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1. Introduction

In this research, the Haar wavelets constructed on [a, b] are applied for solving the
numerical solution of the nonlinear Urysohn Fredholm integral equations of the
second kind (NUFIEs) of the form

u(s) = f(s) + λ

∫ b

a
K(s, x, u(x))dx, s ∈ [a, b], (1)
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where the functions f(s) and K(s, x, u(x)) are known and u(s) is a solution to be
determined. The mathematical modeling of physical phenomena, many problems
in applied mathematics, engineering, mechanics, mathematical physics and many
other fields can be turned into integral equations of the second type [12, 13, 17,
18, 26, 27, 29]. The two most commonly used methods for the numerical solutions
of these equations are the Glerkin and collocation methods [2, 14].
Recently, some the numerical methods including, operational matrices [32], block-

pulse functions (BPFs)[10, 23], triangular functions (TFs)[15], degenerate kernel
method [1], Chebyshev polynomials [35], Least squares approximation method[33],
Taylor-series expansion method [22], wavelet method [3, 25] and Bernoulli polyno-
mials [4] have been proposed to obtain approximate solutions of these equations.
In [17, 34], the classical theorems on the existence and uniqueness of the solution
of nonlinear integral equations can be observed. Existence results for functional
integral equations are obtained using the measure of noncompactness and Darbo
conditions in [19] and [24] respectively. The method of successive approximations
and its iterative methods are used in [6, 20].
In this paper, the iterative method of successive approximations based on the

Haar wavelet to obtain the numerical solution of (1) is described. The structure of
this article is divided into five sections. The second section, the basic definitions
and preliminaries of Haar wavelet are presented. In Section 3, the existence and
uniqueness of the solution of (1) is obtained using the fixed point technique. Also,
the convergence of the method of successive approximations used to approximate
the solution of (1), is described in this section. In order to confirm the theoretical
results and show the accuracy of the method, some numerical examples in Section
4 are considered. Section 5 includes the conclusion of the proposed method.

2. Preliminaries

One of the most simple and popular types of wavelet, is the Haar wavelet. Haar
function was introduced by Alfred Haar in 1910, [11] and later developed by others.
There are different definitions of Haar function and various generalizations have
been used [8, 21].

Definition 2.1 ([7]) The Haar scaling function also, called the father wavelet, is
defined on the interval [a, b) as

ϕ(x) =

{
1 , a ⩽ x < b,
0 , otherwise,

Definition 2.2 ([7]) The mother wavelet for Haar wavelets family is also defined
on the interval [a, b) as follows

ψ(x) =

 1 , a ⩽ x < a+b
2 ,

−1 , a+b
2 ⩽ x < b,

0 , otherwise,

All the other functions in the Haar wavelets family are defined on subintervals
of [a, b) and are generated from ψ(x) by the operations of dilation and translation.
Each function in the Haar wavelets family defined for x ∈ [a, b) except the scaling
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function can be expressed as

hi(x) = Ψ(2j − k) =

 1 , α ⩽ x < β,
−1 , β ⩽ x < γ,
0 , otherwise,

where

α = a+ (b− a)
k

n
, β = a+ (b− a)

k + 0.5

n
, γ = a+ (b− a)

k + 1

n
, i = 2, 3, ..., 2N

In the above difinition the integer n = 2j , j = 0, 1, ..., J shows the level of the
wavelet and k = 0, 1, ..., n − 1 is the translation parameter. The maximal level of
resolution is the integer J .
The wavelet numbers i is calculated according the formula i = n + k + 1. In

the case of minimal values n = 1, k = 0, we have i = 2. The maximum of i
is i = 2N = 2J+1. For i = 1, 2, the function h1(x) is called scaling function
whereas h2(x) is the mother wavelet for the Haar wavelet family. In [3, 16], some
authors uniform Haar wavelets for integration of real integrals. Here, we decide
to use the method presented to obtain the numerical solution of the equation
(NUFIEs). In this paper, suppose for Haar wavelets approximations collocation
points xi = a+ (b− a)2i−1

4N , i = 1, 2, ..., 2N, are considered.

Proposition 2.3 Let f : [a, b] → R be continuous integrable function. Consider
the integral

I =

∫ b

a
f(x)dx

over the [a, b]. Using the quadrature formula with respect to Haar wavelets the above
integral can be approximated as follows:

I ≃ (b− a)

2N

2N∑
i=1

f(a+ (b− a)
2i− 1

4N
), i = 1, 2, ...2N.

Definition 2.4 For L ⩾ 0, the function f : R → R is L-Lipschitz if

|f(x1)− f(x2)| ⩽ L|x1 − x2|, ∀x1, x2 ∈ [a, b]

Theorem 2.5 Let f : [a, b] → R be integrable function on [a, b] of L-Lipschitz
type. Then the following quadrature formula with respect to Haar wavelets

SN (f) =
(b− a)

2N

2N∑
i=1

f
(
a+ (b− a)

2i− 1

4N

)
(2)

where N = 2J is the maximal level of resolution of Haar wavelets, approximates

the integral
∫ b
a f(x)dx. Also we have

|
∫ b

a
f(x)dx− SN (f)| ⩽ L

(b− a)2

4N
. (3)
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Proof

∣∣ ∫ b

a
f(x)dx− SN (f)

∣∣ = ∣∣ ∫ b

a
f(x)dx−

∫ b

a

1

2N

2N∑
i=1

f
(
a+ (b− a)

2i− 1

4N

)
dx

∣∣
⩽ 1

2N

∫ b

a

2N∑
i=1

∣∣f(x)− f
(
a+ (b− a)

2i− 1

4N

)∣∣dx
⩽ 1

2N

∫ b

a

2N∑
i=1

(
L|x− (a+ (b− a)

2i− 1

4N
)|
)
dx

According to the x ∈ [a+ (b− a)2i−1
4N , a+ b−a

4N (2i)) we get

∣∣ ∫ b

a
f(x)dx− SN (f)

∣∣ ⩽ L
(b− a)2

4N
.

Thus, the proof is complete. ■

3. Main results

3.1 The sequence of successive approximations

Here, we consider the nonlinear equation (1), where λ > 0. We assume that f :
[a, b] → R and K : [a, b] × [a, b] × R → R are continuous functions. Let X = {f :
[a, b] → R; f is continuous} be the space of continuous functions with the metric

d(f, g) =
∥∥f − g

∥∥ = sup{
∣∣f(s)− g(s)

∣∣; s ∈ [a, b], },

Now, we shall prove the existence and uniqueness of the solution of (1) by the
method of successive approximations. We define the operators A : X → X by

A(u)(s) = f(s) + λ

∫ b

a
K(s, x, u(x))dx, ∀s ∈ [a, b], ∀u ∈ X.

Theorem 3.1 Let K(s, x, u(x)) be continuous for s, x ∈ [a, b], and f ∈ X . More-
over suppose that there exist µ > 0, α > 0, such that

|K(s, x, u)−K(s′, x
′
, u′)| ⩽ µ(|s− s

′ |+ |x− x
′ |) + α|u− u′|, ∀u, u′ ∈ X. (4)

If αλ(b − a) < 1, then equation (1) has a unique solution u∗ ∈ X, which can be
obtained by the following successive approximations method

u0(s) = f(s),

um(s) = f(s) + λ

∫ b

a
K(s, x, um−1(x))dx, m ⩾ 1 (5)
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Also, the sequence of successive approximations, (um)m⩾1 converges to the solution
u∗. Furthermore, the following error estimates hold

d(u∗, um) ⩽ (αλ(b− a))m

(1− αλ(b− a))
d(u0, u1) (6)

and choosing u0 = f ∈ X, the inequality (6) becomes

d(u∗, um) ⩽ (αλ(b− a))m+1

α(1− αλ(b− a))
M0 (7)

where

M0 = max{
∣∣K(s, x, u0)

∣∣; s, x ∈ [a, b], u0 ∈ R}.

Proof Firstly, we prove that A(X) ⊂ X. To this purpose, we see that for all
ε > 0 there are ε1, ε2 > 0 such that ε1 + λ(b − a)ε2 < ε . Since f is continuous
on compact set of [a, b], we infer that it is uniformly continuous and therefore for
ε1 > 0 exists δ

′
> 0 such that

| f(s1)− f(s2) |< ε1 ∀s1, s2 ∈ [a, b],

with |s1 − s2| < δ
′
.

As mentioned above, K also is uniformly continuous thus, for ε2 > 0 exists δ
′′
> 0

such that

∣∣K(s1, x, u(x))−K(s2, x, u(x))
∣∣ < ε2 ∀s1, s2 ∈ [a, b],

with |s1 − s2| < δ
′′
.

Let δ = min{δ′
, δ

′′} and s1, s2 ∈ [a, b], with |s1 − s2| < δ. We obtain

| A(u)(s1)−A(u)(s2) | ⩽| f(s1)− f(s2) | +λ
∫ b

a
|K(s1, x, u(x))−K(s2, x, u(x))|dx

⩽ ε1 + λ(b− a)ε2 < ε,

we derive

| A(u)(s1)−A(u)(s2) |⩽ ε.

This shows that A(u) is uniformly continuous for any u ∈ X, and so continuous on
[a, b], and hence A maps X into X, (i.e. A(X) ⊂ X).
Now, we show that the operator A is a contraction map. So, for u, F ∈ X and
s ∈ [a, b], we have

|A(u)(s)−A(F )(s)| ⩽ λ

∫ b

a
| K(s, x, u(x))−K(s, x, F (x)) | dx

⩽ λα(b− a) ∥ F −K ∥
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Consequently

∥ A(F )−A(N) ∥⩽ λα(b− a) ∥ F −K ∥ .

Since λα(b − a) < 1, the operator A is a contraction on Banach space (X, ∥ . ∥).
Using the Banach’s fixed point principle implies that (1) has a unique solution u∗

in X .
The same Banach’s fixed point principle leads to the estimates (6).
Choosing u0 = f , we have

|u0 − u1| ⩽ λ

∫ b

a
| K(s, x, u0(x)) | dx

⩽ λ

∫ b

a
max
a⩽s⩽b

| K(s, x, u0(x)) | dx

⩽ λ(b− a)M0.

taking supremum from the above inequality we get

∥ u0 − u1 ∥⩽ λ(b− a)M0.

In this way we obtain the inequality (7), which completes the proof. ■

Remark 3.2 Indeed, in previous theorem the existence and uniqueness of solution
of (1) and the convergence of the sequence of successive approximations (um)m∈N
to its exact solution in (X, ∥ . ∥) are proved.

Now, we consider a uniform partition D : a = s0 < s1 < s2 < ... < s2n−1 <
s2N = b of [a, b] with si = a + i b−a

2N and i = 0, 2N . Applying the quadrature rule
(2) and (3) in the computation of the integrals from (5) we obtain,

ū0(s) = f(s)

ūm(s) = f(s) +
b− a

2N

2N∑
i=1

K
(
s, a+

b− a

4N
(2i− 1), ūm−1(a+

b− a

4N
(2i− 1))

)
(8)

3.2 Convergence analysis

In this section, we investigate the convergence of the iterative proposed method to
the solution of equation (1).

Lemma 3.3 Consider the iterative procedure 8. Moreover suppose there exists
β > 0 such that

| f(s)− f(s
′
) |⩽ β|s− s

′ |, ∀s, s′ ∈ [a, b].

Under all assumptions of Theorem 3.1, the functions K(s, x, um(x)) are Lips-
chitzian.
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Using the conditions (4) we obtain

| K(s, x, um(x))−K(s, x
′
, um(x

′
) | ⩽| K(s, x, um(x))−K(s, x, um(x

′
) |

+ | K(s, x, um(x′))−K(s, x
′
, um(x

′
) |

⩽ α | um(x)− um(x
′
) | +µ|x− x

′ |.

and ∀m ⩾ 1

| um(x)− um(x
′
) | ⩽ β|x− x

′ |+ λ(b− a)|x− x
′ |

⩽ (β + λ(b− a))|x− x
′ |.

Then, for any x, x
′ ∈ [a, b] we have

| K(s, x, um(x))−K(s, x
′
, um(x

′
) |⩽

(
α(β + λ(b− a)) + µ

)
|x− x

′ |.

On the other hand,

| K(s, x, u0(x))−K(s, x
′
, u0(x

′
) | ⩽ α | f(x)− f(x

′
) | +µ|x− x

′ |

⩽ αβ|x− x
′ |+ µ|x− x

′ |

⩽ (αβ + µ)|x− x
′ |.

Supposing

L = max{
(
α(β + λ(b− a)) + µ

)
, αβ + µ},

we have

| K(s, x, um(x))−K(s, x
′
, um(x

′
) |⩽ L|x− x

′ |

Thus, the functions K(s, x, um(x)) for all m are Lipschitzian.

Theorem 3.4 Consider the NUFIEs (1) with the hypotheses of Theorem 3.1. If
αλ(b− a) < 1, then the iterative procedure (8) converges to the unique solution of
(1), u∗, and its error estimate is as follows

d(u∗, ūm) ⩽ (αλ(b− a))m+1

α(1− αλ(b− a))
M0 +

L(b− a)2

4N(1− αλ(b− a))

where

L = max{
(
α(β + λ(b− a)) + µ

)
, αβ + µ},

Proof. Using (6) we have

d(u∗, ūm) ⩽ d(u∗, um) + d(um, ūm)

⩽ (αλ(b− a))m+1

α(1− αλ(b− a))
M0 + ∥um(s)− ūm(s)∥ (9)
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therefore, we shall to obtain the estimates for ∥um(s) − ūm(s)∥. Computing the
integrals from (5) we apply the quadrature formula (3) and obtain

u0(s) = f(s)

um(s) = f(s) +
b− a

2N

2N∑
i=1

K
(
s, a+

b− a

4N
(2i− 1), um−1(a+

b− a

4N
(2i− 1))

)
+ Em(s). (10)

with

| Em(s) |⩽ L(b− a)2

4N
.

Form (8) and (10), for m = 1, we obtain

| u1(s)− ū1(s) |⩽| E1(s) |⩽
L(b− a)2

4N
(11)

Now, from (11) for m = 2 it follow that

| u2(s)− ū2(s) | ⩽
L(b− a)2

4N
+ λα

b− a

2N

2N∑
i=1

| u1
(
a+

b− a

4N
(2i− 1)

)
− ū1

(
a+

b− a

4N
(2i− 1)

)
|

⩽ L(b− a)2

4N
+ λα

b− a

2N

2N∑
i=1

L(b− a)2

4N

=
(
1 + λα(b− a)

)L(b− a)2

4N
.

By induction, for m ∈ N , m ⩾ 3, we obtain

| um(s)− ūm(s) | ⩽ [1 + λα(b− a)...+ (λα(b− a))m−1]
L(b− a)2

4N

⩽ 1− (λα(b− a))m

1− λα(b− a)

L(b− a)2

4N
(12)

⩽ 1

1− λα(b− a)

L(b− a)2

4N

=
L(b− a)2

4N(1− αλ(b− a))
.

Hence, from (9), (11) and (12) we conclude that

d(u∗, ūm) ⩽ (αλ(b− a))m+1

α(1− αλ(b− a))
M0 +

L(b− a)2

4N(1− αλ(b− a))
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Remark 3.5 Since αλ(b− a) < 1, it is easy to see that

lim
m→∞
δx→0

d(u∗, ūm) = 0,

that shows the convergence of the method.

3.3 The numerical stability analysis

With the purpose of studying the numerical stability of the iterative method (8),
considering the small changes in the first iteration, an another first iteration term
v0(s) = g(s) ∈ C([a, b], R) is considered in such a way that there exists ε > 0 for
which

∣∣v0(s)− u0(s)
∣∣ < ε, ∀s ∈ [a, b]. Let β′,M ′

0 such that

| g(s)− g(s′) |⩽ β′ | s− s′ | ∀s, s′ ∈ I,

and let L′ > 0 be a Lipschitz constant having similar meaning as L similarly, as
in the proof of Lemma 3.3.
The new sequence of successive approximations is:

vm(s) = g(s) + λ

∫ b

a
K(s, x, vm−1(x))dx, m ⩾ 1

using the same iterative method (8) to solve (1) we have

v̄0(s) = g(s)

v̄m(s) = g(s) +
b− a

2N

2N∑
i=1

K
(
s, a+

b− a

4N
(2i− 1), v̄m−1(a+

b− a

4N
(2i− 1))

)
Theorem 3.6 Let the conditions of Theorem 3.4 are fulfilled. Then the iterative
approach (8) is numerically stable with respect to the selection of the first iteration.

Proof We reintroduce the proof of Theorem 3.4, we obtain

| vm(s)− vm(s) |⩽ L′(b− a)2

4N(1− αλ(b− a))
.

We have

| um(s)− vm(s) | ⩽ | um(s)− um(s) | + | um(s)− vm(s) | + | vm(s)− vm(s) |

⩽ | um(s)− vm(s) | + L(b− a)2

4N(1− αλ(b− a))
+

L′(b− a)2

4N(1− αλ(b− a))
.

also,

| u0(s)− v0(s) |< ε, ∀s ∈ [a, b],
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and

∣∣u1(s)− v1(s)
∣∣ ⩽ ∣∣u0(s) + λ

∫ b

a
K(s, x, v0(x))dx

− v0(s)− λ

∫ b

a
K(s, x, v0(x))dxdydz

∣∣
⩽ ε+ αλ

∫ b

a
| u0(s)− v0(s) | dx

⩽ (1 + αλ(b− a))ε = (1 + αλ(b− a))ε,

for m ⩾ 2, by induction, we have∣∣um(s)− vm(s)
∣∣ ⩽ ∣∣u0(s)− v0(s)

∣∣
+ λ

∫ b

a

∣∣K(s, x, um−1(x))−K(s, x, vm−1(x))
∣∣dx

⩽ ε+ αλ

∫ b

a
| um−1(s)− vm−1(s) | dxdy

⩽ (1 + αλ(b− a) + ...+ (αλ(b− a))m)ε,

for all s ∈ [a, b] and m ⩾ 0. Then,

d(um(s), vm(s)) ⩽ 1

1− αλ(b− a)
ε.

Now, we get,

| um(s)− vm(s) | ⩽ 1

1− αλ(b− a)
ε+

(L+ L′)(b− a)2

4N(1− αλ(b− a))

■

Remark 3.7 Since αλ(b− a) < 1, it is easy to see that

lim
δx,ε→0

d(um, vm) = 0.

this shows the stability of the method.

3.4 Algorithm of the approach

The iterative procedure 8 gives the following algorithm of computation for the
solution of (1):

Step 1: The data are introduced as, a, b, λ, ε,N and the functions K, f .
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Step 2: For j = 0, 2N comput ūm(sj) by

ūm(s) = f(s) +
b− a

2N

2N∑
i=1

K
(
s, a+

b− a

4N
(2i− 1), ūm−1(a+

b− a

4N
(2i− 1))

)
.

Step 3: Compute | ūm(sj)− ūm−1(sj) |.
Step 4: If | ūm(sj)− ūm−1(sj) |< ε, Print ūm(sj) , j = 0, 2N . STOP.

4. Numerical experiments

We have applied our method on some numerical examples, to observe the accuracy
and efciency of the present method for solving NUFIEs. Also, we compare the nu-
merical solutions obtained by using the proposed method with the exact solutions.
In order to analyze the error of the method we introduce notations

e2N = |u∗(s)− ū(s)|,

and

∥e2N∥∞ := max{|e2N (sj)|, j = 0, 1, 2, ..., 2N},

where ū(s), u∗(s) are the approximate solution and the exact solution of integral
equations, respectively. Moreover, the number of iterations,NI = m, and the errors
∥e2N∥∞ are inserted in the tables. In this section, points are proposed as sj =

j
10 ,

for j = 1, 2, ..., 9. and we assumed that [a, b] = [0, 1], λ = 1. The computations
have been done using Maple 17.

Example 4.1 The following nonlinear Fredholm integral equation has been con-
sidered by other authors as a numerical test [5, 9, 28, 30, 31],

u(s) = f(s) +

∫ 1

0
K(s, x, u(x))dx,

where

f(s) = sin(πs)

K(s, x, u(x)) =
1

5
cos(πs) sin(πx)(u(x))3,

with the exact solution

u(s) = sin(πs) +
20−

√
391

3
cos(πs),

Ezquerro et al. studied existence of the solutions of the above equation (4.1) in [9].
Moreover, Rashidinia et al. in [30] analytically solutions for the mentioned eqution ,

including u1(s) = sin(πs)+ 20−
√
391

3 cos(πs) and u2(s) = sin(πs)+ 20+
√
391

3 cos(πs).

But in [5] just u(s) = sin(πs) + 20−
√
391

3 cos(πs) has been considered. In [5] the
minimum absolute errors of approximation is 3.6765 × 10−7 and the error just in
the point s = 0.5 is zero. Also, in [31] the minimum absolute errors of approximation
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is 7.796 × 10−3. By using the proposed method, we can present the approximate
solution for this example. Table 1 shows that the numerical results for this example.

Table 1. Numerical results for 2N = 10, 2N = 20, 2N = 40, in Example 1.

sj exact e2N=10 e2N=20 e2N=40

0.1 0.380752038 4.0580526341× 10−4 5.2713913659× 10−5 6.330998663× 10−6

0.2 0.648806725 3.4519857540× 10−4 4.4841133266× 10−5 5.290888307× 10−6

0.3 0.853351689 2.5080144563× 10−4 3.2578990321× 10−5 3.673434132× 10−6

0.4 0.974364644 1.3185412293× 10−4 1.7127788813× 10−5 1.640715164× 10−6

0.5 1 0 0 0
0.6 0.9277483875 1.3185412293× 10−4 1.7127788813× 10−5 1.640715164× 10−6

0.7 0.7646822990 2.5080144563× 10−4 3.2578990321× 10−5 3.673434132× 10−6

0.8 0.5267637791 3.4519857540× 10−4 4.4841133266× 10−5 5.290888307× 10−6

0.9 0.2372819503 4.0580526341× 10−4 5.2713913659× 10−5 6.330998663× 10−6

NI 12 12 12
∥en∥∞ 7.1664× 10−5 5.2714× 10−6 6.3310× 10−7

Example 4.2 Consider the following nonlinear Fredholm integral equation

u(s) = f(s) +

∫ 1

0
K(s, x, u(x))dx,

where

f(s) = cos(s)− 1

9

√
s(cos(1)3 + 3 cos(1)2 sin(1) + 6 cos(1) + 6 sin(1)− 7)

K(s, x, u(x)) =
√
sx(u(x))3,

and exact solution u(s) = cos(s). We have to obtain the absolute error, for the grid
points sj , for j = 1, 2, ..., 9. Numerical results (error between exact and approximate
value of ū(s)) with 2N = 10, 2N = 20, 2N = 40 are given in Table 2.

Table 2. Numerical results for 2N = 10, 2N = 20, 2N = 40, in Example 2.

sj e2N=10 e2N=20 e2N=40

0.1 1.994941976× 10−6 1.43383339× 10−7 9.3314031× 10−9

0.2 3.941226833× 10−6 2.83269524× 10−7 1.8435212× 10−8

0.3 5.840613257× 10−6 4.19784957× 10−7 2.7319650× 10−8

0.4 7.694776196× 10−6 5.53050023× 10−7 3.5992555× 10−8

0.5 9.505311771× 10−6 6.83179439× 10−7 4.4461391× 10−8

0.6 1.127374186× 10−5 8.10282591× 10−7 5.2733278× 10−8

0.7 1.300151840× 10−5 9.34463832× 10−7 6.0815007× 10−8

0.8 1.469002728× 10−5 1.05582277× 10−6 6.8713059× 10−8

0.9 1.634059214× 10−5 1.17445454× 10−6 7.6433628× 10−8

NI 9 9 9
∥eN∥∞ 1.63406× 10−5 1.17445× 10−6 7.64336× 10−8

Example 4.3 ([1, 4]) Consider the following nonlinear Fredholm integral equation

u(s) = f(s) +

∫ 1

0
K(s, x, u(x))dx, s ∈ [0, 1]
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where

f(s) = s− 1

2
(− cos(1) + sin(1))e(s−1) − 1

2
e(s)

K(s, x, u(x)) = es−x cos(u(x)),

and exact solution u(s) = s.
By using the proposed method, we can present the approximate solution for this
example. Table 3 shows that the numerical results for this example.

Table 3. Numerical results for 2N = 10, 2N = 20, 2N = 40, in Example 3.

si e2N=10 e2N=20 e2N=40

0.1 2.1552794792× 10−5 4.357367721× 10−6 2.91759361× 10−7

0.2 4.2579911663× 10−5 8.608458180× 10−6 5.76402643× 10−7

0.3 6.3100351018× 10−5 1.275711272× 10−5 8.54187040× 10−7

0.4 8.3132208484× 10−4 1.680698978× 10−5 1.12535753× 10−6

0.5 1.0269272812× 10−4 2.076157561× 10−5 1.39014753× 10−6

0.6 1.2179835196× 10−4 2.462419433× 10−5 1.64877963× 10−6

0.7 1.4046476605× 10−4 2.839801722× 10−5 1.90146617× 10−6

0.8 1.5870694346× 10−4 3.208607140× 10−5 2.14840982× 10−6

0.9 1.7653918430× 10−4 3.569124796× 10−5 2.38980419× 10−6

NI 11 11 11
∥eN∥∞ 1.76539× 10−4 3.56912× 10−5 2.38980× 10−6

5. Conclusions

In this work a computational method has been presented for numerical solution of
nonlinear Urysohn integral equations based on Haar wavelet series. This method is
very simple and involves lower computation. In the Theorem 3.1 sufficint conditions
for the existence and uniquness solution of the (NUFIEs) are presented. Proof of
the convergence and the error estimation of the proposed method in terms of
Lipschitz condition are provided in the Theorem 3.4. To illustrate the efficiency of
the presented method, three examples are given.
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