τ) = ξ

τ

x
,

∂ψ̄

∂v
(x, v, τ) = −φτ,

∂ψ̄

∂τ
(x, v, τ) = −ξ ln

(τ
x

)
− ξ − φv,

Now we check that Lemma 3.4 is well filled

∂ψα

∂τ
(x, v, τ) = −ξ ln

(τ
x

)
− ξ − φv + α

=
ψα(x, v, τ)

τ
− ξ

≤ −ξ

< 0.
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To have a useful expressions of the set-valued maps Cα and C̄β, we first express
the functions h, ℓα, and ℓ̄, given respectively by (9a), (9b), and (13b).

h(x, v, τ) =

(
ξ

γ

τ

x2
,−φτ

v

)′
,

ℓα(x, v, τ) = ξ
τ

x
(bτ − dτ

2

3x− µx− γxu− ηxv)

+
(
ξτ ln

(τ
x

)
+ φτv

)(
ξ ln

(τ
x

)
+ ξ + φv − α

)
,

ℓ̄(x, v, τ) = ξ
τ

x
(bτ − dτ

2

3x− µx− γxu− ηxv)

+
(
ξτ ln

(τ
x

)
+ φτv

)(
ξ ln

(τ
x

)
+ ξ + φv

)
,

from where

Cα(x, v, τ) =

{
(u,w) ∈ [0, umax]× [0, wmax]

∣∣∣ ξ
γ

τ

x2
u− φ

τ

v
w ≥ ℓα(x, v, τ)

}
, (16)

and

C̄β(x, v, τ) =

{
(ū, w̄) ∈ [0, umax]× [0, wmax]

∣∣∣ ξ
γ

τ

x2
ū

− φ
τ

v
w̄ ≥ ℓ̄(x, v, τ) + β

}
. (17)

5.3 Numerical simulations

This section illustrates characterized protocol of set-valued map (16), in non-
advanced stage of tumor for Theorem 4.1, and selection of set-valued map (17),
in advanced stage for Theorem 4.1. We first consider the non-advanced stage in
Figure 2, where Figures 2(a) and 2(b) show how we can reduce primary tumor vol-
ume and carrying capacity of the vasculature, under combined therapies in Figures
2(c) and 2(d). Next, we consider the advanced stage in Figure 3, where Figures 3(a)
and 3(b) show how model reaches non-advanced stage, within mixed therapies in
Figures 3(c) and 3(d). Proposed numerical simulations use parameter values given
in Table 3, and agreed with theoretical results of Section 4.

6. Conclusion

Set-valued method in the viability theory is adapted to control general system of
cancer models [2–5, 9–12, 16–19], in ordinary differential equations form. Protocols
are formalized as selections of regulation maps, adjusting by contingent cones the
system to be globally viable, with null convergence of tumor. As an application
example of this method we consider the model in [9], which is already studied
in [13], with logistic tumor growth, under monotherapy in angiogenesis treatment
[8]. By comparing Figures 4(a) and 2(a), we see that by chemotherapy, only half



12 A. Moustafid/ IJM2C, 11 - 03 (2021) 1-14.

0 10 20 30 40 50 60 70 80 90 100
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
104

(a)

0 10 20 30 40 50 60 70 80 90 100
1.1

1.2

1.3

1.4

1.5

1.6

1.7
104

(b)

0 10 20 30 40 50 60 70 80 90 100

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

(c)

0 10 20 30 40 50 60 70 80 90 100
5

6

7

8

9

10

11
10-5

(d)

Figure 2. Model (15) started on non-advanced stage (12000, 1, 15000).
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Figure 3. Model (15) started on advanced stage (20000, 0.5, 10000).
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Table 3. Description of parameters.

Parameter Description Unit Value

ξ Tumor growth parameter [day−1] 0.192
ln10

= 0.084

b Tumor-induced stimulation parameter [day−1] 5.85
d Tumor-induced inhibition parameter [day−1mm−2] 0.00873
µ Baseline loss of vascular support [day−1] 0.02

through natural causes

γ Anti-angiogenic elimination parameter
[

kg
mg of dose

]
day−1 0.15

φ Cytotoxic killing parameter for the tumor
[

kg
mg of dose

]
day−1 0.1

η Cytotoxic killing parameter
[

kg
mg of dose

]
day−1 0− 0.1

for the vasculature

umax Maximum allowable dose
[
mg of dose

kg

]
day−1 75

for the anti-angiogenic agent

vmax Maximum allowable dose
[
mg of dose

kg

]
day−1 1− 2

for the chemotherapeutic agent

duration of therapy is required to reach tumor at same level ≈ 0.6× 104. Involving
both anti-angiogenic therapy and chemotherapy yield an effectively better result.
There exists in the literature another works approaching the model (15), we cite

for examples:

• [14] answers to the following question: given a priori determined total amounts

of agents
∫ T
0 u(s) ds ≤ umax and

∫ T
0 v(s) ds ≤ vmax, for free terminal time T > 0,

how can agents u(t) and v(t) best be administered in time, to maximize the
reduction of primary tumor volume τ(T ) subject to the model (15); and illus-
trates the qualitative shape of optimal control solution (u∗, v∗) for combination
treatments with anti-angiogenic inhibitors and chemotherapy.

• [20] compares controllability conditions of the model (15), in a class of two-
compartmental models of treatment response to anti-angiogenic therapy and its
combination with chemotherapy.

• [21] presents sufficient conditions of local controllability of the model (15), in a
class of models of treatment response to combined anti-cancer therapies, which
include delays in control strategies, and compares results for the models without
delays and conditions for relative local controllability of models with delays.

• [7] analysis stability equilibrium and tumor eradication of the model (15), in a
class of models of angiogenesis and anti-angiogenesis anti-cancer therapy.

• [6] proposes many mathematical models of tumor angiogenesis, but for analysis
and optimization of therapy protocols the most useful seems to be a class of the
model (15).

• [15] uses Hamilton-Jacobi-Isaacs formalism, to derive a robust state feedback
control of the model (15), guaranteeing tumor contraction maps as a function of
the initial state of tumor and the vasculature capacity.

We conclude by mentioning the main characteristics of the method developed in
this paper:

• Gives continuous protocols, unlike optimal control solution (u∗, v∗) given in [14].

• Applicable in monotherapy modality [13] or combined therapy, unlike in [20, 21].

• Does not require an analysis on parameter values, unlike the stabilization in [7].

• Functional to several types of ode models used in angiogenic therapy, like in [6].

• Contracts primary tumor volume for any initial positive conditions, like in [15].
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Figure 4. Logistic model in [8], started on (12000, 15000) in [13].
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