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Abstract. In this paper, a deterministic mathematical model is formulated to study the dynamics of 

human population subjected to HIV/AIDS with Herbal medicine and ART as treatments. The total 

population is divided into eight compartments. The existence, uniqueness, positivity, and 

boundedness of the solutions are shown. Both treatments have a positive impact on the reduction 

of viral load in the body. The stability analysis of equilibrium points are done. Disease free 

equilibrium point is locally asymptotically stable if the reproduction number is less than unity and 

unstable for greater than unity. 
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1. Introduction 

In their study, Kermack and McKendrick described the dynamics of the population 

pertaining an infectious disease using system of non-linear ordinary differential equations 

[1, 2, 11]. HIV is one of such infectious disease that can be described with their modeling 

science. Now a days there are traditional herbal medicine that most commonly used in 

places where it is difficult to get HIV medicine or ART [8]. In fact, the reason to use 

alternative therapies is because of expensive antiretroviral therapies or unavailable in 

resource constrained areas which helps to reduce mortality due to HIV infection. Thus, it is 

important to develop a model that depict that describes ART and Herbal medicine as 

treatments of HIV disease. HIV is a virus that attacks the immune system [4, 8, 9]. If a 

person is infected with HIV virus, then body immune system become weak. This weakness 

of immune system leads to healthy problem and unable to fight off infections and diseases 

[3, 7, 10]. The virus has potential to kill or reduce a type of white blood cell known as 

T-helper cells and multiply itself inside host cells. T-helper cells are also called CD4 cells 

and there is no vaccine or cure to permanently destroy AIDS from human [4]. 

2. Model formulation 

In this study the dynamical system of ordinary differential equations is formulated to 

show the dynamics of human population in the presence of Human Immunodeficiency 

Virus (HIV) and ART as combined treatments. This model is modification of the works 

done in [8]. This previous work is five compartmental model whereas the current study 

considered deterministic model that consists of eight compartments of human population. 
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The descriptions of compartments are as follows: (i) Susceptible compartment. It is 

denoted by   𝑆(𝑡). These are humans who are free of HIV infection but are capable of 

becoming infected future in infectious environment (ii) Primary compartment. It is 

denoted by  𝑃(𝑡).This compartment includes all humans who infected with HIV for the 

first time and that do not know their HIV status but transmit the disease to others with 

effective contact (iii) Secondary compartment. It is denoted by  𝐼(𝑡). This compartment 

includes all humans who know that they are infected with virus. They join either ART or 

Herbal medicine user(iv) Herbs user compartment. It is denoted by   𝐴(𝑡) . This 

compartment includes of infectious humans that uses only herbal medicine as a treatment. 

They join both treatment compartment at some rate 𝜔  (v) ART user compartment. It is 

denoted by  𝐽(𝑡). This compartment includes of infectious humans that uses only ART 

medicine as a treatment. They join both treatment compartment at some rate  𝜅 (vi) 

Treatment compartment. It is denoted by   𝑇(𝑡) . This compartment includes all HIV 

infected population who use both ART and Herbs as a treatment. (vii) Drug resistant 

compartment. This compartment includes portion of individuals from treatment class that 

are resistant to both ART and Herbs medicine. (viii) AIDS compartment. It is denoted 

by  𝑉(𝑡). This compartment includes who are at last stage or advanced stage of HIV. 

Now, a mathematical model of Human Immunodeficiency virus (HIV) is formulated 

based on the stated assumptions on the human population as listed below: 

(i) Deterministic dynamical system in the presence of Human Immunodeficiency virus 

(HIV) classifies human population under observation into eight compartments as 

SPIAJTRV model at any time. 

(ii) Susceptible humans are recruited to the compartment 𝑆(𝑡) at some constant rate  𝜏. 
(iii) Susceptible humans can be infected if they make effective contact with primary 

infected population whose status of HIV is not known yet and join primary infected 

compartment at a constant rate   𝛽. 

(iv) Primary infected humans transfer into secondary compartment at a constant rate  𝛼. 

(v) Secondary infected humans transfer into herbs compartment at a constant rate  𝜌  
and transfer into ART compartment at a constant rate  𝜃. 

(vi) Herbs compartment humans transfer into treatment compartment at a constant 

rate  𝜔. 

(vii) ART user human compartment transfer into treatment compartment at the rate  𝜅 . 
(viii) Humans in treatment compartment transfer into resistant compartment at the 

constant rate of  𝜙. 

(ix) Resistant compartment individuals transfer to AIDS compartment at the rate of   𝛾. 

(x) All categories of human’s compartments face the same natural mortality with a 

rate  𝜇. 

(xi) All AIDS humans suffer disease induced death at a constant rate  𝛿.All parameters 

used in the dynamical system are positive. 

Table 1. Notations and description of model variables. 

Variable Description 

𝑆(𝑡) Population size of susceptible humans 

𝑃(𝑡) Population size of primary infected humans 

𝐼(𝑡) Population size of secondary infected population 

𝐴(𝑡) Population size of Herbs user humans 

𝐽(𝑡) Population size of ART user humans 

𝑇(𝑡) Population size of both ART and Herbs user 
𝑅(𝑡) Population size of resistant to both treatment 

𝑉(𝑡) Population size of AIDS humans 
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Table 2. Model parameters notations and description. 

Parameter Description 

𝜏 Recruitment rate of susceptible human population. With this 

constant rate new humans will born and enter into susceptible 

compartment 

𝛽 

 

Transmission rate of primary infected humans. With this rate 

primary infected humans transfer into 𝑃 

𝛼 Rate of humans transferring from compartment 𝑃 to 𝐼 

𝜌 Rate of humans transferring from compartment 𝐼 to 𝐴 

𝜃 Rate of humans transferring from compartment 𝐼 to 𝐽 

𝜔 Rate of humans transferring from compartment 𝐴 to 𝑇 

𝜅 Rate of humans transferring from compartment 𝐽 to 𝑇 

𝜙 Rate of humans transferring from compartment 𝑇 to 𝑅 

𝛾 Rate of humans transferring from compartment 𝑅 to 𝑉 

𝜇 Natural death rate. With this rate humans in all compartments die 

naturally 

𝛿 Disease induced death rate of AIDS humans 

Now considering basic assumptions and description of both model variables and 

parameters given the schematic diagram of the formulated deterministic dynamical system 

is described in the Figure 1. 

Figure 1. Schematic diagram of compartmental structure of the model. 

 

Based on the model assumptions, the notations of variables and parameters and the 

schematic diagram, the model equations are formulated and are given as follows: 

 𝑑𝑆 𝑑𝑡⁄ = 𝜏 − 𝛽𝑆𝑃 − 𝜇𝑆                                 (1) 

 𝑑𝑃 𝑑𝑡⁄ = 𝛽𝑆𝑃 − (𝛼 + 𝜇)𝑃                              (2) 

 𝑑𝐼 𝑑𝑡⁄ = 𝛼𝑃 − (𝜌 + 𝜃 + 𝜇)𝐼                         (3) 

 𝑑𝐴 𝑑𝑡⁄ = 𝜌𝐼 − (𝜔 + 𝜇)𝐴                                 (4) 

 𝑑𝐽 𝑑𝑡⁄ = 𝜃𝐼 − (𝜅 + 𝜇)𝐽                                     (5) 

 𝑑𝑇 𝑑𝑡⁄ = 𝜔𝐴 + 𝜅𝐽 − (𝜙 + 𝜇)𝑇                       (6) 

 𝑑𝑅 𝑑𝑡⁄ = 𝜙𝑇 − (𝛾 + 𝜇)𝑅                                 (7) 

 𝑑𝑉 𝑑𝑡⁄ = 𝛾𝑅 − (𝛿 + 𝜇)𝑉                                 (8) 

The non-negative initial conditions of the model equations (1)-(8) are denoted by   
𝑆(0) > 0, 𝑃(0) ≥ 0, 𝐼(0) ≥ 0, 𝐴(0) ≥ 0, 𝐽(0) ≥ 0, 𝑇(0) ≥ 0, 𝑅(0) ≥ 0, 𝑉(0) ≥ 0.  
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This system consists of seven first order non-linear ordinary differential equations. 

3. Mathematical analysis of the model 

In this section we describe the mathematical analysis of the present improved and modified 

model. The analysis consists of the following points (i) existence, positivity and 

boundedness of solutions (ii) Equilibrium points (iii) disease free equilibrium points (iv) 

endemic equilibrium points (v) basic reproduction number(vi) stability analysis of the 

disease free equilibrium points (vii) local stability of disease free equilibrium point (viii) 

global stability of disease free equilibrium point. These mathematical aspects of the model 

are presented and discussed in the following sub-sections respectively. 

3.1 Existence, uniqueness, positivity and boundedness of solution 

In order to say that the formulated dynamical system is biologically valid and 

mathematically well-posed, it is required to show that the solutions of the system of 

differential equations (1)-(8) exist, non-negative and bounded for all time 𝑡. The details 

are given as the followings: 

Theorem 3.1 ([5]) Suppose the system of first order differential equation has the form, 

𝑥1
′ = 𝑓1(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝑡),   𝑥1(𝑡0) = 𝑥10
𝑥2
′ = 𝑓2(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝑡),   𝑥2(𝑡0) = 𝑥20
𝑥3
′ = 𝑓3(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝑡),   𝑥3(𝑡0) = 𝑥30

.

.

.
𝑥𝑛
′ = 𝑓𝑛(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝑡),   𝑥𝑛(𝑡0) = 𝑥𝑛0}

  
 

  
 

 

or in compact form can be written as 

𝑥′ = 𝑓(𝑡, 𝑥),     𝑥(𝑡0) = 𝑥0 

Let 𝐷 denote the region in (𝑛 + 1)-dimensional space given by 

𝑅 = {(𝑡, 𝑥):   |𝑡 − 𝑡0| ≤ 𝑎, |𝑥 − 𝑥0| ≤ 𝑏, } 

If the partial derivatives 𝜕𝑓𝑖 𝜕𝑥𝑗⁄ , 𝑖, 𝑗 = 1,2,3, … , 𝑛 are continuous and bounded in  𝐷, 

then there exists a unique continuous vector solution 𝑥∗ = (𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)) in the 

interval |𝑡 − 𝑡0| ≤ 𝛿 , where  𝛿 is a positive constant. 

Lemma 3.1 (Existence and uniqueness) Solutions of the model equations (1)-(8) 

together with the initial conditions 𝑆(0) > 0, 𝑃(0) ≥ 0, 𝐼(0) ≥ 0, 𝐴(0) ≥ 0, 𝐽(0) ≥ 0,
𝑇(𝑡), 𝑅(𝑡), 𝑉(0) ≥ 0, exist in  ℝ+

8  i.e. the model variables 𝑆(𝑡), 𝑃(𝑡), 𝐴(𝑡), 𝐽(𝑡), 𝑇(𝑡),
𝑅(𝑡), and 𝑉(𝑡) exist for all 𝑡 and will remain in ℝ+

8 . 

Proof  Let the right hand sides of the system of equations (1)-(8) are expressed as follows: 

 
𝑑𝑆 𝑑𝑡⁄ = 𝜏 − 𝛽𝑆𝑃 − 𝜇𝑆 ≡ 𝑔1(𝑆, 𝑃, 𝐼, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉) 

𝑑𝑃 𝑑𝑡⁄ = 𝛽𝑆𝑃 − (𝛼 + 𝜇)𝑃 ≡ 𝑔2(𝑆, 𝑃, 𝐼, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉) 

𝑑𝐼 𝑑𝑡⁄ = 𝛼𝑃 − (𝜌 + 𝜃 + 𝜇)𝐼 ≡ 𝑔3(𝑆, 𝑃, 𝐼, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉) 

𝑑𝐴 𝑑𝑡⁄ = 𝜌𝐼 − (𝜔 + 𝜇)𝐴 ≡ 𝑔4(𝑆, 𝑃, 𝐼, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉) 

𝑑𝐽 𝑑𝑡⁄ = 𝜃𝐼 − (𝜅 + 𝜇)𝐽 ≡ 𝑔5(𝑆, 𝑃, 𝐼, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉) 

𝑑𝑇 𝑑𝑡⁄ = 𝜔𝐴 + 𝜅𝐽 − (𝜙 + 𝜇)𝑇 ≡ 𝑔6(𝑆, 𝑃, 𝐼, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉) 

𝑑𝑅 𝑑𝑡⁄ = 𝜙𝑇 − (𝛾 + 𝜇)𝑅 ≡ 𝑔7(𝑆, 𝑃, 𝐼, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉) 
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𝑑𝑉 𝑑𝑡⁄ = 𝛾𝑅 − (𝛿 + 𝜇)𝑉 ≡ 𝑔8(𝑆, 𝑃, 𝐼, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉) 

Let 𝑅 denote the region 𝑅 =  {(𝑆, 𝑃, 𝐼, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉) ∈ ℝ+
8  ;    𝑁 ≤ 𝜏 𝜇⁄ }. Then according 

to Theorem 3.1 equations (1)-(8) have a unique solution if (𝜕𝑔𝑖) (𝜕𝑥𝑗),⁄   ∀  𝑖, 𝑗 =

1,2,3,4,5,6,7,8 are continuous and bounded in 𝑅. Here, the notations 𝑥1 = 𝑆, 𝑥2 = 𝑃, 

𝑥3 = 𝐼 , 𝑥4 = 𝐴 , 𝑥5 = 𝐽 , 𝑥6 = 𝑇 , 𝑥7 = 𝑅 , and 𝑥8 = 𝑉  are employed. The existence, 

continuity and the boundedness of 𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5, 𝑔6, 𝑔7 and 𝑔8 are verified as 

here under: 

Table 3. Verification of Continuity and Boundedness of the Function. 

Function Existence and Continuity Boundedness 

 

 

𝑔1 

(𝜕𝑔1) (𝜕𝑆)⁄ = −[𝛽𝑃 + 𝜇] 
(𝜕𝑔1) (𝜕𝑃)⁄ = −𝛽𝑆 
(𝜕𝑔1) (𝜕𝐼)⁄ = 0 
(𝜕𝑔1) (𝜕𝐴)⁄ = 0 
(𝜕𝑔1) (𝜕𝐽)⁄ = 0 
(𝜕𝑔1) (𝜕𝑇)⁄ = 0 
(𝜕𝑔1) (𝜕𝑅)⁄ = 0 
(𝜕𝑔1) (𝜕𝑉)⁄ = 0 

|(𝜕𝑔1) (𝜕𝑆)⁄ | = |−[𝛽𝑃 + 𝜇]| < ∞ 

|(𝜕𝑔1) (𝜕𝑃)⁄ | = |−𝛽𝑆| < ∞ 
|(𝜕𝑔1) (𝜕𝐼)⁄ | = 0 < ∞ 
|(𝜕𝑔1) (𝜕𝐴)⁄ | = 0 < ∞ 
|(𝜕𝑔1) (𝜕𝐽)⁄ | = 0 < ∞ 
|(𝜕𝑔1) (𝜕𝑇)⁄ | = 0 < ∞ 
|(𝜕𝑔1) (𝜕𝑇)⁄ | = 0 < ∞ 
|(𝜕𝑔1) (𝜕𝑉)⁄ | = 0 < ∞ 

 

 

𝑔2 

 

 

 

(𝜕𝑔2) (𝜕𝑆)⁄ = 𝛽𝑃 
(𝜕𝑔2) (𝜕𝑃)⁄ = 𝛽𝑆 − (𝛼 + 𝜇) 

(𝜕𝑔2) (𝜕𝐼)⁄ = 0 
(𝜕𝑔2) (𝜕𝐴)⁄ = 0 
(𝜕𝑔2) (𝜕𝐽)⁄ = 0 
(𝜕𝑔2) (𝜕𝑇)⁄ = 0 
(𝜕𝑔2) (𝜕𝑅)⁄ = 0 
(𝜕𝑔2) (𝜕𝑉)⁄ = 0 

|(𝜕𝑔2) (𝜕𝑆)⁄ | = |𝛽𝑃| < ∞ 
|(𝜕𝑔2) (𝜕𝑃)⁄ | = |𝛽𝑆 − (𝛼 + 𝜇)| < ∞ 

|(𝜕𝑔2) (𝜕𝐼)⁄ | = 0 < ∞ 
|(𝜕𝑔2) (𝜕𝐴)⁄ | = 0 < ∞ 

|(𝜕𝑔2) (𝜕𝐽)⁄ | = 0 < ∞ 
|(𝜕𝑔2) (𝜕𝑇)⁄ | = 0 < ∞ 
|(𝜕𝑔2) (𝜕𝑇)⁄ | = 0 < ∞ 
|(𝜕𝑔2) (𝜕𝑉)⁄ | = 0 < ∞ 

𝑔3 

 

(𝜕𝑔3) (𝜕𝑆)⁄ = 0 
(𝜕𝑔3) (𝜕𝑃)⁄ = 𝛼 

(𝜕𝑔3) (𝜕𝐼)⁄ = −(𝜌 + 𝜃 + 𝜇) 
(𝜕𝑔3) (𝜕𝐴)⁄ = 0 
(𝜕𝑔3) (𝜕𝐽)⁄ = 0 
(𝜕𝑔3) (𝜕𝑇)⁄ = 0 
(𝜕𝑔3) (𝜕𝑅)⁄ = 0 
(𝜕𝑔3) (𝜕𝑉)⁄ = 0 

|(𝜕𝑔3) (𝜕𝑆)⁄ | = 0 < ∞ 
|(𝜕𝑔3) (𝜕𝑃)⁄ | = 𝛼 < ∞ 

|(𝜕𝑔3) (𝜕𝐼)⁄ | = 𝜌 + 𝜃 + 𝜇 < ∞ 
|(𝜕𝑔3) (𝜕𝐴)⁄ | = 0 < ∞ 
|(𝜕𝑔3) (𝜕𝐽)⁄ | = 0 < ∞ 
|(𝜕𝑔3) (𝜕𝑇)⁄ | = 0 < ∞ 

|(𝜕𝑔3) (𝜕𝑇)⁄ | = 0 < ∞ 
|(𝜕𝑔3) (𝜕𝑉)⁄ | = 0 < ∞ 

 

 

 

 

𝑔4 

 

(𝜕𝑔4) (𝜕𝑆)⁄ = 0 
(𝜕𝑔4) (𝜕𝑃)⁄ = 0 
(𝜕𝑔4) (𝜕𝐼)⁄ = 𝜌 

(𝜕𝑔4) (𝜕𝐴)⁄ = −(𝜔 + 𝜇) 
(𝜕𝑔4) (𝜕𝐽)⁄ = 0 
(𝜕𝑔4) (𝜕𝑇)⁄ = 0 
(𝜕𝑔4) (𝜕𝑅)⁄ = 0 
(𝜕𝑔4) (𝜕𝑉)⁄ = 0 

|(𝜕𝑔4) (𝜕𝑆)⁄ | = 0 < ∞ 
|(𝜕𝑔4) (𝜕𝑃)⁄ | = 0 < ∞ 

(𝜕𝑔4) (𝜕𝐼)⁄ = 𝜌 
|(𝜕𝑔4) (𝜕𝐴)⁄ | = 𝜔 + 𝜇 < ∞ 
|(𝜕𝑔4) (𝜕𝐽)⁄ | = 0 < ∞ 
|(𝜕𝑔4) (𝜕𝑇)⁄ | = 0 < ∞ 
|(𝜕𝑔4) (𝜕𝑅)⁄ | = 0 < ∞ 
|(𝜕𝑔4) (𝜕𝑉)⁄ | = 0 < ∞ 

 

 

𝑔5 

 

 

(𝜕𝑔5) (𝜕𝑆)⁄ = 0 
(𝜕𝑔5) (𝜕𝑃)⁄ = 0 
(𝜕𝑔5) (𝜕𝐼)⁄ = 𝜃 
(𝜕𝑔5) (𝜕𝐴)⁄ = 0 

(𝜕𝑔5) (𝜕𝐽)⁄ = −(𝜅 + 𝜇) 
(𝜕𝑔5) (𝜕𝑇)⁄ = 0 
(𝜕𝑔5) (𝜕𝑅)⁄ = 0 
(𝜕𝑔5) (𝜕𝑉)⁄ = 0 

|(𝜕𝑔5) (𝜕𝑆)⁄ | = 0 < ∞ 
|(𝜕𝑔5) (𝜕𝑃)⁄ | = 0 < ∞ 
|(𝜕𝑔5) (𝜕𝐼)⁄ | = 𝜃 < ∞ 
|(𝜕𝑔5) (𝜕𝐴)⁄ | = 0 < ∞ 

|(𝜕𝑔5) (𝜕𝐽)⁄ | = 𝜅 + 𝜇 < ∞ 
|(𝜕𝑔5) (𝜕𝑇)⁄ | = 0 < ∞ 
(𝜕𝑔5) (𝜕𝑅)⁄ = 0 

|(𝜕𝑔5) (𝜕𝑉)⁄ | = 0 < ∞ 
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𝑔6 

(𝜕𝑔6) (𝜕𝑆)⁄ = 0 
(𝜕𝑔6) (𝜕𝑃)⁄ = 0 
(𝜕𝑔6) (𝜕𝐼)⁄ = 0 
(𝜕𝑔6) (𝜕𝐴)⁄ = 𝜔 
(𝜕𝑔6) (𝜕𝐽)⁄ = 𝜅 

(𝜕𝑔6) (𝜕𝑇)⁄ = −(𝜙 + 𝜇) 
(𝜕𝑔6) (𝜕𝑅)⁄ = 0 
(𝜕𝑔6) (𝜕𝑉)⁄ = 0 

|(𝜕𝑔6) (𝜕𝑆)⁄ | = 0 < ∞ 
|(𝜕𝑔6) (𝜕𝑃)⁄ | = 0 < ∞ 

(𝜕𝑔6) (𝜕𝐼)⁄ = 0 

|(𝜕𝑔6) (𝜕𝐴)⁄ | = 𝜔 < ∞ 
|(𝜕𝑔6) (𝜕𝐽)⁄ | = 𝜅 < ∞ 

|(𝜕𝑔6) (𝜕𝑇)⁄ | = 𝜙 + 𝜇 < ∞ 
|(𝜕𝑔6) (𝜕𝑅)⁄ | = 0 < ∞ 
|(𝜕𝑔6) (𝜕𝑉)⁄ | = 0 < ∞ 

𝑔7 (𝜕𝑔7) (𝜕𝑆)⁄ = 0 
(𝜕𝑔7) (𝜕𝑃)⁄ = 0 
(𝜕𝑔7) (𝜕𝐼)⁄ = 0 
(𝜕𝑔7) (𝜕𝐴)⁄ = 0 
(𝜕𝑔7) (𝜕𝐽)⁄ = 0 
(𝜕𝑔7) (𝜕𝑇)⁄ = 𝜙 

(𝜕𝑔7) (𝜕𝑅)⁄ = −(𝛾 + 𝜇) 
(𝜕𝑔7) (𝜕𝑉)⁄ = 0 

|(𝜕𝑔7) (𝜕𝑆)⁄ | = 0 < ∞ 
|(𝜕𝑔7) (𝜕𝑃)⁄ | = 0 < ∞ 

(𝜕𝑔7) (𝜕𝐼)⁄ = 0 
|(𝜕𝑔7) (𝜕𝐴)⁄ | = 0 < ∞ 
|(𝜕𝑔7) (𝜕𝐽)⁄ | = 0 < ∞ 

|(𝜕𝑔7) (𝜕𝑇)⁄ | = 𝜙 < ∞ 
|(𝜕𝑔7) (𝜕𝑅)⁄ | = 𝛾 + 𝜇 < ∞ 
|(𝜕𝑔7) (𝜕𝑉)⁄ | = 0 < ∞ 

𝑔8 (𝜕𝑔8) (𝜕𝑆)⁄ = 0 
(𝜕𝑔8) (𝜕𝑃)⁄ = 0 
(𝜕𝑔8) (𝜕𝐼)⁄ = 0 
(𝜕𝑔8) (𝜕𝐴)⁄ = 0 
(𝜕𝑔8) (𝜕𝐽)⁄ = 0 
(𝜕𝑔8) (𝜕𝑇)⁄ = 0 
(𝜕𝑔8) (𝜕𝑅)⁄ = 𝛾 

(𝜕𝑔8) (𝜕𝑉)⁄ = −(𝛿 + 𝜇) 

|(𝜕𝑔8) (𝜕𝑆)⁄ | = 0 < ∞ 

|(𝜕𝑔8) (𝜕𝑃)⁄ | = 0 < ∞ 
|(𝜕𝑔8) (𝜕𝑃)⁄ | = 0 < ∞ 
|(𝜕𝑔8) (𝜕𝐴)⁄ | = 0 < ∞ 
|(𝜕𝑔8) (𝜕𝐽)⁄ | = 0 < ∞ 
|(𝜕𝑔8) (𝜕𝑇)⁄ | = 0 < ∞ 
|(𝜕𝑔8) (𝜕𝑅)⁄ | = 𝛾 < ∞ 

|(𝜕𝑔8) (𝜕𝑉)⁄ | = 𝛿 + 𝜇 < ∞ 

Here, from computations in Table 3, all the partial derivatives (𝜕𝑔𝑖) (𝜕𝑥𝑗)⁄ :  𝑖, 𝑗 = 1, 2,

3, 4, 5, 6, 7, 8 exist, and are both continuous and bounded in 𝑅. Hence, by Theorem 3.1, a 

solution for the model (1)-(8) exists and unique. 

Lemma 3.2 (Positivity) Solutions of the model equations (1)-(8) together with the initial 

conditions 𝑆(0) > 0, 𝑃(0) ≥ 0, 𝐼(0) ≥ 0, 𝐴(0) ≥ 0, 𝐽(0) ≥ 0, 𝑇(0) ≥ 0, 𝑅(0) ≥ 0,
𝑉(0) ≥ 0 are always non-negative (OR) the model variables  𝑆, 𝑃, 𝐼, 𝐴, 𝐽, 𝑇, 𝑅 and 

𝑉 are non-negative for all 𝑡 and will remain in ℝ+
8 . 

Proof  Positivity of the solutions of model equations is shown separately for each of the 

model variables  𝑆, 𝑃, 𝐼, 𝐴, 𝐽, 𝑇, 𝑅, and 𝑉. 

Positivity of   𝑆(𝑡): The model equation (1) given by 𝑑𝑆 𝑑𝑡⁄ = 𝜏 − 𝛽𝑆𝑃 − 𝜇𝑆  can be 

expressed without loss of generality, after eliminating the positive term𝜏  appearing on the 

right hand side, as an inequality as 𝑑𝑆 𝑑𝑡⁄ ≥ −[𝛽𝑃 + 𝜇]𝑆 . Using variables separable 

method and on applying integration, the solution of the foregoing differential inequality 

can be obtained as   𝑆(𝑡) ≥ 𝑆(0)𝑒−𝜇𝑡−𝛽 ∫𝑃𝑑𝑡. Recall that an exponential function is always 

non–negative irrespective of the sign of the exponent i.e., the exponential function 

𝑒−𝜇𝑡−𝛽 ∫𝑃𝑑𝑡 is a non-negative quantity. Hence, it can be concluded that  𝑆(𝑡) ≥ 0. 

Positivity of  𝑃(𝑡): The model equation (2) given by 𝑑𝑃 𝑑𝑡⁄ = 𝛽𝑆𝑃 − (𝛼 + 𝜇)can be 

expressed without loss of generality, after eliminating positive term 𝛽𝑆𝑃  which is 

appearing on the right hand side, as an inequality as𝑑𝑃 𝑑𝑡⁄ ≥ −(𝛼 + 𝜇)𝑃. Using variables 

separable method and on applying integration, the solution of the foregoing differential 

inequality can be obtained as    𝑃(𝑡) ≥ 𝑃(0)𝑒−(𝛼+𝜇)𝑡. Recall that an exponential function 

is always non–negative irrespective of the sign of the exponent i.e., the exponential 

function 𝑒−(𝛼+𝜇)𝑡 is a non-negative quantity. Hence, it can be concluded that  𝑃(𝑡) ≥ 0. 
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Positivity of  𝐼(𝑡): The model equation (3) given by 𝑑𝐼 𝑑𝑡⁄ = 𝛼𝑃 − (𝜌 + 𝜃 + 𝜇)𝐼 can be 

expressed without loss of generality, after eliminating the positive terms𝛼𝑃 which is 

appearing on the right hand side, as an inequality as 𝑑𝐼 𝑑𝑡⁄ ≥ −(𝜌 + 𝜃 + 𝜇)𝐼. Using 

variables separable method and on applying integration, the solution of the foregoing 

differential inequality can be obtained as   𝐼(𝑡) ≥ 𝐼(0)𝑒−(𝜌+𝜃+𝜇)𝑡 . Recall that an 

exponential function is always non–negative irrespective of the sign of the exponent i.e., 

the exponential function 𝑒−(𝜌+𝜃+𝜇)𝑡  is a non-negative quantity. Hence, it can be 

concluded that  𝐼(𝑡) ≥ 0. 

Positivity of  𝐴(𝑡): The model equation (4) given by 𝑑𝐴 𝑑𝑡⁄ = 𝜌𝐼 − (𝜔 + 𝜇)𝐴  can be 

expressed without loss of generality, after eliminating the positive terms𝜌𝐼  which is 

appearing on the right hand side, as an inequality as 𝑑𝐴 𝑑𝑡⁄ ≥ −(𝜔 + 𝜇)𝐴.  Using 

variables separable method and on applying integration, the solution of the foregoing 

differential inequality can be obtained as 𝐴(𝑡) ≥ 𝐴(0)𝑒−(𝜔+𝜇)𝑡 . Recall that an 

exponential function is always non–negative irrespective of the sign of the exponent i.e., 

the exponential function 𝑒−(𝜔+𝜇)𝑡 is a non-negative quantity. Hence, it can be concluded 

that 𝐴(𝑡) ≥ 0. 

Positivity of   𝐽(𝑡) : The model equation (5) given by 𝑑𝐽 𝑑𝑡⁄ = 𝜃𝐼 − (𝜅 + 𝜇)𝐽  can be 

expressed without loss of generality, after eliminating the positive term  𝜃𝐼  which is 

appearing on the right hand side, as an inequality as 𝑑𝐽 𝑑𝑡⁄ ≥ −(𝜅 + 𝜇)𝐽. Using variables 

separable method and on applying integration, the solution of the foregoing differential 

inequality can be obtained a  𝐽(𝑡) ≥ 𝐽(0)𝑒−(𝜅+𝜇)𝑡. Recall that an exponential function is 

always non–negative irrespective of the sign of the exponent i.e., the exponential 

function𝑒−(𝜅+𝜇)𝑡is a non-negative quantity. Hence, it can be concluded that  𝐽(𝑡) ≥ 0. 

Positivity of  𝑇(𝑡): The model equation (6) given by 𝑑𝑇 𝑑𝑡⁄ = 𝜔𝐴 + 𝜅𝐽 − (𝜙 + 𝜇)𝑇 can 

be expressed without loss of generality, after eliminating the positive terms 𝜔𝐴 and 𝜅𝐽  
which is appearing on the right hand side, as an inequality as 𝑑𝑇 𝑑𝑡⁄ ≥ −(𝜙 + 𝜇)𝑇. Using 

variables separable method and on applying integration, the solution of the foregoing 

differential inequality can be obtained as 𝑇(𝑡) ≥ 𝐽(0)𝑒−(𝜙+𝜇)𝑡. Recall that an exponential 

function is always non–negative irrespective of the sign of the exponent i.e. the 

exponential function𝑒−(𝛾+𝜇)𝑡 is a non-negative quantity. Hence, it can be concluded 

that  𝑇(𝑡) ≥ 0. 

Positivity of  𝑅(𝑡): The model equation (7) given by 𝑑𝑅 𝑑𝑡⁄ = 𝜙𝑇 − (𝛾 + 𝜇)𝑅  can be 

expressed without loss of generality, after eliminating the positive terms 𝜙𝑇 which is 

appearing on the right hand side, as an inequality as 𝑑𝑅 𝑑𝑡⁄ ≥ −(𝛾 + 𝜇)𝑅 . Using 

variables separable method and on applying integration, the solution of the foregoing 

differential inequality can be obtained as 𝑅(𝑡) ≥ 𝑅(0)𝑒−(𝛾+𝜇)𝑡. Recall that an exponential 

function is always non–negative irrespective of the sign of the exponent i.e., the 

exponential function 𝑒−(𝛾+𝜇)𝑡 is a non-negative quantity. Hence, it can be concluded that 

𝑅(𝑡) ≥ 0. 

Positivity of  𝑉(𝑡): The model equation (7) given by 𝑑𝑉 𝑑𝑡⁄ = 𝛾𝑅 − (𝛿 + 𝜇)𝑉 can be 

expressed without loss of generality, after eliminating the positive term𝛾𝑅  which is 

appearing on the right hand side, as an inequality as 𝑑𝑉 𝑑𝑡⁄ ≥ −(𝛿 + 𝜇)𝑉 . Using 

variables separable method and on applying integration, the solution of the foregoing 

differential inequality can be obtained as 𝑉(𝑡) ≥ 𝑉(0)𝑒−(𝛿+𝜇)𝑡. Recall that an exponential 

function is always non–negative irrespective of the sign of the exponent i.e., the 

exponential function𝑒−(𝛿+𝜇)𝑡is a non-negative quantity. Hence, it can be concluded that 

𝑉(𝑡) ≥ 0. 

Thus, the model variables 𝑆,   𝑃, 𝐼,   𝐴, 𝐽, 𝑇, 𝑅 and 𝑉 representing population sizes of 
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various types of human population are positive quantities and will remain in ℝ+
 8 for all 𝑡. 

Lemma 3.3 (Boundedness) The non-negative solutions of the system of model equations 

(1)-(8) are bounded. That is the model variables  𝑆, 𝑃, 𝐼, 𝐴, 𝐽, 𝑇, 𝑅  and 𝑉  are all 

bounded for all 𝑡. 

Proof  Recall that each population size is bounded if and only if the total population size is 

bounded. Hence, in the present case it is sufficient to prove that the total population size 

𝑁(𝑡) = 𝑆(𝑡) + 𝑃(𝑡) + 𝐼(𝑡) + 𝐴(𝑡) +  𝐽(𝑡) + 𝑇(𝑡) + 𝑅(𝑡) + 𝑉(𝑡) is bounded for all 𝑡. It 
can be began by showing that all feasible solutions are uniformly bounded in a proper 

subset  𝐷  of ℝ+
8 where the feasible region 𝑅  is given by 𝑅 = {(𝑆, 𝑃, 𝐼, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉) ∈

ℝ+
8  ;  𝑁 ≤ 𝜏 𝜇⁄ }. 

Now, summation of all the five equations (1)-(8) of the model gives 𝑑𝑁(𝑡) 𝑑𝑡⁄ = 𝜏 −
𝜇𝑁(𝑡). Again, considering total population 𝑁 and sub-population 𝑉 further we can write 

the equation as inequality of the form 𝑑𝑁 𝑑𝑡⁄  ≤ 𝜏 − 𝜇𝑁(𝑡). Equivalently this inequality 

can be expressed as a linear ordinary differential inequality as 𝑑𝑁 𝑑𝑡⁄ +  𝜇𝑁 ≤  𝜏 giving 

general solution upon solving as 𝑁(𝑡) ≤ 𝜏 𝜇⁄ + 𝑐𝑒−𝜇𝑡. But, the term  𝑁(0) denotes the 

initial values of the respective variable 𝑁(𝑡) = 𝑁(0)  at  𝑡 = 0 . Thus, the particular 

solution can be expressed as𝑁(𝑡) ≤ 𝜏 𝜇⁄ + [𝑁(0) − (𝜏 𝜇⁄ )]𝑒−𝜇𝑡 . Further, it can be 

observed that 𝑁(𝑡) → 𝜏 𝜇⁄  as   𝑡 → ∞. That is, total population size 𝑁(𝑡) takes off from a 

value 𝑁(0) at the initial time 𝑡 = 0 and ends up with a bounded value 𝜏 𝜇 ⁄  as the time 

 𝑡  progresses to infinity. Thus, it can be concluded that 𝑁(𝑡) is bounded within a pair of 

values as 0 ≤ 𝑁(𝑡) ≤ 𝜏 𝜇⁄ . 

Therefore, 𝜏 𝜇⁄  is an upper bound of  𝑁(𝑡). Hence, feasible solution of the system of 

model equations (1)-(8) remains in the region 𝑅 which is a positively invariant set. Thus, 

the system is biologically meaningful in the domain 𝑅. Further, it is sufficient to consider 

the dynamics of the populations represented by the model system (1)-(8) in that domain. 

Therefore, it can be summarized the result of Lemma 3.3 as “the model variables  

𝑆, 𝑃, 𝐼, 𝐴, 𝐽, 𝑇, 𝑅 and 𝑉  are bounded for all 𝑡”. 

Therefore, the formulated model is biologically meaningful and mathematically 

well-posed. 

3.2 Equilibrium points 

In order to understand the dynamics of the model, it is necessary to determine equilibrium 

points of the solution region. An equilibrium solution is a steady state solution of the model 

equations (1)-(8) in the sense that if the system begins at such a state, it will remain there 

for all times. In other words, the population sizes remain unchanged and thus the rate of 

change for each population vanishes. Equilibrium points of the model are found, 

categorized, stability analysis is conducted and the results have been presented in the 

following sub-sections: 

3.2.1 Disease free equilibrium point 

Disease free equilibrium point is a steady state solution where there is no disease in the 

population. Now, absence of disease implies that 𝑃 = 𝐼 = 𝐴 = 𝐽 = 𝑇 = 𝑅 = 𝑉 = 0 and 

also setting the right hand sides of the model equations (1)-(8) equal to zero results in 

giving 𝜏 − 𝜇𝑆 = 0, solution of which is the population size of the susceptible humans at 

the disease free equilibrium and is given by 𝑆0 = (𝜏 𝜇⁄ ).Thus, the disease free equilibrium 

point of the model equations (1)-(8) is given by 

𝐸0 = (𝑆0, 0,0,0,0,0,0,0) = (𝜏 𝜇⁄ , 0,0,0,0,0,0,0) 
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3.2.2 Endemic equilibrium point 

The endemic equilibrium point 𝐸1 = {𝑆
1, 𝑃1, 𝐼1, 𝐴1, 𝐽1, 𝑇1, 𝑅1, 𝑉1}  is a steady state 

solution when the disease persists in the population. The endemic equilibrium point is 

obtained by setting rates of changes of variables with respect to time of model equations 

(1)-(8) to zero. That is, setting 𝑑𝑆 𝑑𝑡⁄ = 𝑑𝐴 𝑑𝑡⁄ = 𝑑𝐼 𝑑𝑡⁄ = 𝑑𝐽 𝑑𝑡⁄ = 𝑑𝑇 𝑑𝑡⁄ = 𝑑𝑉 𝑑𝑡⁄ =
0 the model equations take the form as 

 𝜏 − 𝛽𝑆𝑃 − 𝜇𝑆 = 0  (9) 

 𝛽𝑆𝑃 − 𝑎𝑃 = 0  (10) 

 𝛼𝑃 − 𝑏𝐼 = 0  (11) 

 𝜌𝐼 − 𝑐𝐴 = 0  (12) 

 𝜃𝐼 − 𝑑𝐽 = 0         (13) 

 𝜔𝐴 + 𝜅𝐽 − 𝑒𝑇 = 0                  (14) 

 𝜙𝑇 − 𝑓𝑅 = 0             (15) 

 𝛾𝑅 − 𝑔𝑉 = 0  (16) 

Here in (9)-(16), the quantities 𝑎, 𝑏, 𝑐 represent the parametric expressions as  𝑎 = 𝛼 +
𝜇, 𝑏 = 𝜌 + 𝜃 + 𝜇, 𝑐 = 𝜔 + 𝜇, 𝑑 = 𝜅 + 𝜇, 𝑒 = 𝜙 + 𝜇, 𝑓 = 𝛾 + 𝜇, 𝑔 = 𝛿 + 𝜇. Clearly, 

solutions of (9) – (16) will provide endemic equilibrium of the model equations and that is 

obtained as follows: 

(i) Equations (9) can be rearranged as [𝛽𝑆 − 𝑎]𝑃 = 0 leading to the solutions 𝛽𝑆 − 𝑎 =
0 or 𝑃 = 0 or both. However, 𝑃 does not vanish since the disease is assumed to 

persist. Thus, it leads to the only meaningful solution 𝛽𝑆 − 𝑎 = 0 or equivalently 

𝑆 = (𝑎 𝛽⁄ ). That is, 𝑆1 component of 𝐸1 is given by 

𝑆1 ≡  𝑆 =  (𝑎 𝛽⁄ )  =  (𝜏 𝜇𝑅0⁄ ) (17) 

(ii) Now the solution for 𝑃 can be obtained by substituting (17) into equation (9) and 

rewriting the resulting equation as 𝜏 − 𝛽(𝜏 𝜇𝑅0⁄ )𝑃 − 𝜇(𝜏 𝜇𝑅0⁄ ) = 0 giving 

𝑃1 ≡ 𝑃 = (𝜇 𝛽⁄ )(𝑅0 − 1) (18) 

(iii) Substituting 𝑃1 value from (18) into (11) and solving for 𝐼 we get the following 

𝐼1 ≡ 𝐼 = (𝛼𝜇 𝑏𝛽⁄ )(𝑅0 − 1) (19) 

(iv) Substituting 𝐼1 value from (19) into (12) and solving for 𝐴 we get the following 

𝐴1 ≡ 𝐴 = (𝜌𝛼𝜇 𝑐𝑏𝛽⁄ )(𝑅0 − 1) (20) 

(v) Substituting 𝐼1 value from (19) into (13) and solving for 𝐽 we get the following 

𝐽1 ≡ 𝐽 = (𝜃𝛼𝜇 𝑑𝑏𝛽⁄ )(𝑅0 − 1) (21) 

(vi) Substituting 𝐴1 value from (20) and 𝐽1 value from (21) into (14) and solving for 𝑇 

we get the following 

𝑇1 ≡ 𝑇 = (𝛼𝜔𝜌𝜇 𝑒𝑐𝑏𝛽⁄ + (𝜅𝜃𝛼𝜇 𝑑𝑏𝛽⁄ ))(𝑅0 − 1) (22) 

(vii) Substituting 𝑇1 value from (22) into (15) and solving for 𝑅 we get the following 

𝑅1 ≡ 𝑅 = (𝜙 𝑓⁄ )(𝛼𝜔𝜌𝜇 𝑒𝑐𝑏𝛽⁄ + (𝜅𝜃𝛼𝜇 𝑑𝑏𝛽⁄ ))(𝑅0 − 1) (23) 

(viii) Substituting 𝑅1 value from (23) into (16) and solving for  𝑉 we get the following 

𝑉1 ≡ 𝑉 = (𝛾 𝜙 𝑔𝑓⁄ )(𝛼𝜔𝜌𝜇 𝑒𝑐𝑏𝛽⁄ + (𝜅𝜃𝛼𝜇 𝑑𝑏𝛽⁄ ))(𝑅0 − 1) (24) 
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3.3 Basic reproduction number 

The basic reproduction number is denoted by 𝑅0 and is defined as the expected number of 

people getting secondary infection because of infected person enters into wholly 

susceptible population [6, 11]. This number determines the potential for the spread of 

disease within a population. When 𝑅0 < 1 each infected individual produces on average 

less than one new infected individual so that the disease is expected to die out. On the other 

hand, if 𝑅0 > 1 then each individual produces more than one new infected individual so 

that the disease is expected to continue spreading in the population. This means that the 

threshold quantity for eradicating the disease is to reduce the value of  𝑅0 to less than one. 

The basic reproductive number 𝑅0  can be determined using the next generation 

matrix. In this method𝑅0is defined as the largest eigenvalue of the next generation matrix 

[11]. The formulation of this matrix involves classification of all compartments of the 

model in to two classes: infected and non-infected.  

Assume that there are 𝑛  compartments in the model and of which the first 𝑚 

compartments are with infected individuals. From the system (1)-(8) the seven equations 

of infected individuals are considered and decomposed into two groups: 𝐹  contains newly 

infected cases and 𝑣  contains the remaining terms. Let 𝑋 = [𝑃, 𝐼, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉]𝑡  be a 

column vector and the differential equations of the last seven compartments are rewritten 

as 𝐹(𝑋) – 𝑇(𝑋). 
Now, let  𝐹(𝑋) = [𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5, 𝐹6, 𝐹7]

𝑡. Here (i) 𝐹1 = 𝛽𝑆𝑃 denotes newly infected 

cases which arrived into primary infected compartment (ii) 𝐹2 = 0 denotes newly infected 

cases arrived into the infectious with known status compartment (iii)  𝐹3 = 0 denotes 

newly infected cases arrived into the infectious asymptomatic compartment, (iii) 𝐹4 = 0 
denotes newly infected cases arrived into the infectious symptomatic compartment, (iv) 

𝐹5 = 0  denotes newly infected case from susceptible compartment into treatment 

compartment, (v) 𝐹6 = 0 denotes newly infected case from susceptible compartment into 

drug resistant compartment (vi) 𝐹7 = 0 denotes newly infected case from susceptible 

compartment into AIDS compartment. Further, let 𝑇(𝑋) = [𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, 𝑇6, 𝑇7]
𝑡 . 

Here 𝑇1 = 𝑎𝑃 , 𝑇2 = −𝛼𝑃 + 𝑏𝐼 , 𝑇3 = −𝜌𝐼 + 𝑐𝐴 , 𝑇4 = −𝜃𝐼 + 𝑑𝐽 , 𝑇5 = −𝜔𝐴 − 𝜅𝐽 +
𝑒𝑇, 𝑇6 = −𝜙𝑇 + 𝑓𝑅, and 𝑇7 = −𝛾𝑅 + 𝑔𝑉. Here, the values of 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 and 𝑔 

are as defined above. 

The next step is the computation of square matrices 𝐹 and 𝑇 of order 𝑚 ×𝑚, where 

𝑚 is the number of infected classes, defined by 𝐹 =  [
𝜕𝐹𝑖(𝐸0)

𝜕𝑥𝑗
] and 𝑇 =  [

𝜕𝑇𝑖(𝐸0)

𝜕𝑥𝑗
] with 

 1 ≤ 𝑖, 𝑗 ≤ 𝑚, such that 𝐹 is non-negative, 𝑉 is a non-singular matrices and 𝐸0 is the 

disease free equilibrium point DFE. If 𝐹 and 𝑇 are non-negative and 𝑇 is non-singular 

then 𝑇−1 is non-negative and thus 𝐹𝑇−1 is also non-negative. Also, the matrix 𝐹𝑇−1 is 

called the next generation matrix for the model. Finally, the basic reproduction number 𝑅0 

is given by 𝑅0 = 𝜌(F𝑇
−1). In general, 𝜌(𝐴) denotes the spectral radius of matrix 𝐴 and 

the spectral radius is the biggest non-negative eigenvalue of the next generation matrix. 

The Jacobian of 𝐹 and 𝑇 at the disease free equilibrium point 𝐸0  takes the form 

respectively as 

𝐹 ≡

[
 
 
 
 
 
 
𝛽𝜏 𝜇⁄ 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0]

 
 
 
 
 
 

, 𝑇 ≡

[
 
 
 
 
 
 
𝑎 0 0 0 0 0 0
−𝛼 𝑏 0 0 0 0 0
0 −𝜌 𝑐 0 0 0 0
0 −𝜃 0 𝑑 0 0 0
0 0 −𝜔 −𝜅 𝑒 0 0
0 0 0 0 −𝜙 𝑓 0
0 0 0 0 0 −𝛾 𝑔]

 
 
 
 
 
 

 (25) 

It can be verified that the matrix 𝑇 is non-singular as its determinant is non-zero and after 
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some algebraic computations the next generation matrix is constructed as 

[𝐽𝐹(𝐸0)][𝐽𝑇(𝐸0)]
−1

=

[
 
 
 
 
 
 
𝛽𝜏 𝜇⁄ 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0]

 
 
 
 
 
 

[
 
 
 
 
 
 
𝑎 0 0 0 0 0 0
−𝛼 𝑏 0 0 0 0 0
0 −𝜌 𝑐 0 0 0 0
0 −𝜃 0 𝑑 0 0 0
0 0 −𝜔 −𝜅 𝑒 0 0
0 0 0 0 −𝜙 𝑓 0
0 0 0 0 0 −𝛾 𝑔]

 
 
 
 
 
 
−1

 

=

[
 
 
 
 
 
 
(𝛽𝜏) (𝑎𝜇)⁄ 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0]

 
 
 
 
 
 

 

Now, it is possible to calculate the eigenvalues of the matrix [𝐹][𝑇]−1 to determine the 

basic reproduction number 𝑅0 which is the spectral radius or the largest eigenvalue. Thus, 

the eigenvalues are computed by evaluating the characteristic equation 𝑑𝑒𝑡[𝐹[𝑇]−1 −
𝜆𝐼] = 0 or equivalently solving 

|

|

(𝛽𝜏) (𝑎𝜇)⁄ − 𝜆 0 0 0 0 0 0
0 −𝜆 0 0 0 0 0
0 0 −𝜆 0 0 0 0
0 0 0 −𝜆 0 0 0
0 0 0 0 −𝜆 0 0
0 0 0 0 0 −𝜆 0
0 0 0 0 0 0 −𝜆

|

|

= 0 

It reduces to the equation as 𝜆6[(𝛽𝜏 𝜇⁄ 𝑎) − 𝜆] = 0 giving the seven eigenvalues as 

𝜆1 = (𝛽𝜏 𝑎𝜇⁄ ),   𝜆2 = 0,   𝜆3 = 0,   𝜆4 = 0,   𝜆5 = 0,   𝜆6 = 0,   𝜆7 = 0. 

However, the largest eigenvalue here is and is the spectral radius or the threshold value or 

the basic reproductive number. Thus, the reproduction number of the model is 𝑅0 =
(𝛽𝜏 𝜇𝑎⁄ ). 

3.4 Stability analysis of the disease free equilibrium 

In absence of the infectious disease, the model populations have a unique disease free 

steady state 𝐸0 . To find the local stability of 𝐸0 , the Jacobian method of the model 

equations evaluated at DFE 𝐸0 is used. Also, to determine the global stability at  𝐸0 the 

steps given in [2, 4] are used. It is already shown that the DFE of model (1)-(8) is given 

by𝐸0 = {𝜏 𝜇⁄ , 0,0,0,0,0,0,0}. Now, stability analysis of DFE is conducted and the results 

are presented in the form of theorems and proofs in the following sub-sections. 

3.4.1 Local stability of disease free equilibrium point 

Theorem 3.2 The DFE 𝐸0 of the system (1)-(8) is locally asymptotically stable if 𝑅0 < 1 

and unstable if 𝑅0 > 1. 

Proof  Consider the right hand side expressions of the equations (1)-(8) as functions so as 

to find the Jacobian matrix from the functions. Now let, 
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 𝑔1(𝑆, 𝑃, 𝐼, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉) = 𝜏 − 𝛽𝑆𝑃 − 𝜇𝑆 

𝑔2(𝑆, 𝑃, 𝐼, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉) = 𝛽𝑆𝑃 − 𝑎𝑃 

𝑔3(𝑆, 𝑃, 𝐼, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉) = 𝛼𝑃 − 𝑏𝐼 

𝑔4(𝑆, 𝑃, 𝐼, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉) = 𝜌𝐼 − 𝑐𝐴 

𝑔5(𝑆, 𝑃, 𝐼, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉) = 𝜃𝐼 − 𝑑𝐽 

𝑔6(𝑆, 𝑃, 𝐼, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉) = 𝜔𝐴 + 𝜅𝐽 − 𝑒𝑇 

𝑔7(𝑆, 𝑃, 𝐼, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉) = 𝜙𝑇 − 𝑓𝑅 

𝑔8(𝑆, 𝑃, 𝐼, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉) = 𝛾𝑅 − 𝑔𝑉 

Let   𝐽(𝑆, 𝑃, 𝐼, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉) be a Jacobian matrix of 𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5, 𝑔6, 𝑔7, 𝑔8 with 

respect to 𝑆, 𝑃, 𝐼, 𝐽, 𝑇, 𝑅, 𝑉. Thus, 

𝐽(𝑆, 𝑃, 𝐼, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉) =

[
 
 
 
 
 
 
 
−𝛽𝑃 − 𝜇 −𝛽𝑆 0 0 0 0 0 0
𝛽𝑃 𝛽𝑆 − 𝑎 0 0 0 0 0 0
0 𝛼 −𝑏 0 0 0 0 0
0 0 𝜌 −𝑐 0 0 0 0
0 0 𝜃 0 −𝑑 0 0 0
0 0 0 𝜔 𝜅 −𝑒 0 0
0 0 0 0 0 𝜙 −𝑓 0
0 0 0 0 0 0 𝛾 −𝑔]

 
 
 
 
 
 
 

 

Now, the Jacobian matrix of  𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5, 𝑔6, 𝑔7, 𝑔8 with respect to 𝑆, 𝑃, 𝐼, 𝐽, 
𝑇, 𝑅, 𝑉 at the disease free equilibrium 𝐸0 is given by 

𝐽(𝐸0) =

[
 
 
 
 
 
 
 
−𝜇 −𝑎𝑅0 0 0 0 0 0 0

0 𝑎(𝑅0 − 1) 0 0 0 0 0 0
0 𝛼 −𝑏 0 0 0 0 0
0 0 𝜌 −𝑐 0 0 0 0
0 0 𝜃 0 −𝑑 0 0 0
0 0 0 𝜔 𝜅 −𝑒 0 0
0 0 0 0 0 𝜙 −𝑓 0
0 0 0 0 0 0 𝛾 −𝑔]

 
 
 
 
 
 
 

 

Now, to determine the signs of eigenvalues we use the concept of trace and determinant of 

a given matrix. Now, 

(i) Trace of 𝐽(𝐸0) = 𝑎(𝑅0 − 1) − 𝜇 − 𝑏 − 𝑐 − 𝑑 − 𝑒 − 𝑓 − 𝑔 < 0, if 𝑅0 < 1. 

(ii) Determinant of 𝐽(𝐸0) = −𝑎𝑏𝑐𝑑𝑒𝑓𝑔𝜇(𝑅0  −  1) > 0, if 𝑅0 < 1 . 

Since trace is negative and determinant is positive for 𝑅0 < 1 . We can conclude that all 

eigenvalues of a matrix 𝐽(𝐸0) are negative provided the mentioned condition is satisfied. 

Thus, from Hurwitz Routh principle disease free equilibrium point is locally 

asymptotically stable if 𝑅0 < 1 and unstable if 𝑅0 > 1 [3, 7, 6]. 

3.4.2 Global stability of disease free equilibrium point 

Let 𝑥 ∈ 𝑅𝑛 is disease compartment and 𝑦 ∈ 𝑅𝑚 be disease free compartment the disease 

transmission model (1)-(8) can be written in the form: 

 �̇� = −(𝑇 − 𝐹)𝑥 − ℎ(𝑥, 𝑦) (26) 

 �̇� = 𝑔(𝑥, 𝑦) (27) 

Here in (24), the notations 𝐹 and  𝑇 are given in (25). 
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Theorem 3.3 If  𝑇 − 𝐹  is a non-singular M-matrix and   ℎ ≥ 0  then the disease-free 

equilibrium point of model equations (1)-(8) is globally asymptotically stable. 

Proof  Using the procedure given in [1, 10] the rate of change of the variables in the 

model equations (1)-(8) can be rewritten as 

 
�̇� = −(𝑇 − 𝐹)𝑥 − [

𝛽(𝑆0 − 𝑆)𝑃

0

] 

 �̇� = 𝜏 − 𝛽𝑆𝑃 − 𝜇𝑆 

Now, it is to be shown that 𝑇 − 𝐹  is non-singular M-matrix. From the previous 

computations (25) we have 

𝐹 ≡

[
 
 
 
 
 
 
𝛽𝜏 𝜇⁄ 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0]

 
 
 
 
 
 

, 𝑇 ≡

[
 
 
 
 
 
 
𝑎 0 0 0 0 0 0
−𝛼 𝑏 0 0 0 0 0
0 −𝜌 𝑐 0 0 0 0
0 −𝜃 0 𝑑 0 0 0
0 0 −𝜔 −𝜅 𝑒 0 0
0 0 0 0 −𝜙 𝑓 0
0 0 0 0 0 −𝛾 𝑔]

 
 
 
 
 
 

. 

𝑇 − 𝐹 =

[
 
 
 
 
 
 
𝑎 − 𝛽𝜏 𝜇⁄ 0 0 0 0 0 0
−𝛼 𝑏 0 0 0 0 0
0 −𝜌 𝑐 0 0 0 0
0 −𝜃 0 𝑑 0 0 0
0 0 −𝜔 −𝜅 𝑒 0 0
0 0 0 0 −𝜙 𝑓 0
0 0 0 0 0 −𝛾 𝑔]

 
 
 
 
 
 

≡ 𝑠𝐼 −

[
 
 
 
 
 
 
𝛽𝜏 𝜇⁄ 0 0 0 0 0 0
𝛼 0 0 0 0 0 0
0 𝜌 0 0 0 0 0
0 𝜃 0 0 0 0 0
0 0 𝜔 𝜅 0 0 0
0 0 0 0 𝜙 0 0
0 0 0 0 0 𝛾 0]

 
 
 
 
 
 

 

= 𝑠𝐼 − 𝐵 

Here, 𝑠 = max (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔) and 

𝐵 =

[
 
 
 
 
 
 
𝛽𝜏 𝜇⁄ 0 0 0 0 0 0
𝛼 0 0 0 0 0 0
0 𝜌 0 0 0 0 0
0 𝜃 0 0 0 0 0
0 0 𝜔 𝜅 0 0 0
0 0 0 0 𝜙 0 0
0 0 0 0 0 𝛾 0]

 
 
 
 
 
 

 

Now, det(𝑇 − 𝐹) =  −𝑏𝑐𝑑𝑒𝑓𝑔(𝛽𝜏 −  𝑎𝜇)/𝜇  and 𝜌(𝐵) = 𝛽𝜏 𝜇⁄  and 𝑇 − 𝐹 is 

non-singular matrix provided that the conditions 𝛽𝜏 ≠ 𝑎𝜇  are satisfied. Further, off 

diagonal elements of 𝑇 − 𝐹 are non-positive numbers. Thus, 𝑇 − 𝐹  is non-singular 

M-matrix if  𝑠 ≥ 𝜌(𝐵). 
Additionally, one can easily show that 𝑆 ≤ 𝑆0. Therefore, from the above hypothesis 

disease-free equilibrium point of model equations (1)-(8) is globally asymptotically stable 

for 𝑅0 < 1. 

3.5 Stability analysis of endemic equilibrium point 

By definition it is true that at the endemic equilibrium point 𝐸1 =
{𝑆1, 𝑃1, 𝐼1, 𝐴1, 𝐽1, 𝑇1, 𝑅1, 𝑉1} is the point where the disease persists or exists. To analyze 

the local stability of𝐸1, Jacobian matrix of the model that evaluated at this equilibrium 

point is used. Further, remember that the endemic equilibrium point 𝐸1 =
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{𝑆1, 𝑃1, 𝐼1, 𝐴1, 𝐽1, 𝑇1, 𝑅1, 𝑉1} of the given model (1)-(8) is already computed. 

3.5.1 Local stability of endemic equilibrium point 

The local stability of endemic equilibrium point is stated and proved in Theorem 3.4. 

Theorem 3.4 The endemic equilibrium point is locally asymptotically stable if 𝑅0 > 1 

and unstable if 𝑅0 < 1. 

Proof The stability analysis of 𝐸1  is conducted by following the similar procedure 

adopted as in the case of𝐸0. Thus, the procedure starts with the construction of Jacobian 

matrix at 𝐸1. Now, the Jacobian matrix of the model given at endemic equilibrium point 

𝐸1 takes the form as 

𝐽(𝑆1, 𝑃1, 𝐼1, 𝐴1, 𝐽1, 𝑇1, 𝑅1, 𝑉1)

=

[
 
 
 
 
 
 
 
−𝜇𝑅0 −𝜏𝛽 𝜇𝑅0⁄ 0 0 0 0 0 0

𝜇(𝑅0 − 1) 0 0 0 0 0 0 0
0 𝛼 −𝑏 0 0 0 0 0
0 0 𝜌 −𝑐 0 0 0 0
0 0 𝜃 0 −𝑑 0 0 0
0 0 0 𝜔 𝜅 −𝑒 0 0
0 0 0 0 0 𝜙 −𝑓 0
0 0 0 0 0 0 𝛾 −𝑔]

 
 
 
 
 
 
 

 

 

Now the trace of 𝐽(𝐸1) is a negative quantity while determinant of 𝐽(𝐸1) computed as 

−𝛽𝜃𝑏𝑐𝑑𝑅0(𝑒𝑔𝜙 − 𝑒𝑓𝛾)(𝑅0 − 1) and is a positive quantity provided that either of the 

following conditions are satisfied, 

(i) 𝑒𝑔𝜙 < 𝑒𝑓𝛾 and 𝑅0 > 1. 

(ii) 𝑒𝑔𝜙 > 𝑒𝑓𝛾 and 𝑅0 < 1. 

Hence, the endemic equilibrium point 𝐸1 is locally asymptotically unstable if 𝑅0 < 1. 

and stable if 𝑅0 > 1 provided that the afro mentioned conditions are satisfied. 

 

4. Result and discussion 

In this study, a model describing the dynamics of eight compartments human population 

pertaining to HIV (Human Immunodeficiency Virus) with treatments are formulated and 

analyzed. ART only users and Herbs only users joins treatment compartment to use both 

alternatives for better medifications. Further, it is observed that the disease transmission 

decreases with decreased transmission rate value and disease persist in the population with 

increasing transmission rate value. The mathematical analysis has shown that if the 

reproduction number 𝑅0 < 1  then the disease free equilibrium point is locally and 

globally asymptotically stable. Also, the disease free equilibrium point is unstable if  

𝑅0 > 1 implying that the transmission of disease increases. 

5. Conclusion 

In this study, a mathematical model of eight compartments has been formulated to show 

the dynamics of human populations subjected to HIV/AIDS. Moreover, the formulated 

model is verified as biologically meaningful and mathematically well posed. The 

reproduction number is directly proportional to recruitment and probability of 

transmission rates. From computation of reproduction number, we observed that natural 
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death rate is indirectly proportional to the propagation of the disease. It is also observed 

that the equilibrium points of model equations are locally asymptotically stable. Further, 

the Global stability of disease free equilibrium points are described. 
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