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Abstract. In this paper, we formulated a dynamical model of COVID-19 to describe the 
transmission dynamics of the disease. The well possedness of the formulated model equations was 

proved. Both local and global stability of the disease free equilibrium and endemic equilibrium 

point of the model equation was established using basic reproduction number. The results show 
that, if the basic reproduction number is less than one then the solution converges to the disease 

free steady state i.e. the disease free equilibrium is asymptotically stable. The endemic states are 

considered to exist when the basic reproduction number for each disease is greater than one. 
Numerical simulation carried out on the model revealed that an increase in level of contact rate 

among individuals has an effect on reducing the prevalence of COVID-19 and COVID-19 disease. 

Furthermore, sensitivity analysis of the model equation was performed on the key parameters to 
find out their relative significance and potential impact on the transmission dynamics of 

COVID-19. 
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1. Introduction 

Coronavirus-19 disease (COVID-19) is an infectious disease caused by a newly discovered 

Coronavirus. The COVID-19 is a novel Coronavirus that was first reported to the world 

health organization country office in China on 31 December 2019 [17]. The outbreak was 

declared a public health emergence of international concern on 30 January 2020. On 11 

February 2020, WHO announced a name for the new Coronavirus-19 disease 

"COVID-19" [19]. 

Several studies suggest that corona viruses, including preliminary information on the 

COVID-19 virus may persist on the surfaces for a few hours or up-to several days. The 

most common symptoms of Coronavirus-19 (COVID-19) are fever, cough, and shortness 

of breath and breathing difficulties. In more severe cases infection can cause pneumonia, 

sever acute respiratory syndrome and even death. The period within which the symptoms 

would appear is 2-14 days. It is transmitted from person to person via respiratory droplets 

produced when an infected person coughs or sneezes and between people who are in close  
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close contact with one another with in about 6 feet [6]. There is no specific treatment for 

disease caused by Coronavirus-19 (COVID-19). However, many of the symptoms can be 

treated and therefore treatment based on the patient’s clinical condition. No 

Pharmaceutical product has yet been shown to be safe and effective for the treatment of 

COVID-19. The best ways that are recommended to prevent the novel coronavirus 

(COVID-19) are washing hands often with soap and water, if not available use hand 

sanitizer, avoid touching your eyes, nose, or mouth with unwashed hands, avoid contact 

with people who are sick, stay home while you are sick and avoid close contact with others, 

stay at home even you are not sick, cover your mouth/nose with a tissue or sleeve when 

coughing or sneezing and so on [8]. 

Coronavirus disease 2019 (COVID-19) Situation Report-72 [18] shows that globally 

823,626confirmed and 40,598 deaths, in Western Pacific Region 106,422 confirmed and 

3,701 deaths, in European Region 464,212 confirmed and 30,089 deaths, in South-East 

Asia Region 5175 confirmed and 195 deaths, in Eastern Mediterranean Region 54,281 

confirmed and 3115 deaths, in Region of the Americas 188,751 confirmed and 3,400 

deaths and also in African Region 4073 confirmed and 91 deaths. Furthermore, Figure 1 

illustrates that the countries, territories or areas with reported confirmed cases of 

COVID-19, 1 April 2020. 

 

Figure 1. Epidemic curve of confirmed COVID-19 [18]. 

Now there are more than 15,000 confirmed cases of Coronavirus across the continent, 

with a number of African countries imposing a range of prevention and containment 

measures against the spread of the pandemic. According to the latest data by the John 

Hopkins University and Africa Center for Disease Control on COVID-19 in Africa, the 

break down remains fluid as countries confirm cases and when the whole of Africa has 

rising cases with only two countries holding out as of April 14. Ethiopia’s COVID-19 file 

as of April 14 has 82 cases (eight new cases) with three deaths and 14 recoveries. The total 

number of tests stands at 4,557. Active cases stand at 63 representing about 77% of 

recorded cases [18]. 

The mathematical model is used as an important tool for better understanding of the 

infectious disease, studying the approximations, and effects of the parameters and 

predicting the behavior of the problem in a specific period of time as well as showing the 

connectivity of theories and observations using the system of equations with state variables 

and parameters [1]. Many mathematical models have been formulated by different 

scholars [3,13] to study the transmission dynamics COVID-19. Chen et al [5] developed a 

Bats-Hosts-Reservoir - People transmission network model for simulating the potential 

transmission from the infection source (probably be bats) to the human infection. 

Bats-Hosts-Reservoir network was hard to explore clearly and public concerns were 

focusing on the transmission from Huanan Seafood Wholesale Market (reservoir) to 
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people, they simplified the model as Reservoir-People (RP) transmission network model. 

The model showed that the transmission of SARS-CoV-2 was higher than the Middle East 

respiratory syndrome in the Middle East countries, similar to severe acute respiratory 

syndrome, but lower than MERS in the Republic of Korea. Effect of delay in diagnosis on 

transmission dynamics of COVID-19 was also discussed in [15]. Sensitivity analyses and 

numerical simulations reveal that, improving the proportion of timely diagnosis and 

shortening the waiting time for diagnosis cannot eliminate COVID-19 but can effectively 

decrease the basic reproduction number, significantly reduce the transmission risk, and 

effectively prevent the endemic of COVID-19, e.g., shorten the peak time and reduce the 

peak value of new confirmed cases and new infection, decrease the cumulative number of 

confirmed cases and total infection. Furthermore, Chayu Yang and Jin Wang [16] model 

describes the multiple transmission pathways in the infection dynamics, and emphasizes 

the role of the environmental reservoir in the transmission and spread of this disease. The 

analytical and numerical results indicate that the Coronavirus infection would remain 

endemic, which necessitates long-term disease prevention and intervention programs.  

A lot of authors developed a mathematical model to illustrate the dynamics of the 

disease that helped them to suggest disease control mechanism and also described the 

transmission dynamics of the Coronavirus infection. Li Y et al. [14] proposed a 

mathematical model, based on the transmission mechanism of COVID-19 in the 

population and the implemented prevention and control measures. They established the 

dynamic models of the six chambers, and establish the time series models based on 

different mathematical formulas according to the variation law of the original data. In this 

paper we modify the model developed by Li Y et al. [14], by adding the asymptomatic 

compartment. 

2. Model description and formulation 

The total population at a time𝑡, denoted by 𝑁(𝑡), is divided into sub-classes consisting of 

Protected individuals (𝑃); are the individual who are protected against the disease over 

period of time, Susceptible individual (𝑆); individual those who are vulnerable to the 

disease over a period of time, Infective individual in asymptomatic phase (𝐼𝑎);  are 

individual who are not showing symptoms of Coronavirus (COVID-19), Infective 

individual in symptomatic phase(𝐼𝑠); are individuals who are showing symptoms of 

Coronavirus (COVID-19), Quarantine individual (𝑄); are individual who are infectious 

and compulsory quarantine due to reduce the spread of COVID-19 and get treatment based 

on the patient’s clinical condition. Coronavirus (COVID-19) individuals (𝐶); are 

individuals who are at the chronic stage of Coronavirus and recovered individual 

(𝑅);individual those who are recovered from the disease at a time t. Then the total 

population at a time 𝑡 denoted by 𝑁(𝑡) is given by: 

𝑁(𝑡) =  𝑃(𝑡) +  𝑆(𝑡) + 𝐼𝑎(𝑡) + 𝐼𝑠(𝑡) +  𝑄(𝑡) +  𝐶(𝑡) +  𝑅(𝑡) (1) 

Thus, the model assumed that; protected individuals are recruited into the population at a 

rate 𝛱 and decreased by natural death at a rate 𝜇 and by losing protection at a rate 𝛿. 

Susceptible individuals are increased by losing protection of protected class at a rate 𝛿 

and from recovered class by losing immunity at a rate  𝜃. Also, susceptible individuals are 

decreased by natural death at a rate 𝜇. Susceptible individuals are acquiring COVID-19 

infection with effective force of infection 𝜆 which is given by 𝜆 =
𝛽(𝐼𝑠+𝑞𝐼𝑎)

𝑁
, where 𝛽 is 

the effective contact rate and 𝑞  is the transmission coefficient for asymptomatic 

individuals. If  𝑞 >  1, then asymptomatic individuals infect the susceptible individuals 

more likely than the symptomatic individuals. If 𝑞 <  1, then the infective symptomatic 

individuals have a good chancetoinfect the susceptible individuals than asymptomatic 
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individuals and if 𝑞 =  1, then both asymptomaticand symptomatic individuals have 

equal chance to infect the susceptible individuals. 

Asymptomatic individuals are increased from susceptible subclass at a rate        
(1 − 𝜂)𝜆(𝑡) and decreased by developing symptoms of COVID-19 at a rate 𝜓. Those 

individuals in the asymptomatic subclass can get treatment and join quarantined subclass 

with rate of 𝛾 . Symptomatic individuals are increased by the fraction of susceptible 

individual at a rate 𝜂𝜆(𝑡)  and those which come from asymptomatic subclass by 

developing symptoms of COVID-19 at a rate 𝜓. Those individuals in the symptomatic 

subclass can get treatment and join quarantined subclass with rate of 𝜑. The quarantine 

subclass also increases with individuals who come from asymptomatic class and 

symptomatic subclass by getting treatment with a rate 𝛾and𝜑respectively. Individuals 

who recovered from the disease join the recovered subclass with rate  𝛼and others join the 

Coronavirus subclass with rate of  𝜙. Coronavirus subclass is increased by quarantine 

individuals who lose natural immunity at a rate 𝜙. In all the sub-classes, 𝜇 is the natural 

death rate of individuals, but in the infectious class 𝜉 is the disease induced death rate. All 

parameters in the model are positive. Upon including the basic assumptions, the schematic 

diagram of the modified model can be given as in Figure 2 below. 

 

Figure 2. Schematic diagram of the model. 

Based on the model assumptions, the notations of variables, parameters and the 

schematic diagram the model equations are formulated and given as follows: 

 𝑑𝑃(𝑡)

𝑑𝑡
= 𝛱 − (𝛿 + 𝜇)𝑃 

𝑑𝑆(𝑡)

𝑑𝑡
=  𝛿𝑃 + 𝜃𝑅 − (𝜆 + 𝜇)𝑆 

𝑑𝐼𝑎(𝑡)

𝑑𝑡
= (1 − 𝜂)𝜆𝑆 − (𝜓 + 𝛾 + 𝜇 + 𝜉)𝐼𝑎 

𝑑𝐼𝑠(𝑡)

𝑑𝑡
=  𝜂𝜆𝑆 + 𝜓𝐼𝑎 − (𝜑 + 𝜇 + 𝜉)𝐼𝑠 

𝑑𝑄(𝑡)

𝑑𝑡
= 𝛾𝐼𝑎 + 𝜑𝐼𝑠 − (𝜙 + 𝛼 + 𝜇 + 𝜉)𝑄 

(2) 
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𝑑𝐶(𝑡)

𝑑𝑡
= 𝜙𝑄 − (𝜇 + 𝜉)𝐶 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛼𝑄 − (𝜇 + 𝜃)𝑅 

The non-negative initial conditions of the system of model equations (2) are denoted 

by 𝑃(0) > 0, 𝑆(0) > 0,𝐼𝑎(0) ≥ 0, 𝐼𝑠(0) ≥ 0, 𝑄(0) ≥ 0, 𝐶(0) ≥ 0, 𝑅(0) ≥ 0.  

3. Mathematical analysis of the model 

3.1 Invariant Region 

In the model equation (2) that governs human population; all the variables and parameters 

used in the model equation are non-negative. We consider a biologically-feasible region 

𝛺 = {(𝑃, 𝑆 , 𝐼𝑎 , 𝐼𝑠 , 𝑄, 𝑅, 𝐶) ∈ 𝑅+ 
7 :𝑁 ≤

𝛱

𝜇
}. 

We adhere to the following steps to show the positive invariance of that are all the solution 

of model equation (2) that initiate in Ω remains in the region Ω and is bounded in  Ω. We 

have the total population from (1); 

𝑁(𝑡) =  𝑃(𝑡) +  𝑆(𝑡) + 𝐼𝑎(𝑡) + 𝐼𝑠(𝑡) +  𝑄(𝑡) +  𝐶(𝑡) + 𝑅(𝑡)  

The rate of change of the total population by adding all the equations considered in 

Equation (2) is given by 

𝑑𝑁

𝑑𝑡
= Π − 𝜇𝑁 − 𝜉(𝐼𝑎(𝑡)  + 𝐼𝑠(𝑡)  +  𝑄(𝑡)  +  𝐶(𝑡)) ≤ Π − 𝜇𝑁. 

Notice that 
𝑑𝑁

𝑑𝑡
 is bounded by 𝛱 − 𝜇𝑁.  By using standard comparison theorem as in [10] 

it can be shown that 

0 ≤ 𝑁(𝑡) ≤
𝛱

𝜇
+ (𝑁0 −

𝛱

𝜇
)𝑒−(𝜇𝑡) (3) 

As 𝑡 → ∞ in equation (3), the population size 𝑁 → 𝛱/𝜇  which implies that 0 ≤ 𝑁 ≤
𝛱/𝜇. Thus the feasible solution set of the model equation remain in the region 𝛺 =
 {(𝑃, 𝑆 , 𝐼𝑎 , 𝐼𝑠, 𝑄, 𝑅, 𝐶) ∈ 𝑅+ 

7 :𝑁 ≤ 𝛱/𝜇} . Therefore, the basic model is wellpossed 

epidemiologically and mathematically. Hence, it is sufficient to study the dynamics of the 

basic model in region  Ω. 

3.2 Positivity of the solution of the model 

It is also necessary to prove that all the variables of the model (2) are non-negative; so that 

the solution of the system with non-negative initial conditions remains positive for all 𝑡 >
 0. The following lemma describe this fact. 

Lemma 3.1 If 𝑃(0) ≥ 0, 𝑆(0) ≥ 0, 𝐼𝑎(0) ≥ 0, 𝐼𝑠(0) ≥ 0, 𝑄(0) ≥ 0, 𝐶(0) ≥ 0,
𝑅(0) ≥ 0 the solution of  𝑃(𝑡), 𝑆(𝑡), 𝐼𝑎(𝑡), 𝐼𝑠(𝑡), 𝑄(𝑡), 𝐶(𝑡), 𝑅(𝑡) in the system (2) is 

non-negative for all 𝑡 ≥ 0. 

Proof  We shall prove this lemma using a contradiction by assuming that the total 

population 𝑁(𝑡) ≠ 0 for all 𝑡 ≥ 0. We assume that there exists the first time  𝑡1, 𝑡2, 𝑡3,
𝑡4, 𝑡5, 𝑡6, 𝑡7 respectively such that: 

Positivity of P(t):Assume that 𝑃(𝑡1) = 0,
𝑑𝑃(𝑡1)

𝑑𝑡
< 0, 𝑆(0) ≥ 0, 𝐼𝑎(0) ≥ 0, 𝐼𝑠(0) ≥ 0,
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𝑄(0) ≥ 0, 𝐶(0) ≥ 0, 𝑅(0) ≥ 0, 0 ≤ 𝑡 ≤ 𝑡1. Here, 

𝑑𝑃(𝑡1)

𝑑𝑡
< 0 ⇒

𝑑𝑃(𝑡1)

𝑑𝑡
|𝑡=𝑡1

= 𝛱 − (𝜇 + 𝛿)𝑃(𝑡1) = 𝛱 ≤ 0, 

which is contradiction as, 𝛱 > 0. Hence it can be concluded that 𝑃(𝑡) ≥ 0, ∀𝑡 ≥ 0. 

Positivity of 𝑆(𝑡): Assume that 𝑆(𝑡1) = 0,
𝑑𝑆(𝑡2)

𝑑𝑡
< 0, 𝑃(0) ≥ 0, 𝐼𝑎(0) ≥ 0, 𝐼𝑠(0) ≥ 0,

𝑄(0) ≥ 0, 𝐶(0) ≥ 0, 𝑅(0) ≥ 0, 0 ≤ 𝑡 ≤ 0. Here, 

𝑑𝑆(𝑡2)

𝑑𝑡
< 0 ⇒

𝑑𝑆(𝑡2)

𝑑𝑡
|𝑡=𝑡2

= 𝛿𝑃(𝑡2) + 𝜃𝑅(𝑡2) − (𝜇 + 𝜆)𝑆(𝑡2) 

                                     = 𝛿𝑃(𝑡2) + 𝜃𝑅(𝑡2) ≤ 0 

which is a contradiction as 𝑃(𝑡), 𝑅(𝑡) > 0. Hence it can be concluded that 𝑆(𝑡) ≥ 0,
∀𝑡 ≥ 0. 

Positivity of 𝐼𝑎(𝑡):  Assume that 𝐼𝑎(𝑡3) = 0,
𝑑𝐼𝑎(𝑡3)

𝑑𝑡
< 0 , 𝑃(0) ≥ 0 , 𝑆(0) ≥ 0, 𝐼𝑠(0) ≥

0, 𝑄(0) ≥ 0, 𝐶(0) ≥ 0, 𝑅(0) ≥ 0, 0 ≤ 𝑡 ≤ 𝑡3. Here,  

𝑑𝐼𝑎(𝑡3)

𝑑𝑡
< 0 ⇒

𝑑𝐼𝑎(𝑡3)

𝑑𝑡
|𝑡=𝑡3

= (1 − 𝜂)𝜆𝑆(𝑡3) − (𝜓 + 𝛾 + 𝜇 + 𝜉)𝐼𝑎(𝑡3) 

                                  = (1 − 𝜂)𝜆𝑆(𝑡3) < 0 

which is a contradiction as 𝑆(𝑡) > 0. Hence it can be concluded that 𝐼𝑎(𝑡) ≥ 0, ∀𝑡 ≥ 0. 

Positivity of 𝐼𝑠(𝑡):Assume that 𝐼𝑠(𝑡4) = 0,
𝑑𝐼𝑠(𝑡4)

𝑑𝑡
< 0 , 𝑃(0) ≥ 0 , 𝑆(0) ≥ 0, 𝐼𝑎(0) ≥ 0,

𝑄(0) ≥ 0, 𝐶(0) ≥ 0, 𝑅(0) ≥ 0, 0 ≤ 𝑡 ≤ 𝑡4. Here,  

𝑑𝐼𝑠(𝑡4)

𝑑𝑡
< 0 ⇒

𝑑𝐼𝑎(𝑡4)

𝑑𝑡
|𝑡=𝑡4

=  𝜂𝜆𝑆(𝑡4) + 𝜓𝐼𝑎(𝑡4) − (𝜑 + 𝜇 + 𝜉 + 𝛾)𝐼𝑠(𝑡4) 

                                = 𝜂𝜆𝑆(𝑡4) + 𝜓𝐼𝑎(𝑡4) < 0 

which is a contradiction as 𝜂𝜆𝑆(𝑡4) + 𝜓𝐼𝑎(𝑡4) > 0. Hence it can be concluded that 

𝐼𝑠(𝑡) ≥ 0, ∀𝑡 ≥ 0. 

Positivity of 𝑄(𝑡): Assume that (𝑡5) = 0,
𝑑𝑄(𝑡5)

𝑑𝑡
< 0 , 𝑃(0) ≥ 0 , 𝑆(0) ≥ 0, 𝐼𝑎(0) ≥

0, 𝐼𝑠(0) ≥ 0, 𝐶(0) ≥ 0, 𝑅(0) ≥ 0, 0 ≤ 𝑡 ≤ 𝑡5. Here, 

𝑑𝑄(𝑡5)

𝑑𝑡
< 0 ⇒

𝑑𝑄(𝑡5)

𝑑𝑡
|𝑡=𝑡5

=  𝛾𝐼𝑎(𝑡5) + 𝜑𝐼𝑠(𝑡5) − (𝜙 + 𝛼 + 𝜇 + 𝜉)𝑄(𝑡5) 

                                = 𝛾𝐼𝑎(𝑡5) + 𝜑𝐼𝑠(𝑡5) < 0 

which is a contradiction as 𝛾𝐼𝑎(𝑡5) + 𝜑𝐼𝑠(𝑡5) > 0 . Hence it can be concluded that 

𝑄(𝑡) ≥ 0, ∀𝑡 ≥ 0. 

Positivity of 𝑅(𝑡): Assume that 𝑅(𝑡6) = 0,
𝑑𝑅(𝑡6)

𝑑𝑡
< 0, 𝑃(0) ≥ 0, 𝑆(0) ≥ 0, 𝐼𝑎(0) ≥

0, 𝐼𝑠(0) ≥ 0, 𝐶(0) ≥ 0, 𝑄(0) ≥ 0, 0 ≤ 𝑡 ≤ 𝑡6. Here, 

𝑑𝑅(𝑡6)

𝑑𝑡
< 0 ⇒

𝑑𝑅(𝑡6)

𝑑𝑡
|𝑡=𝑡6

= 𝛼𝑄(𝑡6) − (𝜃 + 𝜇)𝑅(𝑡6) 

                                              = 𝛼𝑄(𝑡6) ≤ 0 

which is a contradiction as 𝛼𝑄(𝑡6) > 0. Hence it can be concluded that 𝑅(𝑡) ≥ 0, ∀𝑡 ≥

0. 
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Positivity of 𝐶(𝑡):  Assume that 𝐶(𝑡7) = 0,
𝑑𝐶(𝑡7)

𝑑𝑡
< 0, 𝑃(0) ≥ 0 , 𝑆(0) ≥ 0, 𝐼𝑎(0) ≥

0, 𝐼𝑠(0) ≥ 0, 𝑅(0) ≥ 0, 𝑄(0) ≥ 0, 0 ≤ 𝑡 ≤ 𝑡7. Here, 

𝑑𝐶(𝑡7)

𝑑𝑡
< 0 ⇒

𝑑𝐶(𝑡7)

𝑑𝑡
|𝑡=𝑡7

= 𝜙𝑄(𝑡7) − (𝜇 + 𝜉)𝐶(𝑡7) 

                                          = 𝜙𝑄(𝑡7) ≤ 0 

which is a contradiction as 𝜙𝑄(𝑡7) ≥ 0. Hence it can be concluded that 𝐶(𝑡) ≥ 0, ∀𝑡 ≥ 0. 
Thus, the solutions of   𝑃(𝑡), 𝑆(𝑡), 𝐼𝑎(𝑡), 𝐼𝑠(𝑡), 𝑄(𝑡), 𝐶(𝑡), 𝑅(𝑡) in the system (2) 

remain positive for all  𝑡 >  0.                                                          ◼ 

3.3 Disease free equilibrium points                     

Disease free equilibrium points are steady state solutions where there is no disease in the 

population. In the absence of the disease this implies that 𝐼𝑎(𝑡) = 𝐼𝑠(𝑡) = 𝑄(𝑡)  =
 𝑅(𝑡) = 𝐶(𝑡) = 0 and the equilibrium points require that the right hand side of the model 

equation set equal to zero. These requirements reflect in reducing the model equations (2) 

as 

{
𝛱 − (𝛿 + 𝜇)P         = 0

𝛿𝑝 + 𝜃𝑅 − (𝜆 + 𝜇)S = 0
 

Then solving for 𝑃and 𝑆 we obtain: 𝑃0 =
𝛱

𝜇+𝛿
 and 𝑆0 =

𝛿𝛱

𝜇(𝜇+𝛿)
. Thus, the disease-free 

equilibrium point of the model equation in (2) above is given by 

𝐸0 = {𝑃0, 𝑆0, 𝐼𝑎
0, 𝐼𝑠

0, 𝑄0, 𝑅0, 𝐶0} = {
𝛱

𝜇 + 𝛿
,

𝛿𝛱

𝜇(𝜇 + 𝛿)
, 0, 0, 0, 0, 0} (4) 

3.4 Basic reproduction number 

The basic reproduction number is denoted by ℜ0 and it is defined as the expected number 

of people getting secondary infection among the whole susceptible population. It is 

computed using next-generation matrix defined in [7]. In this method ℜ0 is defined as the 

largest eigenvalue of the next generation matrix. Using the notation as in [7] for the model 

system (2) the associated matrices 𝐹  and 𝑉  for the new infectious terms and the 

remaining transition terms are respectively given by: 

𝑓𝑖 =

[
 
 
 
[𝛽(𝐼𝑠+𝑞𝐼𝑎)𝑆]

𝑁

0
0
0 ]

 
 
 

     and    𝑣𝑖 =

[
 
 
 

(𝜇 + 𝜉 + 𝜓 + 𝛾)𝐼𝑎
−𝜓𝐼𝑎 + (𝜇 + 𝜉 + 𝜑)𝐼𝑠

−𝛾𝐼𝑎 − 𝜑𝐼𝑠 + (𝜇 + 𝜉 + 𝜙 + 𝛼)𝑄
−𝜙𝑄 + (𝜇 + 𝜉)𝐶 ]

 
 
 
. 

The Jacobian matrices of 𝑓𝑖 and 𝑣𝑖 at the disease free equilibrium point 𝐸0 take the form 

respectively as 

𝐹(𝐸0) =

[
 
 
 
 
[𝛽𝛿𝑞(𝜇+𝛿)]

𝜇+𝛿

𝛽𝛿

𝑏(𝜇+𝛿)
0 0

0 0 0 0
0 0 0 0
0 0 0 0]

 
 
 
 

   and   𝑉(𝐸0) = [

𝑎 0 0 0
−𝜓 𝑏 0 0
−𝛾 −𝜑 𝑐 0
0 0 −𝜙 𝑑

], 

where 𝑎 = 𝜇 + 𝜉 + 𝜓 + 𝛾,   𝑏 = 𝜇 + 𝜉 + 𝜑,   𝑐 = 𝜉 + 𝜙 + 𝛼 , 𝑑 = 𝜇 + 𝜉. 

It can be verified that the matrix 𝑉(𝐸0) is non-singular as its determinant 

𝑑𝑒𝑡[𝑉(𝐸0)] = 𝑎𝑏𝑐𝑑 is non-zero and after some algebraic computations its inverse matrix 

is constructed as 
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[𝑉(𝐸0)]
−1 =

[
 
 
 
 
 
 
 

1

𝑎
0 0 0

𝜓

𝑎𝑏

1

𝑏
0 0

𝜙𝜑 + 𝑏𝛾

𝑎𝑏𝑐

𝜑

𝑏𝑐

1

𝑐
0

(𝜙𝜑 + 𝑏𝛾)𝜙

𝑎𝑏𝑐𝑑

𝜑𝜙

𝑏𝑐𝑑

𝜙

𝑐𝑑

1

𝑑]
 
 
 
 
 
 
 

. 

The product of the matrices 𝐹(𝐸0) and [𝑉(𝐸0)]
−1 can be computed as 

[𝐹(𝐸0)][𝑉(𝐸0)]
−1 =

[
 
 
 
 
𝛽𝛿(𝑏𝑞+𝜓)

𝑎𝑏(𝜇+𝛿)

𝛽𝛿

𝑏(𝜇+𝛿)
0 0

0 0 0 0
0 0 0 0
0 0 0 0]

 
 
 
 

. 

Now it is possible to calculate the eigenvalue to determine the basic reproduction 

number ℜ0  by taking the spectral radius of the matrix   [𝐹(𝐸0)][𝑉(𝐸0)]
−1. Thus, the 

eigenvalues are computed by evaluating 𝑑𝑒𝑡[ [𝐹(𝐸0)][𝑉(𝐸0)]
−1 − 𝜆𝐼] = 0  or 

equivalently solving 

|
|

𝛽𝛿(𝑏𝑞 + 𝜓)

𝑎𝑏(𝜇 + 𝛿)
− 𝜆

𝛽𝛿

𝑏(𝜇 + 𝛿)
0 0

0 −𝜆 0 0
0 0 −𝜆 0
0 0 0 −𝜆

|
|
= 0. 

It reduces to the fourth power equation for 𝜆 as  𝜆3(𝜆 −
𝛽𝛿(𝑏𝑞+𝜓)

𝑎𝑏(𝜇+𝛿)
) = 0 giving the four 

eigenvalues as  

𝜆1 = 0, 𝜆2 = 0, 𝜆3 = 0, 𝜆4 =
𝛽𝛿(𝑏𝑞+𝜓)

𝑎𝑏(𝜇+𝛿)
. 

However, the largest eigenvalue here is 𝜆4 =
𝛽𝛿(𝑏𝑞+𝜓)

𝑎𝑏(𝜇+𝛿)
 and is the spectral radius as the 

threshold value or the basic reproductive number. Thus, it can be concluded that the 

reproduction number of the model is 

ℜ0 =
𝛽𝛿(𝑏𝑞+𝜓)

𝑎𝑏(𝜇+𝛿)
. 

3.5 Local stability of the disease free equilibrium 

In absence of the infectious disease, the model populations have a unique disease free 

steady state 𝐸0. To find the local stability of 𝐸0, the Jacobian of the model equations 

evaluated at DEF 𝐸0 is used. Also, to determine the global stability at 𝐸0 Metzler Method 

is used. It is already shown that the DFE of model (2) is given by 

𝐸0 = {𝑃0, 𝑆0, 𝐼𝑎
0, 𝐼𝑠

0, 𝑄0, 𝑅0, 𝐶0} = {
𝛱

𝜇+𝛿
,

𝛿𝛱

𝜇(𝜇+𝛿)
, 0, 0, 0, 0, 0} 

Now, the stability analysis of DEF is conducted and the results are presented in the form of 

theorems and proofs as follows: 

Theorem 3.1 The DFE 𝐸0 of the system (2) is locally asymptotically stable if ℜ0 < 1 

and unstable if ℜ0 > 1. 
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Proof  Consider the right hand side expressions of the equations (2) as functions so as to 

find the Jacobian matrix as follows: 

 𝑑𝑃(𝑡)

𝑑𝑡
=  𝛱 − (𝛿 + 𝜇)𝑃 = 𝑓1(𝑃, 𝑆 , 𝐼𝑎 , 𝐼𝑠, 𝑄, 𝑅, 𝐶) 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝛿𝑝 + 𝜃𝑅 − (𝜆 + 𝜇)𝑆 = 𝑓2(𝑃, 𝑆 , 𝐼𝑎 , 𝐼𝑠, 𝑄, 𝑅, 𝐶) 

𝑑𝐼𝑎(𝑡)

𝑑𝑡
= (1 − 𝜂)𝜆𝑆 − (𝜓 + 𝛾 + 𝜇 + 𝜉)𝐼𝑎 = 𝑓3(𝑃, 𝑆 , 𝐼𝑎  , 𝐼𝑠 , 𝑄, 𝑅, 𝐶) 

𝑑𝐼𝑠(𝑡)

𝑑𝑡
=  𝜂𝜆𝑆 + 𝜓𝐼𝑎 − (𝜑 + 𝜇 + 𝜉 + 𝛾)𝐼𝑠 = 𝑓4(𝑃, 𝑆 , 𝐼𝑎 , 𝐼𝑠, 𝑄, 𝑅, 𝐶) 

𝑑𝑄(𝑡)

𝑑𝑡
= 𝛾𝐼𝑎 + 𝜑𝐼𝑠 − (𝜙 + 𝛼 + 𝜇 + 𝜉)𝑄 = 𝑓5(𝑃, 𝑆 , 𝐼𝑎  , 𝐼𝑠, 𝑄, 𝑅, 𝐶) 

𝑑𝐶(𝑡)

𝑑𝑡
=  ϕ𝑄 − (𝜇 + 𝜉)𝐶 = 𝑓7(𝑃, 𝑆 , 𝐼𝑎 , 𝐼𝑠, 𝑄, 𝑅, 𝐶) 

𝑑𝑅(𝑡)

𝑑𝑡
=  𝛼𝑄 − (𝜇 + 𝜃)𝑅 = 𝑓6(𝑃, 𝑆 , 𝐼𝑎 , 𝐼𝑠, 𝑄, 𝑅, 𝐶) 

Now the Jacobian matrix of the 𝑓1, 𝑓2, 𝑓3, 𝑓4,   𝑓5,   𝑓6, 𝑓7 with respect to  (𝑃, 𝑆 , 𝐼𝑎 , 𝐼𝑠,
𝑄, 𝑅, 𝐶) is given by: 

𝐽 =

[
 
 
 
 
 
 
 
 
−𝜇 − 𝛿 0 0 0 0 0 0

𝛿
−[𝜇+𝛽(𝐼𝑠+𝑞𝐼𝑎)]

𝑁

−𝛽𝑞𝑆

𝑁

−𝛽𝑆

𝑁
0 𝜃 0

0
(1−𝜂)[𝛽(𝐼𝑠+𝑞𝐼𝑎)]

𝑁
(
(1−𝜂)𝛽𝑞𝑆

𝑁
) − 𝑎

−(1−𝜂)[𝛽𝑆]

𝑁
0 0 0

0
𝜂𝛽(𝐼𝑠+𝑞𝐼𝑎)

𝑁

𝜂𝛽𝑞𝑆

𝑁
(
𝜂𝛽𝑆

𝑁
) − 𝑏 0 0 0

0 0 𝛾 𝜑 −𝑐 0 0
0 0 0 0 𝛼 −𝑑 0
0 0 0 0 𝜙 0 𝑒]

 
 
 
 
 
 
 
 

         (5)                  

Therefore, the Jacobian matrix 𝐽 of model at the disease free equilibrium 𝐸0 reduces to  

𝐽(𝐸0) =  

[
 
 
 
 
 
 
 
 
 
 
−𝜇 − 𝛿 0 0 0 0 0 0

𝛿 −𝜇
−𝛽𝑞𝛿

𝜇 + 𝛿

−𝛽𝛿

𝜇 + 𝛿
0 𝜃 0

0 0
(1 − 𝜂)𝛽𝛿𝑞

𝜇 + 𝛿
− 𝑎

−(1 − 𝜂)𝛽𝑆

𝜇 + 𝛿
0 0 0

0 0
𝜂𝛽𝛿𝑞

𝜇 + 𝛿
(

𝜂𝛽𝛿

𝜇 + 𝛿
) − 𝑏 0 0 0

0 0 𝛾 𝜑 −𝑐 0 0
0 0 0 0 𝛼 −𝑑 0
0 0 0 0 𝜙 0 −𝑒]

 
 
 
 
 
 
 
 
 
 

 

Now, the eigenvalues of  𝐽(𝐸0) are required to be found. The characteristic equation 

𝑑𝑒𝑡[𝐽(𝐸0) − 𝐼𝜆] = 0 is expanded and simplified as follows 
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|

|

|

−𝜇 − 𝛿 − 𝜆 0 0 0 0 0 0

𝛿 −𝜇 − 𝜆
−𝛽𝑞𝛿

𝜇 + 𝛿

−𝛽𝛿

𝜇 + 𝛿
0 𝜃 0

0 0
(1 − 𝜂)𝛽𝛿𝑞

𝜇 + 𝛿
− 𝑎 − 𝜆

−(1 − 𝜂)𝛽𝑆

𝜇 + 𝛿
0 0 0

0 0
𝜂𝛽𝛿𝑞

𝜇 + 𝛿

𝜂𝛽𝛿

𝜇 + 𝛿
− 𝑏 − 𝜆 0 0 0

0 0 𝛾 𝜑 −𝑐 − 𝜆 0 0
0 0 0 0 𝛼 −𝑑 − 𝜆 0
0 0 0 0 𝜙 0 −𝑒 − 𝜆

|

|

|

= 0 

⇒ ( −𝜇 − 𝛿 − 𝜆)(−𝜇 − 𝜆)(
(1 − 𝜂)𝛽𝛿𝑞

𝜇 + 𝛿
− 𝑎 − 𝜆)(

𝜂𝛽𝛿

𝜇 + 𝛿
− 𝑏 − 𝜆) (−𝑐 − 𝜆)(−𝑑

− 𝜆)(−𝑒 − 𝜆) = 0 

Thus, the seven eigenvalues of the matrix are determined as 

 
𝜆1 = −𝜇 − 𝛿 , 

𝜆2 = −𝜇, 

𝜆3 =
(1 − 𝜂)𝛽𝛿𝑞

𝜇 + 𝛿
− 𝑎, 

𝜆4 =
𝜂𝛽𝛿

𝜇 + 𝛿
− 𝑏, 

𝜆5 = −𝑐, 

𝜆6 = −𝑑, 

𝜆7 = −𝑒. 

where  𝑎 = 𝜇 + 𝜉 + 𝜓 + 𝛾,𝑏 = 𝜇 + 𝜉 + 𝜑,   𝑐 = 𝜉 + 𝜙 + 𝛼 , 𝑑 = 𝜇 + 𝜉, 𝑒 = 𝜇 + 𝜃. 
It can be observed that all the eigenvalues   𝜆1,   𝜆2,  𝜆3, 𝜆4, 𝜆5, 𝜆6  and 𝜆7  are 

absolutely negative quantities. Therefore, it is concluded that the DFE 𝐸0 of the system of 

differential equations (2) is locally asymptotically stable if ℜ0 < 1 and unstable if  ℜ0 >
1.                                                                                     ◼ 

3.6 Global stability of disease free equilibrium 

To investigate the global stability of the disease free equilibrium points we used technique 

implemented by Castillo-Chavez and Song [4]. First the model equation (2) can be 

re-written as 

 𝑑𝑋

𝑑𝑡
= 𝐹(𝑋, 𝑍), 

 𝑑𝑍

𝑑𝑡
= 𝐺(𝑋, 𝑍), 𝐺(𝑋, 0) = 0, 

where, 𝑋 stands for the uninfected population, that is 𝑋 = (𝑃, 𝑆, 𝑅) and 𝑍 also stands for 

the infected population, that is Z = (𝐼𝑎 , 𝐼𝑠, 𝑄, 𝐶). The disease free equilibrium point of the 

model is denoted by 𝑈 = (𝑋∗, 0). The point 𝑈 = (𝑋∗, 0) to be globally asymptotically 

stable equilibrium for the model provided that ℜ0 < 1 and the following conditions must 

be met: 

𝐻1 : 
𝑑𝑋

𝑑𝑡
= 𝐹(𝑋∗, 0),   𝑋∗ is globally asymptotically stable. 

𝐻2: 𝐺(𝑋, 𝑍) = 𝐴𝑍 − �̂�(𝑋, 𝑍), �̂�(𝑋, 𝑍)  ≥ 0  for (𝑋, 𝑍) ∈ Ω. 

Where 𝐴 = 𝐷𝑍𝐺(𝑈, 0)  is a Metzler matrix (the off diagonal elements of 𝐴  are 
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non-negative) and G is the region where the model make biologically sense. If the model 

(2) met the above two criteria then the following theorem holds. 

Theorem 3.2 The point U = (𝑋∗, 0) is globally asymptotically stable equilibrium provided 

that ℜ0 < 1 and the condition (𝐻1) and (𝐻2 ) are satisfied. 

Proof  From system (2), we can get 𝐹(𝑋, 𝑍) and 𝐺(𝑋, 𝑍); 

𝐹(𝑋, 𝑍) = [

𝛱 − (𝛿 + 𝜇)𝑃
𝛿𝑃 + 𝜃𝑅 − (𝜆 + 𝜇)𝑆

𝛼𝑄 − (𝜇 + 𝜉)𝑅
] and 𝐺(𝑋, 𝑍) =

[
 
 
 
(1 − 𝜂)𝜆𝑆 − (𝜇 + 𝜉 + 𝜓 + 𝛾)𝐼𝑎

𝜓𝐼𝑎 − (𝜇 + 𝜉 + 𝜑)𝐼𝑠
𝛾𝐼𝑎 + 𝜑𝐼𝑠 − (𝜇 + 𝜉 + 𝜙 + 𝛼)𝑄

𝜙𝑄 − (𝜇 + 𝜉)𝐶 ]
 
 
 
. 

Consider the reduced system 

𝑑𝑋

𝑑𝑡𝑍=0
= [

𝛱 − (𝛿 + 𝜇)𝑃
𝛿𝑃 − 𝜇𝑆

0

] (6) 

From equation (6) above it is obvious that  𝑋∗ = {
𝛱

𝜇+𝛿
,

𝛿𝛱

𝜇(𝜇+𝛿)
, 0} is the global asymptotic 

point. This can be verified from the solution, namely  𝑃 =
𝛱

𝜇+𝛿
+ [𝑃(0) −

𝛱

𝜇+𝛿
]𝑒−𝜇𝑡, 𝑆 =

𝛿𝛱

𝜇(𝜇+𝛿)
+ [𝑆(0) −

𝛿𝛱

𝜇(𝜇+𝛿)
] 𝑒−𝜇𝑡.  As 𝑡 → ∞  the solution 𝑃 →

𝛱

𝜇+𝛿
  and 𝑆 →

𝛿𝛱

𝜇(𝜇+𝛿)
  

implying that the global convergence of (6) in  Ω.  From the equation for infected 

compartments in the model we have 

𝐽(𝐸0) =  

[
 
 
 
 −[𝑎 −

(1−𝜂)𝛽𝛿𝑞

𝜇+𝛿
]

−(1−𝜂)𝛽𝑆

𝜇+𝛿
0 0

𝜂𝛽𝛿𝑞

𝜇+𝛿
−[𝑏 −

𝜂𝛽𝛿

𝜇+𝛿
] 0 0

𝛾 𝜑 −𝑐 0
0 0 𝛼 −𝑒]

 
 
 
 

. 

Since 𝐴 is Metzler matrix, i.e. all off diagonal elements are nonnegative. Then, 𝐺(𝑋, 𝑍) 

can be written as, 𝐺(𝑋, 𝑍)  =  𝐴𝑍 − �̂�(𝑋, 𝑍), where 

�̂�(𝑋, 𝑍) =

[
 
 
 
 [𝛽(𝐼𝑠 + 𝑞𝐼𝑎)(1 − 𝜂)][

𝛿

𝜇+𝛿
−

𝑆

𝑁
]

[𝛽𝜂(𝐼𝑠 + 𝑞𝐼𝑎)][
𝛿

𝜇+𝛿
−

𝑆

𝑁
] − 𝜓𝐼𝑎

0
0 ]

 
 
 
 

=

[
 
 
 
 
�̂�1(𝑋, 𝑍)

�̂�2(𝑋, 𝑍)

�̂�3(𝑋, 𝑍)

�̂�4(𝑋, 𝑍)]
 
 
 
 

. 

It follows that �̂�1(𝑋, 𝑍) ≥ 0, �̂�2(𝑋, 𝑍) ≥ 0, �̂�3(𝑋, 𝑍) = 0, �̂�4(𝑋, 𝑍) = 0 . Thus, the 

condition (𝐻1)  and (𝐻2 )  are satisfied and we conclude that 𝑈  is globally 

asymptotically stable for ℜ0 < 1.                                                      ◼ 

3.7 Endemic equilibrium points 

The endemic equilibrium points are  𝐸1 = {𝑃∗, 𝑆∗, 𝐼𝑠
∗, 𝐼𝑎

∗, 𝑄∗, 𝑅∗, 𝐶∗} is a steady state 

solution where the disease persists in the population. The endemic equilibrium point is 

obtained by setting rates of changes of variables with respect to time in model equations 

(2) to zero. That is, setting  
𝑑𝑃

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
=

𝑑𝐼𝑠

𝑑𝑡
=

𝑑𝐼𝑎

𝑑𝑡
=

𝑑𝑄

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
=

𝑑𝐶

𝑑𝑡
= 0 then we obtain the 

following 

 𝑃∗ =
𝛱

𝜇+𝛿
, 

𝑆∗ =
𝑎𝑏𝛱

[𝜇𝛽(𝑎𝜂+(𝜓+𝑏𝑞)(1−𝜂))]
, 
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𝐼𝑎
∗ =

𝑏𝑐𝑑[𝑎𝑏𝛱(𝜇+𝛿)−𝛿𝛽𝛱(𝑎𝜂+(𝜓+𝑏𝑞)(1−𝜂))](1−𝜂)

𝛽(𝜇+𝛿)(𝑎𝜂+(𝜓+𝑏𝑞)(1−𝜂))[𝜃𝛼[𝛾𝑏(1−𝜂)+𝜑(𝑎𝜂+𝜓(1−𝜂))]−𝑎𝑏𝑐𝑑]
, 

𝐼𝑠
∗ =

𝑏𝑐𝑑[𝑎𝑏𝛱(𝜇+𝛿)−𝛿𝛽𝛱(𝑎𝜂+(𝜓+𝑏𝑞)(1−𝜂))][𝑎𝜂+𝜓(1−𝜂)

𝛽(𝜇+𝛿)(𝑎𝜂+(𝜓+𝑏𝑞)(1−𝜂))[𝜃𝛼[𝛾𝑏(1−𝜂)+𝜑(𝑎𝜂+𝜓(1−𝜂))]−𝑎𝑏𝑐𝑑]
, 

𝑄∗ =
𝑑[𝛾𝑏(1−𝜂)+𝜑(𝑎𝜂+𝜓(1−𝜂))][𝑎𝑏𝛱(𝜇+𝛿)−𝛿𝛽𝛱(𝑎𝜂+(𝜓+𝑏𝑞)(1−𝜂))]

[𝛽(𝜇+𝛿)(𝑎𝜂+(𝜓+𝑏𝑞)(1−𝜂))][𝜃𝛼[𝛾𝑏(1−𝜂)+𝜑(𝑎𝜂+𝜓(1−𝜂))]−𝑎𝑏𝑐𝑑]
, 

𝑅∗ =
𝛼[𝛾𝑏(1−𝜂)+𝜑(𝑎𝜂+𝜓(1−𝜂))][𝑎𝑏𝛱(𝜇+𝛿)−𝛿𝛽𝛱(𝑎𝜂+(𝜓+𝑏𝑞)(1−𝜂))]

[𝛽(𝜇+𝛿)(𝑎𝜂+(𝜓+𝑏𝑞)(1−𝜂))][𝜃𝛼[𝛾𝑏(1−𝜂)+𝜑(𝑎𝜂+𝜓(1−𝜂))]−𝑎𝑏𝑐𝑑]
, 

𝐶∗ =
𝜙[𝛾𝑏(1−𝜂)+𝜑(𝑎𝜂+𝜓(1−𝜂))][𝑎𝑏𝛱(𝜇+𝛿)−𝛿𝛽𝛱(𝑎𝜂+(𝜓+𝑏𝑞)(1−𝜂))]

[𝛽𝑒(𝜇+𝛿)(𝑎𝜂+(𝜓+𝑏𝑞)(1−𝜂))][𝜃𝛼[𝛾𝑏(1−𝜂)+𝜑(𝑎𝜂+𝜓(1−𝜂))]−𝑎𝑏𝑐𝑑]
. 

 

Here,  𝑎 = 𝜇 + 𝜉 + 𝜓 + 𝛾, 𝑏 = 𝜇 + 𝜉 + 𝜑,   𝑐 = 𝜉 + 𝜙 + 𝛼 , 𝑑 = 𝜇 + 𝜉, 𝑒 = 𝜇 + 𝜃. 

3.8 Local stability of endemic equilibrium points 

Theorem 3.3 The Endemic Equilibrium point 𝐸1  of the system (2) is locally 

asymptotically stable if 𝑅0 >  1. 

Proof  To find the local stability of 𝐸1, the Jacobian of the model equations evaluated at 

𝐸1 is used. The Jacobian of (5) at the endemic equilibrium point (7) are 

𝐽(𝐸1) = 

 

[
 
 
 
 
 
 
 
 
 
 
−𝜇 − 𝛿 0 0 0 0 0 0

𝛿 −[𝜇 +
𝛽𝜇

𝛱
(𝑞𝐼𝑎

∗ + 𝐼𝑠
∗)]

−𝑎𝑏𝑞

𝑎𝜂 + (𝜓 + 𝑏𝑞)(1 − 𝜂)

−𝑎𝑏

𝑎𝜂 + (𝜓 + 𝑏𝑞)(1 − 𝜂)
0 𝜃 0

0
(1 − 𝜂)𝛽𝜇

𝛱
(𝑞𝐼𝑎

∗ + 𝐼𝑠
∗)

𝑎𝑏𝑞(1 − 𝜂)

𝑎𝜂 + (𝜓 + 𝑏𝑞)(1 − 𝜂)
− 𝑎

𝑎𝑏(1 − 𝜂)

𝑎𝜂 + (𝜓 + 𝑏𝑞)(1 − 𝜂)
0 0 0

0
𝜂𝛽𝜇

𝛱
(𝑞𝐼𝑎

∗ + 𝐼𝑠
∗)

𝑎𝑏𝑞𝜂

𝑎𝜂 + (𝜓 + 𝑏𝑞)(1 − 𝜂)

𝑎𝑏𝜂

𝑎𝜂 + (𝜓 + 𝑏𝑞)(1 − 𝜂)
− 𝑏 0 0 0

0 0 𝛾 𝜑 −𝑐 0 0
0 0 0 0 𝛼 −𝑑 0
0 0 0 0 𝜙 0 −𝑒]

 
 
 
 
 
 
 
 
 
 

. 

Now, the eigenvalues of  𝐽(𝐸1) are required to be found. The characteristic equation 

𝑑𝑒𝑡[𝐽(𝐸1) − 𝐼𝜆] = 0 is expanded and simplified as follows: 

𝑃(𝜆) = (−𝜇 − 𝛿 − 𝜆) (−(𝜇 +
𝛽𝜇

𝛱
(𝑞𝐼𝑎

∗ + 𝐼𝑠
∗)) − 𝜆) (

𝑎𝑏𝑞(1 − 𝜂)

𝑎𝜂 + (𝜓 + 𝑏𝑞)(1 − 𝜂)
− 𝑎 − 𝜆) 

(
𝑎𝑏𝜂

𝑎𝜂 + (𝜓 + 𝑏𝑞)(1 − 𝜂)
− 𝑏 − 𝜆) (−𝑐 − 𝜆)(−𝑑 − 𝜆)(−𝑒 − 𝜆) = 0 

Thus, the eigenvalues of the endemic equilibrium points are: 

 
𝜆1 = −𝜇 − 𝛿 , 

𝜆2 = −(𝜇 +
𝛽𝜇

𝛱
(𝑞𝐼𝑎

∗ + 𝐼𝑠
∗)), 

 𝜆3 = 
𝑎𝑏𝑞(1 − 𝜂)

𝑎𝜂 + (𝜓 + 𝑏𝑞)(1 − 𝜂)
− 𝑎, 

 𝜆4 =
𝑎𝑏𝜂

𝑎𝜂 + (𝜓 + 𝑏𝑞)(1 − 𝜂)
− 𝑏, 
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𝜆5 = −𝑐, 

𝜆6 = −𝑑, 

𝜆7 = −𝑒, 

where 

𝐼𝑎
∗ =

𝑏𝑐𝑑[𝑎𝑏𝛱(𝜇 + 𝛿) − 𝛿𝛽𝛱(𝑎𝜂 + (𝜓 + 𝑏𝑞)(1 − 𝜂))](1 − 𝜂)

𝛽(𝜇 + 𝛿)(𝑎𝜂 + (𝜓 + 𝑏𝑞)(1 − 𝜂))[𝜃𝛼[𝛾𝑏(1 − 𝜂) + 𝜑(𝑎𝜂 + 𝜓(1 − 𝜂))] − 𝑎𝑏𝑐𝑑]
, 

𝐼𝑠
∗ =

𝑏𝑐𝑑[𝑎𝑏𝛱(𝜇 + 𝛿) − 𝛿𝛽𝛱(𝑎𝜂 + (𝜓 + 𝑏𝑞)(1 − 𝜂))][𝑎𝜂 + 𝜓(1 − 𝜂)

𝛽(𝜇 + 𝛿)(𝑎𝜂 + (𝜓 + 𝑏𝑞)(1 − 𝜂))[𝜃𝛼[𝛾𝑏(1 − 𝜂) + 𝜑(𝑎𝜂 + 𝜓(1 − 𝜂))] − 𝑎𝑏𝑐𝑑]
. 

It can be observed that all the eigenvalues 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6,   𝜆7 are absolutely 

negative quantities. Therefore, it is concluded that the endemic equilibrium points 𝐸1 of 

the system of differential equations (2) is locally asymptotically stable if ℜ0 > 1. 

5. Sensitivity analysis 

Sensitivity indices allow us to measure the relative change in a variable when a parameter 

changes [9]. If the model is simple, it may be possible to differentiate the outcome with 

respect to each parameter in turn. The derivatives are the rate of change of predictions with 

respect to the parameters [2]. This work adopts the normalized forward sensitivity index to 

conduct the sensitivity analysis. The normalized forward sensitivity index of a variable 

with respect to a parameter is the ratio of the relative change in the variable to the relative 

change in the parameter. When the variable is a differentiable function of the parameter, 

the sensitivity index may be alternatively defined using partial derivative. For instance, the 

normalized forward sensitivity index on ℜ0 , which depends differentially on a parameter 

𝑀, as defined in [9] 

Υ𝑀
ℜ0 =

𝜕ℜ0

𝜕𝑀
×

𝑀

ℜ0
. (8) 

The parameter values displayed in a table 2 below are taken as the baseline values and they 

are used to evaluate the sensitivity indices of some parameters which are responsible for 

the transmission dynamics of COVID-19 infectious disease to four places of decimal in 

relation to the effective reproduction number ℜ0 using equation (8) above as a guide, the 

result of which is presented in table 1 below. 

 Υ𝛽
ℜ0 =

𝜕ℜ0

𝜕𝛽
×

𝛽

ℜ0
= 1, 

Υ𝑞
ℜ0 =

𝜕ℜ0

𝜕𝑞
×

𝑞

ℜ0
= 1 − 𝛿, 

Υ𝜇
ℜ0 =

𝜕ℜ0

𝜕𝜇
×

𝜇

ℜ0
=

               
[𝑞(𝜇+𝜉+𝜓+𝛾)(𝜇+𝜉+𝜑)(𝜇+𝛿)−[𝑞(𝜇+𝜉+𝜑)+𝜓][(𝜇+𝜉+𝜑)(𝜇+𝛿)+(𝜇+𝜉+𝜓+𝛾)(2𝜇+𝜉+𝜑+𝛿)]]𝜇

[(𝜇+𝜉+𝜑)(𝜇+𝛿)(𝑞(𝜇+𝜉+𝜑)+𝜓)]
, 

Υ𝜉
ℜ0 =

𝜕ℜ0

𝜕𝜉
×

𝜉

ℜ0
=

[𝑞(𝜇+𝜉+𝜓+𝛾)(𝜇+𝜉+𝜑)−[𝑞(𝜇+𝜉+𝜑)+𝜓][2𝜇+2𝜉+𝜑+𝜓+𝛾]]𝜉

[(𝜇+𝜉+𝜓+𝛾)(𝜇+𝜉+𝜑)(𝑞(𝜇+𝜉+𝜑)+𝜓)]
, 

Υ𝜑
ℜ0 =

𝜕ℜ0

𝜕𝜑
×

𝜑

ℜ0
=

−(𝜓𝜑)

[(𝜇+𝜉+𝜑)(𝑞(𝜇+𝜉+𝜑)+𝜓)]
, 
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Υ𝜓
ℜ0 =

𝜕ℜ0

𝜕𝜓
×

𝜓

ℜ0
=

[(𝜇+𝜉+𝛾)−𝑞(𝜇+𝜉+𝜑)]𝑞

[(𝜇+𝜉+𝜓+𝛾)(𝑞(𝜇+𝜉+𝜑)+𝜓)]
’ 

Υ𝛾
ℜ0 =

𝜕ℜ0

𝜕𝛾
×

𝛾

ℜ0
=

−𝛾

𝜇+𝜉+𝜓+𝛾
. 

Table 1. Sensitivity index and indices Table. 

Parameter Symbol Sensitivity indices 

𝛽 +1 

𝛿 0.9996 

𝜓 0.1895 

𝑞 0.0906 

𝜉 -0.0002 

𝛾 -0.0134 

𝜇 -0.1098 

𝜑 -0.6928 

 

Those parameters that have positive indices i.e. 𝛽,   𝛿,   𝜓 and  𝑞show that they have 

great impact on expanding the disease in the community if their values are increasing. Due 

to the reason that the basic reproduction number increases as their values increase, it means 

that the average number of secondary cases of infection increases in the community. 

Furthermore, those parameters in which their sensitivity indices are negative i.e. 𝜉, 𝛾, 𝜇  
and 𝜑 have an influence of minimizing the burden of the disease in the community as their 

values increase while the others are left constant. And also, as their values increase, the 

basic reproduction number decreases, which leads to minimizing then endemicity of the 

disease in the community. 

6. Numerical simulation 

In this section, numerical simulation study of model equations (2) are carried out using the 

software 𝑀𝐴𝑇𝐿𝐴𝐵 𝑅2015𝑏  with 𝑂𝐷𝐸45  solver. To conduct the study, a set of 

physically meaningful values are assigned to the model parameters. These values are either 

taken from population of Ethiopia (2020 and Historical) [12] or assumed on the basis of 

reality. Using the parameter values given in Table 1 and the initial conditions 𝑃(0) =
 86326278, 𝑆(0) = 1000000, 𝐼𝑎(0) =  10000, 𝐼𝑠 = 4557, 𝑄(0) = 8000, 𝐶(0)  =  63,
𝑅(0)  =  14 in the model equations (2) a simulation study is conducted and the results are 

given in the following Figures. 

Table 2. Parameter values. 

Parameter Value Source 

𝛱 0.0005 Assumed 

𝛿 0.0004 Assumed 

𝜂 0.067 Assumed 

𝜓 0.054 Assumed 

𝛾 0.001 Assumed 

𝜑 0.064 Assumed 

𝜙 0.001 Assumed 

𝛼 0.0002 Assumed 

𝜃 0.0023 Assumed 

𝜇 0.02 [11] 

𝜉 0.00001 Assumed 
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Figure 3. Dynamics of Protected Individuals. 

 

Figure 4. Dynamics of Susceptible Individuals. 

 

Figure 5. Dynamics of Asymptomatic Individuals. 
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Figure 6. Dynamics of Symptomatic Individuals. 

 

Figure 7. Dynamics of Quarantined Individuals. 

 

Figure 8. Dynamics of Coronavirus Individuals. 
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Figure 9. Dynamics of Recovered Individuals. 

 

Figure 10. Effect of Varying contact rate on asymptomatic individuals. 

 

Figure 11. Effect of Varying contact rate on symptomatic individuals. 
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Figure 12. Effect of Varying contact rate on Coronavirus individuals. 

Figure 3 shows that the protected individuals decreases due to more number of 

protected individuals join susceptible class and converges to disease free equilibrium. 

Similarly, Figure 4 illustrated that the susceptible individual decreases due to more number 

of infectious individuals. However, Figure 5 shows that the asymptomatic individual 

increases firstly as the consequence of some number of susceptible individuals joined the 

asymptomatic class but decline because of some asymptomatic individuals joined 

quarantine class. Similarly, Figure 6 illustrated that the symptomatic individual increases 

firstly as the consequence of some number of susceptible individuals joined the 

symptomatic class but decline because of some symptomatic individuals joined quarantine 

class. Moreover, Figure 7 shows that the number of quarantine individuals increases in the 

beginning as a result of infectious from asymptomatic and symptomatic individuals enters 

it and decreases due to recovery. Also, Figure 8 shows that the number of coronavirus 

individuals increases in the beginning as a result of some number from quarantine class 

enters it and decreases due to death rate. In addition to this figure 9 increases initially as 

more number of quarantine individuals join to it and decreases finally as result of losing 

natural immunity. 

Finally, Figure 10, Figure 11 and Figure 12 indicating that contact rate has an effect on 

reducing the disease from community. An increase in level of contact rate among 

individuals has an effect on reducing the prevalence of COVID-19 and COVID-19 disease. 

7. Conclusion and recommendation       

In this study, we formulated a mathematical model on the transmission dynamics 

COVID-19. Moreover, existence, positivity and boundedness of the formulated model are 

verified to illustrate that the model is biologically meaningful and mathematically 

wellpossed. In particular, the stability analyses of the model were investigated using the 

basic reproduction number. And also, the solution of the model equation is numerically 

supplemented and sensitivity analysis of the model is analyzed to determine which 

parameter has high impact on the transmission of diseases. Although eradication of 

COVID-19 infection remains a challenge in the world, but from results of this study we 

recommend that, the government should introduce education programmers on the 

importance of voluntary and routinely screening on COVID-19 infection. Also, there is 

need to increase the number of hospitals to deal with COVID-19 infection and to screen 

more individuals with infection. 
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