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Abstract: The main aim of this article is to propose a computational method on the basis of
the reproducing kernel Hilbert space method for solving a hyperbolic initial-boundary-value
problem. The solution in reproducing kernel Hilbert space is constructed with series form, and
the approximate solution vm is given as an m-term summation. Furthermore, convergence
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method. Finally, some numerical experiments are considered to demonstrate the efficiency
and applicability of proposed method.
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1. Introduction

In this paper, we consider a class of hyperbolic differential equations in the following
form:

ε
∂2u

∂x2 =
∂u

∂t
+ αu

∂u

∂x
+ β(u3 + γ0u

2 + γu), (x, t) ∈ (a, b)× (0, T ), (1)

where u = u(x, t) is a sufficiently differentiable function, α is a real parameter,
ε > 0 is a negligible positive parameter and β > 0, γ ∈ (0, 1), γ0 = −(1 + γ). The
initial and boundary conditions of these equations is given by:

u(x, 0) = ũ0(x), a 6 x 6 b, (2)

u(a, t) = f1(t), 0 6 t 6 T, (3)

and

u(b, t) = f2(t), 0 6 t 6 T. (4)
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By changing of variable x = x−a
b−a , we can rewritten the question’s (1)-(4) in the

following form:


ε

(b−a)2
∂2u
∂x2 = ∂u

∂t + α
b−au

∂u
∂x + β(u3 + γ0u

2 + γu), (x, t) ∈ (0, 1)× (0, T ),

u(x, 0) = u0(x),
u(0, t) = f1(t), t ∈ [0, T ],
u(1, t) = f2(t) t ∈ [0, T ].

(5)

where u0(x) = ũ0(a+ (b− a)x). Using the following transformation:

{
v(x, t) = u(x, t)− U(x, t)− u0(x) + U0(x),
U(x, t) = f1(t)(1− x) + f2(t)x, U0(x) = U(x, 0),

the equation (5) can be rewritten in the following form:


ε

(b−a)2
∂2v
∂x2 − ∂v

∂t −
α
b−av

∂(U+u0−U0)
∂x − α

b−a(U + u0 − U0) ∂v∂x − 3β(U + u0 − U0)v

−2βγ0(U + u0 − U0)v − βγv = F (x, t, v, ∂v∂x), (x, t) ∈ (0, 1)× (0, T ),
v(x, 0) = 0,
v(0, t) = 0, t ∈ [0, T ],
v(1, t) = 0 t ∈ [0, T ],

(6)

where

F (x, t, v,
∂v

∂x
) =

ε

(b− a)2

∂2(U + u0 − U0)

∂x2
+
∂U

∂t
+

α

b− a
(U + u0 − U0)

∂(U + u0 − U0)

∂x

+ β((U + u0 − U0)3 + βγ0(U + u0 − U0)2 + βγ(U + u0 − U0)

+
α

b− a
v
∂v

∂x
+ βv3 + 3β(U + u0 − U0)v2 + βγ0v

2.

The concept of reproducing kernel was first applied by Zaremba [1] to obtain the
approximate solution of boundary value problems for harmonic functions. In 1909,
Mercer [2] examined the functions which satisfy reproducing property in the theory
of integral equations. He called these functions as positive definite kernels. The
concept of reproducing kernels was systematized by Aronszajn [3] around 1948.
From 1980, Cui and co-workers [4, 5] are pioneers in linear and nonlinear numerical
analysis based on reproducing kernel theory. Recently, a lot of research works have
been devoted to the application of reproducing kernel Hilbert space method to solve
several linear and nonlinear problems such as variational problems depending on
indefinite integrals [6], delay differential equations of fractional order [7], nonlocal
initial-boundary value problems for hyperbolic and parabolic integro-differential
equations [8], BlackScholes equation [9] and so on [10–14].

In this paper, we define the reproducing kernel space H(3,2)
2 (Ω). In the following, by

using two methods, we investigate the existence of the solution in the reproducing

kernel Hilbert space H(3,2)
2 (Ω).

The structure of this paper is as follows. In Section 2, we give our main results
concerning to our numerical method. We present an analysis of the numerical
method in this section. In Section 3, validations using typical cases with available
numerical results in the literature are performed to demonstrate the accuracy and
efficiency of the proposed method. Finally, some concluding remarks are presented.
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2. Reproducing kernel Hillbert space

Definition 2.1 [15] The reproducing kernel Hilbert space H1
2[0, T ] is defined by

H1
2[0, T ] =

{
u : [0, T ]→ R|u ∈ AC[0, T ], u

′ ∈ L2[0, T ]
}
.

Also, the specific inner product in H1
2[0, T ] is of the following form

〈u, v〉 H1
2

= u(0)v(0) +

∫ T

0
u′(t)v′(t)dt,

and the norm is given by:

‖u‖ H1
2

=
√
〈u, u〉 H1

2
,

where u, v ∈ H1
2.

The Hilbert space H1
2[0, T ] admits the following reproducing kernel:

k1
s(t) =

{
1 + s, s 6 t,
1 + t, s > t.

Definition 2.2 [16] The reproducing kernel Hilbert space cH3
2[0, 1] is defined by

cH3
2[0, 1] =

{
v : [0, 1]→ R|v, v′, v′′ ∈ AC[0, 1], v(0) = v(1) = 0 v′′′ ∈ L2[0, 1]

}
.

Also, the inner product in cH3
2[0, 1] is of the following form

〈v, u〉
cH3

2[0,1] = v(0)u(0) + v′(0)u′(0) + v(1)u(1) +

∫ 1

0
v′′′(x)u′′′(x)dx,

and the norm is given by:

‖v‖
cH3

2[0,1] =
√
〈v, v〉

cH3
2[0,1],

where v, u ∈ cH3
2.

The Hilbert space cH3
2[0, 1] admits the following reproducing kernel:

R3
y(x) =


−1
120(x− 1)y(yx4 − 4yx3 + 6yx2

+(y4 − 5y3 − 120y + 120)x+ y4), x > y,
−1
120(y − 1)x(xy4 − 4xy3 + 6xy2

+(x4 − 5x3 − 120x+ 120)y + x4), y > x.

Definition 2.3 [17] The reproducing kernel Hilbert space cH2
2[0, T ] is defined by

cH2
2[0, T ] =

{
v : [0, T ]→ R|v, v′ ∈ AC[0, T ] ,

v(0) = 0, v
′′ ∈ L2[0, T ]

}
.
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Also, the specific inner product in cH2
2[0, T ] is of the following form

〈v, u〉
cH2

2[0,T ] = v(0)u(0) + v
′
(0)u

′
(0) +

∫ T

0
v

′′
(t)u

′′
(t)dt,

and the norm is given by:

‖v‖
cH2

2[0,T ] =
√
〈v, v〉

cH2
2[0,T ], (7)

where v, u ∈ cH2
2.

The Hilbert space cH2
2[0, T ] admits the following reproducing kernel:

Q2
s(t) =

{
ts+ ts2

2 −
s3

6 , t > s,
ts+ st2

2 −
t3

6 , s > t.

Definition 2.4 [8] Let Ω = [0, 1] × [0, T ] ⊆ R2. The reproducing kernel Hilbert

space H(1,1)
2 (Ω) is defined by

H(1,1)
2 (Ω) =

{
u|u ∈ C(Ω), ∂x∂tu ∈ L2(Ω)

}
,

Also, the specific inner product in H(1,1)
2 (Ω) is of the following form

〈u, v〉H(1,1)
2

= u(0, 0)v(0, 0) +

∫ 1

0
∂xu(x, 0)∂xv(x, 0)dx

+

∫ T

0
∂tu(0, t)∂tv(0, t)dt+

∫ T

0

∫ 1

0
∂x∂tu(x, t)∂x∂tv(x, t)dxdt,

and the norm is given by:

‖u‖H(1,1)
2

= (〈u, u〉H(1,1)
2

)
1

2 ,

where u, v ∈ H(1,1)
2 (Ω).

Theorem 2.5 [8] Let Ω = [0, 1] × [0, T ] ⊆ R2. Then the Hilbert space H(1,1)
2 (Ω)

admits the following reproducing kernel

K1,1
(y,s)(x, t) = k1

y(x)k1
s(t).

Definition 2.6 [18] Let Ω = [0, 1] × [0, T ] ⊆ R2. The reproducing kernel Hilbert

space H(3,2)
2 (Ω) is defined by

H(3,2)
2 (Ω) = {v|∂2

x∂tv(x, t) ∈ C(Ω), ∂3
x∂

2
t v(x, t) ∈ L2(Ω),

v(x, 0) = v(0, t) = v(1, t) = 0}.
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Also, the specific inner product in H(3,2)
2 (Ω) is of the following form

〈v, u〉
cH(3,2)(Ω) = ∂x∂tv(0, 0)∂x∂tu(0, 0) +

∫ 1

0
∂3
x∂tv(x, 0)∂3

x∂tu(x, 0)dx

+

∫ T

0
∂x∂

2
t v(0, t)∂x∂

2
t u(0, t)dt+

∫ T

0

∫ 1

0
∂3
x∂

2
t v(x, t)∂3

x∂
2
t u(x, t)dxdt,

and the norm is given by:

‖u‖H(3,2)
2

= (〈u, u〉H(3,2)
2

)
1

2 ,

where v, u ∈ H(3,2)
2 (Ω).

Theorem 2.7 [19] Let Ω = [0, 1] × [0, T ] ⊆ R2. Then the Hilbert space H(3,2)
2 (Ω)

admits the following reproducing kernel

K3,2
(y,s)(x, t) = R3

y(x)Q2
s(t).

2.1 Solution in the reproducing kernel Hilbert space

2.1.1 First method to calculate the approximate solution

Suppose that the solution of the problem (6) belongs to reproducing kernel

Hilbert space H(3,2)
2 (Ω). Whenever a nonlinear operator F (x, t, v, ∂v∂x) belongs to

reproducing kernel Hilbert space H(1,1)
2 (Ω), then linear operator L : H(3,2)

2 (Ω) →
H(1,1)

2 (Ω) well-defined and as follows:

Lv(x, t) =
ε

(b− a)2

∂2v

∂x2
− ∂v

∂t
− α

b− a
v
∂(U + u0 − U0)

∂x
− α

b− a
(U + u0 − U0)

∂v

∂x

− 3β(U + u0 − U0)v − 2βγ0(U + u0 − U0)v − βγv.

Hence, we can rewritten the problem (6) as follows:

Lv(x, t) = F (x, t, v,
∂v

∂x
), (8)

v(x, 0) = v(0, t) = v(1, t) = 0.

Theorem 2.8 Let L : H(3,2)
2 (Ω)→ H(1,1)

2 (Ω). Then L is bounded linear operator.

Proof It is sufficient to show that ‖Lv‖H(1,1)
2
6 ‖v‖H(3,2)

2
. By using the norm of

Hilbert space H(1,1)
2 , we have

‖Lv‖H(1,1)
2

= 〈Lv, v〉H(1,1)
2

= Lv2(0, 0) +

∫ 1

0
(∂xLv(ς, 0))2dx

+

∫ T

0
(∂tLv(0, t))2dt+

∫ T

0

∫ 1

0
(∂x∂tLv(x, t))2dxdt.
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By applying the reproduction property, we obtain

〈v(., .),LK3,
(y,s)(., .)〉H(3,2)

2
= Lv(y, s),

〈v(., .), ∂yLK3,2
(y,s)(., .)〉H(3,2)

2
= ∂yLv(y, s),

〈v(., .), ∂sLK3,2
(y,s)(., .)〉H(3,2)

2
= ∂sLv(y, s),

〈v(., .), ∂η∂sLK3,2
(y,s)(., .)〉H(3,2)

2
= ∂y∂sLv(y, s),

We remind that

|∂i+jys v(y, s)| 6Mij‖v‖H(3,2)
2

, i = 0, 1, 2, j = 0, 1, (9)

where Mij are positive real number.
Therefore, we get

|Lv(0, 0)|2 6 c1‖v‖H(3,2)
2

, (10)∫ 1

0
(∂yLv(y, 0))2dy 6 c2‖v‖H(3,2)

2
, (11)∫ T

0
(∂sLv(0, s))2ds 6 c3‖v‖H(3,2)

2
, (12)∫ T

0

∫ 1

0
(∂y∂sLv(y, s))2dyds 6 c4‖v‖H(3,2)

2
, (13)

where ci, i = 1, 2, 3, 4 are positive real number. By combining the inequalities
(10)-(13), we obtain the inequality (9). Hence, the proof of the Theorem 2.8 is
completed. �

Since L is a bounded linear operator, then we can define uniquely the adjoint

operator L∗ : H(1,1)
2 (Ω) −→ H(3,2)

2 (Ω). Suppose that {(xi, ti)}∞i=1 be a subset count-
able dense in the domain Ω. By using the adjoint operator L∗, the functions ϑi(x, t)
are defined by

ψi(x, t) = K1,1
(xi,ti)

(x, t), i = 1, 2, · · · ,

ϑi(x, t) = L∗ψi(x, t), i = 1, 2, · · ·

Theorem 2.9 Suppose that K3,2
(y,s)(x, t) be a reproducing kernel of H(3,2)

2 (Ω). Then

we have

ϑi(x, t) = L(y,s)K
3,2
(y,s)(x, t)|(y,s)=(xi,ti), i = 1, 2, · · · ,

where the subscript (y, s) of the linear operator L indicates that L is a function of
(y, s).

Proof By using the properties of reproducing kernel K3,2
(y,s)(x, t), we have

ϑi(x, t) = L∗ψi(x, t) = 〈L∗ψi(y, s),K3,2
(y,s)(x, t)〉H(3,2)

2 (Ω)

= 〈ψi(y, s),L(y,s)K
3,2
(y,s)(x, t)〉H(1,1)

2 (Ω)

= L(y,s)K
3,2
(y,s)(x, t)|(y,s)=(xi,ti).
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where the subscript (y, s) of the linear operator L indicates that L is a function of
(y, s). �

Theorem 2.10 Suppose that the sequence {(xi, ti)}∞i=1 be dense in Ω. Then
{ϑi(x, t)}∞i=1 is a independent linear sequnce in the reproducing kernel space

H(3,2)
2 (Ω).

Theorem 2.11 Suppose that the sequence {(xi, ti)}∞i=1 be dense in Ω. Then the

sequence {ϑi(x, t)}∞i=1 is complete in H(3,2)
2 (Ω).

Proof Let v(x, t) ∈ H(3,2)
2 (Ω). Since 〈v(x, t), ϑi(x, t)〉H(3,3)

2
= 0, we have

〈v, ϑi〉H(3,2)
2 (Ω) = 〈v,L∗ψi〉H(3,2)

2 (Ω) = 〈Lv, ψi〉H(1,1)
2 (Ω) = Lv(xi, ti) = 0, i ∈ N.

Since the subset {(xi, ti)}∞i=1 be dense in Ω, we obtain that

Lv(x, t) = 0.

Since the solution of Equation (8) is unique, we have

v(x, t) = 0, ∀(x, t) ∈ Ω.

Hence, the sequence {ϑi(x, t)}∞i=1 are completed in reproducing kernel Hilbert space

H(3,2)
2 (Ω). �

The sequence {ϑi(x, t)}∞i=1 is convergent in completed reproducing kernel Hilbert

space H(3,2)
2 (Ω), so the solution v(x, t) can be expressed as follows:

v(x, t) =
∞∑
i=1

ciϑi(x, t).

Now, with the choice m-sentence of (14), the approximate solution Pmv(x, t) is
presented by

Pmv(x, t) = vm(x, t) = Pmv(x, t) =

m∑
i=1

ciϑi(x, t).

where Pm : H(3,2)
2 (Ω)→ {ϑi(x, t)}mi=1 be orthogonal projection.

Now, we approximate the coefficients ci with a repeat process.

For the first approximation, we select the function v1,m(x, t) ∈ H(3,2)
2 (Ω) and

assume that

vn,m =

m∑
i=1

ci,nϑi(x, t), n = 2, 3, . . . ,

where ci,n, i = 1, ...,m, n = 2, 3, ..., with a duplicate process are calculated by
using

m∑
i=1

ci,nLϑi(x, t)|(x,t)=(xj ,tj)

= F (x, t, vn−1,m,
∂vn−1,m

∂x
)|(x,t)=(xj ,tj), j = 1, ...,m, n = 2, 3, ...
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2.1.2 The second method to calculate the approximate solution

Let the subset {(xi, ti)}∞i=1 be countable dense in Ω. We define the functions
θi(x, t) as follows:

θi(x, t) = K3,2
(y,s)(x, t)|(y,s)=(xi,ti), i = 1, 2, · · ·

Theorem 2.12 Suppose that the sequence {(xi, ti)}∞i=1 be dense in Ω, then the

sequence {ϑi(x, t)}∞i=1 be linear independent in H(3,2)
2 (Ω).

Proof Assume that the relation
∑m

i=1 aiθi(x, t) = 0 is established for the sequence
{ai}mi=1.

Therefore, we chose As(x, t) ∈ H(3,2)
2 (Ω) such that

As(xs, ts) = 1, As(xl, tl) = 0, l = 1, 2, ...,m, l 6= s,

Hence, we have

0 =
m∑
i=1

aiθi(x, t) = 〈As(x, t),
m∑
i=1

aiθi(x, t)〉H(3,2)
2 (Ω)

=

m∑
i=1

aiAs(xi, ti) = as, s = 1, 2, ...,m.

Therefor the sequnce {θi(x, t)}∞i=1 be linear independent in reproducing kernel

Hilbert space H(3,2)
2 (Ω). �

Theorem 2.13 Suppose that the sequence {(xi, ti)}∞i=1 be dense in Ω, then the

sequence {θi(x, t)}∞i=1 be complete in reproducing kernel Hilbert space H(3,2)
2 (Ω).

Proof Assume that v(x, t) ∈ H(3,2)
2 (Ω). Since 〈v(x, t), θi(x, t)〉H(3,2)

2
= 0, we have

v(xi, ti) = 0.

Since the subsequence {(xi, ti)}∞i=1 be dense in Ω, we obtain that

v(x, t) = 0.

Therefore, by applying the Theorem 2.11 the sequence {θi(x, t)}∞i=1 be complete in

reproducing kernel Hilbert space H(3,2)
2 (Ω). This complete the proof of Theorem

2.13. �

The sequence {θi(x, t)}∞i=1 be complete in reproducing kernel Hilbert space

H(3,2)
2 (Ω), so the solution v(x, t) is given by:

v(x, t) =
∞∑
i=1

Ciθi(x, t).

Now, by chose m-sentence of the equation (14), the approximate solution Pmv(x, t)
is presented by

Pmv(x, t) = vm(x, t) = Pmv(x, t) =

m∑
i=1

Ciθi(x, t).
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where Pm : H(3,2)
2 (Ω)→ {θi(x, t)}mi=1 be orthogonal projection.

Now, we approximate the coefficients Ci with a repeat process.

For first approximation, we select the function v1,m(x, t) ∈ H(3,2)
2 (Ω) and assume

that

vn,m =
m∑
i=1

Ci,nθi(x, t), n = 2, 3, . . . ,

where the coefficient Ci,n, i = 1, ...,m, n = 2, 3, ... with a duplicate process are
calculated by using

m∑
i=1

Ci,nLθi(x, t)|(x,t)=(xj ,tj)

= F (x, t, vn−1,m,
∂vn−1,m

∂x
)|(x,t)=(xj ,tj), j = 1, ...,m, n = 2, ...

2.2 Convergence analysis

Theorem 2.14 Let γ is a real constant. Then

B =
{
vn,m(x, t)| ‖vn,m‖H(3,2)

2
6 γ

}
⊂ C(Ω)

is a bounded set.

Proof We know that

‖vn,m‖∞ 6 α ‖vn,m‖H(3,2)
2 (Ω),

where α is a positive real constant.
Thus for all (x, t) ∈ Ω and vn,m(x) ∈ B there exist γ <∞ such that ‖vn,m‖∞ 6 γ.
This complete the proof of the Theorem 2.14. �

Theorem 2.15 Let γ be real constant. Then B =
{
vn,m(x, t)| ‖vn,m‖H(3,2)

2
6 γ

}
⊂

C(Ω) is eqicontinuous set.

Proof By applying the Theorem (2.14), we obtain that

|vn,m(y
′
, s

′
)− vn,m(y

′′
, s

′′
)| = |〈vn,m(x, t),K3,2

(y′ ,s′ )
(x, t)−K3,2

(y′′ ,s′′ )
(x, t)〉H(3,2)

2
|

6 ‖vn,m‖H(3,2)
2
‖K3,2

(y′ ,s′ )
−K3,2

(y′′ ,s′′ )
‖H(3,2)

2

6 γ ‖∂yK3,2
(y,s)(x, t)|y=(1−c)y′+cy′′ (y

′ − y′′
) + ∂sK

3,2
(y,s)(x, t)|s=(1−c)s′+cs′′ (s

′ − s′′
)‖H(3,2)

2

6 ω(|y′ − y′′ |+ |s′ − s′′ |),

where ω is a real constant.
By chose δ = ε

ω , we have

|y′ − y′′ |+ |s′ − s′′ | < δ ⇒ |vn,m(y
′
, s

′
)− vn,m(y

′′
, s

′′
)| < ε.

for all (y
′
, s

′
), (y

′′
, s

′′
) ∈ Ω. This complete the proof of the Theorem 2.15. �
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Theorem 2.16 Suppose that ‖vn,m‖H(3,2)
2

be a bounded set. Then there exist sub-

sequence {vnκ,m}
∞
κ=1 ⊆ B and v(x, t) ∈ C(Ω) such that

limκ→∞,m→∞ ‖vnκ,m − v‖∞ = 0.

Proof Assume that the set B be eqicontinuous and bounded. So, each sequence in
B has a subsequence of convergence in C(Ω).
Thus there exist a subsequence {vnκ,m}∞κ=1 in B such that

limκ→∞,m→∞ ‖vnκ,m − v‖∞ = 0,

Hence, we have

Lvnκ,m(xj , tj) = F (x, t, vnκ−1,m,
∂vnκ−1,m

∂x
)|(x,t)=(xj ,tj), j = 1, ...,m, κ = 1, 2, ...

Since L and F be a continuous functions of v, we obtain that

Lv(x, t) = F (x, t, v,
∂v

∂x
).

�

In the following theorem, we derive condition for existence and uniqueness of
the solution vn,m. Furthermore, we establish uniformly converges of the sequence
{vn,m}∞n=1.

Theorem 2.17 Assume that the condition of the theorem 2.16 is confirmed. If the
solution of the equation (8) is exist and unique then

lim
n→∞,m→∞

‖vn,m − v‖ → 0.

Proof Assume that the sequence {vn,m}n>1 ⊂ B is not convenes to v.

Thus, there exist a positive number ε0 and subsequence {vnκ,m}κ>1 ⊂ B such that

‖vnκ,m − v‖∞ > ε0, κ = 1, 2, ... (14)

Since {vnκ,m}κ>1 ⊂ B be a subset of bounded and continuous functions, then

there exits a subsequence of {vnκ,m}κ>1 such that convergence to v̂. Without loss

of generality, we may assume that the sequence {vnκ,m}κ>1 uniformly convergence

to v̂.
Hence, we have

lim
κ→∞,m→∞

‖vnκ,m − v̂‖∞ → 0. (15)

The existence and uniqueness of the solution of the equation(8) show that equation
(15) contradicts with the equation (14). This completes the proof of the Theorem
2.17. �

3. Numerical experiments

The methods presented in this paper are applied on two examples to illustrate the
efficiency and the applicability of the proposed methods.
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Example 3.1 The generalized Haxley-Burgers equation with initial and boundary
and conditions are considered as follows:

∂2u
∂x2 = ∂u

∂t + αu∂u∂x + β(u3 + γ0u
2 + γu), (x, t) ∈ (0, 1)× (0, 1),

u(x, 0) = γ
2 [1 + tanh(a1x)], 0 6 x 6 1,

u(0, t) = γ
2 [1 + tanh(a1(−a2t))], 0 6 t 6 1,

u(1, t) = γ
2 [1 + tanh(a1(1− a2t))], 0 6 t 6 1.

The exact solution of this question is given by:

u(x, t) =
γ

2
[1 + tanh(a1(x− a2t))].

where a1 = γ
8 (−α+

√
α2 + 8β) and a2 = αγ

2 −
(2−γ)(−α+

√
α2+8β)

4 .

Method 1 Method 2
m = 30 m = 30

xi ti n = 10 n = 10

0.1 0.05 8.7412e− 8 1.8756e− 7
0.1 0.10 2.8756e− 7 2.2321e− 6
0.1 1.00 6.8135e− 7 8.9134e− 7
0.5 0.05 3.5820e− 7 4.9612e− 7
0.5 0.10 3.9124e− 7 4.1258e− 7
0.5 1.00 2.5621e− 6 5.1263e− 6
0.9 0.05 7.3785e− 8 8.9125e− 7
0.9 0.10 5.4236e− 7 1.2031e− 6
0.9 1.00 7.0219e− 7 2.1206e− 6

Table 1. Absolute error for different values x and t (α = 0, β = 1) (Example 3.1).

The absolute error values for proposed methods reported in tables 1 and 2. The
results suggest that, the proposed methods are suitable for finding approximate
solutions with high degree of accuracy.

Example 3.2 The generalized Haxley-Burgers equation with initial and boundary
conditions are considered as follows:

∂2u
∂x2 = ∂u

∂t + αu∂u∂x + β(u3 + γ0u
2 + γu), (x, t) ∈ (0, 1)× (0, 1),

u(x, 0) = 1
2 −

1
2 [tanh( βx

r−α)], 0 6 x 6 1,

u(0, t) = 1
2 −

1
2 [tanh(−βqtr−α )], 0 6 t 6 1,

u(1, t) = 1
2 −

1
2 [tanh(β(1−qt)

r−α )], 0 6 t 6 1.

The exact solution to this question is given by:

u(x, t) =
1

2
− 1

2
[tanh(

β(x− qt)
r − α

)].

where r =
√
α2 + 8β and q = (α−r)(2γ−1)+2α

4 .

The maximum error values for proposed methods are reported in tables 3 and 4.
The results indicate that our methods are suitable for finding approximate solutions
with high degree of accuracy.
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Method 1 Method 2
m = 30 m = 30

xi ti n = 10 n = 10

0.1 0.05 5.6534e− 8 8.1743e− 7
0.1 0.10 2.7430e− 7 9.1496e− 6
0.1 1.00 4.4321e− 8 6.1298e− 7
0.5 0.05 6.8921e− 8 4.1075e− 7
0.5 0.10 3.1209e− 7 1.1690e− 6
0.5 1.00 3.3407e− 7 6.8356e− 6
0.9 0.05 7.1763e− 8 2.2567e− 7
0.9 0.10 2.1093e− 7 1.8754e− 6
0.9 1.00 2.1856e− 7 9.6114e− 6

Table 2. Absolute error for different values x and t (α = 0, β = 1 γ = 0.001)(Example 3.1).

t = 0.1 α = 5, γ = 0.85 α = 5, γ = 0.5 α = 3, γ = 0.85 α = 3, γ = 0.5

m = 40, n = 10 2.4521e− 4 3.9814e− 4 4.8927e− 4 3.7310e− 4
t = 0.4 α = 5, γ = 0.85 α = 5, γ = 0.5 α = 3, γ = 0.85 α = 3, γ = 0.5

m = 40, n = 10 9.3745e− 4 1.6721e− 4 7.935e− 4 9.5614e− 4
t = 0.9 α = 5, γ = 0.85 α = 5, γ = 0.5 α = 3, γ = 0.85 α = 3, γ = 0.5

m = 40, n = 10 3.8241e− 3 1.4987e− 3 4.5267e− 3 5.1573e− 3

Table 3. Maximum error in the first method, β = 1 for t = 0.1, 0.4, 0.9 (Example 3.2).

t = 0.1 α = 5, γ = 0.85 α = 5, γ = 0.5 α = 3, γ = 0.85 α = 3, γ = 0.5

m = 40, n = 10 4.1512e− 4 4.3212e− 4 4.8927e− 4 5.4192e− 4
t = 0.4 α = 5, γ = 0.85 α = 5, γ = 0.5 α = 3, γ = 0.85 α = 3, γ = 0.5

m = 40, n = 10 6.1096e− 4 5.4012e− 4 7.935e− 4 1.8346e− 3
t = 0.9 α = 5, γ = 0.85 α = 5, γ = 0.5 α = 3, γ = 0.85 α = 3, γ = 0.5

m = 40, n = 10 4.2649e− 3 4.2309e− 3 2.1643e− 3 6.2395e− 3

Table 4. Maximum error in the second method, β = 1 for t = 0.1, 0.4, 0.9 (Example 3.2)

4. Conclusion

In this paper, by applying the methods based on reproduction kernel Hilbert space,
the approximate solution of the Generalized Huxley-Burgers equations are ob-
tained. First, the appropriate reproducing kernel Hillbert space according to the
initial and boundary conditions are defined. Afterwards, the building reproducing
kernel are discussed. Since the Gram-Schmidt pronominalization process is unsta-
ble due to the rounding error of the process, this removal from the reproduction
kernel method in solving this kind of nonlinear problems. In the following, we
presented that the approximate solution be a uniformly convergence to the exact
solution. In some of the future research, we can find error estimation and calcula-
tion the convergence rate of the reproduction kernel method for nonlinear partial
differential equations.
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